The Impact of the FKBP5 Gene Polymorphisms on the Relationship between Traumatic Life Events and Psychotic-Like Experiences in Non-Clinical Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. The Traumatic Events Checklist (TEC)
2.2.2. The Prodromal Questionnaire 16 (PQ-16)
2.3. Genotyping
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misiak, B.; Stramecki, F.; Gawęda, Ł.; Prochwicz, K.; Sąsiadek, M.M.; Moustafa, A.A.; Frydecka, D. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: A Systematic Review. Mol. Neurobiol. 2018, 55, 5075–5100. [Google Scholar] [CrossRef] [PubMed]
- Matheson, S.L.; Shepherd, A.M.; Pinchbeck, R.M.; Laurens, K.R.; Carr, V.J. Childhood adversity in schizophrenia: A systematic meta-analysis. Psychol. Med. 2013, 43, 225–238. [Google Scholar] [CrossRef]
- Dauvermann, M.R.; Donohoe, G. The role of childhood trauma in cognitive performance in schizophrenia and bipolar disorder—A systematic review. Schizophr. Res. Cogn. 2019, 16, 1–11. [Google Scholar] [CrossRef]
- Gawęda, Ł.; Pionke, R.; Krężołek, M.; Prochwicz, K.; Kłosowska, J.; Frydecka, D.; Misiak, B.; Kotowicz, K.; Samochowiec, A.; Mak, M.; et al. Self-disturbances, cognitive biases and insecure attachment as mechanisms of the relationship between traumatic life events and psychotic-like experiences in non-clinical adults—A path analysis. Psychiatry Res. 2018, 259, 571–578. [Google Scholar] [CrossRef]
- Gawęda, Ł.; Pionke, R.; Arciszewska, A.; Prochwicz, K.; Frydecka, D.; Misiak, B.; Cechnicki, A.; Cicero, D.C.; Nelson, B. A combination of self-disturbances and psychotic-like experiences. A cluster analysis study on a non-clinical sample in Poland. Psychiatry Res. 2019, 273, 394–401. [Google Scholar] [CrossRef]
- Turley, D.; Drake, R.; Killackey, E.; Yung, A.R. Perceived stress and psychosis: The effect of perceived stress on psychotic-like experiences in a community sample of adolescents. Early Interv. Psychiatry 2019, 13, 1465–1469. [Google Scholar] [CrossRef] [Green Version]
- Bonoldi, I.; Simeone, E.; Rocchetti, M.; Codjoe, L.; Rossi, G.; Gambi, F.; Balottin, U.; Caverzasi, E.; Politi, P.; Fusar-Poli, P. Prevalence of self-reported childhood abuse in psychosis: A meta-analysis of retrospective studies. Psychiatry Res. 2013, 210, 8–15. [Google Scholar] [CrossRef]
- Sideli, L.; Murray, R.M.; Schimmenti, A.; Corso, M.; La Barbera, D.; Trotta, A.; Fisher, H.L. Childhood adversity and psychosis: A systematic review of bio-psycho-social mediators and moderators. Psychol. Med. 2020, 50, 1761–1782. [Google Scholar] [CrossRef]
- Beards, S.; Gayer-Anderson, C.; Borges, S.; Dewey, M.E.; Fisher, H.L.; Morgan, C. Life events and psychosis: A review and meta-analysis. Schizophr. Bull. 2013, 39, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Van Os, J.; Linscott, R.J.; Myin-Germeys, I.; Delespaul, P.; Krabbendam, L. A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol. Med. 2009, 39, 179–195. [Google Scholar] [CrossRef]
- Sideli, L.; Murray, R.M.; Schimmenti, A.; Corso, M.; La Barbera, D.; Trotta, A.; Fisher, H.L. A systematic review of biopsychosocial mediators and moderators of the association between childhood adversity and psychosis. Res. Psychother. Psychopathol. Process Outcome 2018, 11, 1761–1782. [Google Scholar]
- Gawęda, Ł.; Prochwicz, K.; Adamczyk, P.; Frydecka, D.; Misiak, B.; Kotowicz, K.; Szczepanowski, R.; Florkowski, M.; Nelson, B. The role of self-disturbances and cognitive biases in the relationship between traumatic life events and psychosis proneness in a non-clinical sample. Schizophr. Res. 2018, 193, 218–224. [Google Scholar] [CrossRef]
- Nolan, E.; Murphy, S.; O’Neill, T.; Houston, J.; Murphy, J.; Shevlin, M. Prevalence of psychotic-like experiences and associated distress in adolescent community, sexual-trauma and clinical samples. Psychosis 2018, 10, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Chan, K.W.; Chang, W.C.; Lee, E.H.M.; Hui, C.L.M.; Chen, E.Y.H. A systematic review on definitions and assessments of psychotic-like experiences. Early Interv. Psychiatry 2016, 10, 3–16. [Google Scholar] [CrossRef]
- Healy, C.; Cannon, M. Psychotic-like experiences in the general population. Risk Factors Psychos. 2020, 119–141. [Google Scholar] [CrossRef]
- Kelleher, I.; Cannon, M. Psychotic-like experiences in the general population: Characterizing a high-risk group for psychosis. Psychol. Med. 2011, 41, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yung, A.R.; Nelson, B.; Baker, K.; Buckby, J.A.; Baksheev, G.; Cosgrave, E.M. Psychotic-like experiences in a community sample of adolescents: Implications for the continuum model of psychosis and prediction of schizophrenia. Aust. N. Z. J. Psychiatry 2009, 43, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Van Os, J.; Reininghaus, U. Psychosis as a transdiagnostic and extended phenotype in the general population. World Psychiatry 2016, 15, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linscott, R.J.; Van Os, J. An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: On the pathway from proneness to persistence to dimensional expression across mental disorders. Psychol. Med. 2013, 43, 1133–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Wang, W.; Qiu, X.; Qing, Z.; Lin, X.; Liu, F.; Wu, W.; Yang, X.; Otake, Y.; Luo, X.; et al. The prevalence of confirmed childhood trauma and its’ impact on psychotic-like experiences in a sample of Chinese adolescents. Psychiatry Res. 2020, 287, 112897. [Google Scholar] [CrossRef]
- Sun, M.; Xue, Z.; Zhang, W.; Guo, R.; Hu, A.; Li, Y.; Mwansisya, T.E.; Zhou, L.; Liu, C.; Chen, X.; et al. Psychotic-like experiences, trauma and related risk factors among “left-behind” children in China. Schizophr. Res. 2017, 181, 43–48. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, W.; Guo, R.; Hu, A.; Li, Y.; Mwansisya, T.E.; Zhou, L.; Liu, C.; Chen, X.; Tao, H.; et al. Psychotic-like experiences and correlation with childhood trauma and other socio-demographic factors: A cross-sectional survey in adolescence and early adulthood in China. Psychiatry Res. 2017, 255, 272–277. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.L.; Malla, A.K. Much ado about much: Stress, dynamic biomarkers and HPA axis dysregulation along the trajectory to psychosis. Schizophr. Res. 2015, 162, 253–260. [Google Scholar] [CrossRef]
- Thompson, K.N.; Phillips, L.J.; Komesaroff, P.; Yuen, H.P.; Wood, S.J.; Pantelis, C.; Velakoulis, D.; Yung, A.R.; McGorry, P.D. Stress and HPA-axis functioning in young people at ultra high risk for psychosis. J. Psychiatr. Res. 2007, 41, 561–569. [Google Scholar] [CrossRef]
- Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009, 34, S186–S195. [Google Scholar] [CrossRef] [PubMed]
- Wochnik, G.M.; Rüegg, J.; Abel, G.A.; Schmidt, U.; Holsboer, F.; Rein, T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. 2005, 280, 4609–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scammell, J.G.; Denny, W.B.; Valentine, D.L.; Smith, D.F. Overexpression of the FK506-Binding Immunophilin FKBP51 Is the Common Cause of Glucocorticoid Resistance in Three New World Primates. Gen. Comp. Endocrinol. 2001, 124, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, D.; Fillman, S.G.; Webster, M.J.; Weickert, C.S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep. 2013, 3, 3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darby, M.M.; Yolken, R.H.; Sabunciyan, S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl. Psychiatry 2016, 6, e890. [Google Scholar] [CrossRef]
- Girshkin, L.; Matheson, S.L.; Shepherd, A.M.; Green, M.J. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology 2014, 49, 187–206. [Google Scholar] [CrossRef]
- Hubbard, D.B.; Miller, B.J. Meta-analysis of blood cortisol levels in individuals with first-episode psychosis. Psychoneuroendocrinology 2019, 104, 269–275. [Google Scholar] [CrossRef]
- Berger, M.; Kraeuter, A.K.; Romanik, D.; Malouf, P.; Amminger, G.P.; Sarnyai, Z. Cortisol awakening response in patients with psychosis: Systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 68, 157–166. [Google Scholar] [CrossRef]
- Ciufolini, S.; Dazzan, P.; Kempton, M.J.; Pariante, C.; Mondelli, V. HPA axis response to social stress is attenuated in schizophrenia but normal in depression: Evidence from a meta-analysis of existing studies. Neurosci. Biobehav. Rev. 2014, 47, 359–368. [Google Scholar] [CrossRef]
- Chaumette, B.; Kebir, O.; Mam-Lam-Fook, C.; Morvan, Y.; Bourgin, J.; Godsil, B.P.; Plaze, M.; Gaillard, R.; Jay, T.M.; Krebs, M.O. Salivary cortisol in early psychosis: New findings and meta-analysis. Psychoneuroendocrinology 2016, 63, 262–270. [Google Scholar] [CrossRef]
- Borges, S.; Gayer-Anderson, C.; Mondelli, V. A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 2013, 38, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Cristóbal-Narváez, P.; Sheinbaum, T.; Rosa, A.; de Castro-Catala, M.; Domínguez-Martínez, T.; Kwapil, T.R.; Barrantes-Vidal, N. Interaction of both positive and negative daily-life experiences with FKBP5 haplotype on psychosis risk. Eur. Psychiatry 2020, 63. [Google Scholar] [CrossRef]
- Mihaljevic, M.; Zeljic, K.; Soldatovic, I.; Andric, S.; Mirjanic, T.; Richards, A.; Mantripragada, K.; Pekmezovic, T.; Novakovic, I.; Maric, N.P. The emerging role of the FKBP5 gene polymorphisms in vulnerability–stress model of schizophrenia: Further evidence from a Serbian population. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 527–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajnakina, O.; Borges, S.; Di Forti, M.; Patel, Y.; Xu, X.; Green, P.; Stilo, S.A.; Kolliakou, A.; Sood, P.; Marques, T.R.; et al. Role of Environmental Confounding in the Association between FKBP5 and First-Episode Psychosis. Front. Psychiatry 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristóbal-Narváez, P.; Sheinbaum, T.; Ballespí, S.; Mitjavila, M.; Myin-Germeys, I.; Kwapil, T.R.; Barrantes-Vidal, N. Impact of adverse childhood experiences on psychotic-like symptoms and stress reactivity in daily life in nonclinical young adults. PLoS ONE 2016, 11, e0153557. [Google Scholar] [CrossRef] [Green Version]
- de Castro-Catala, M.; Peña, E.; Kwapil, T.R.; Papiol, S.; Sheinbaum, T.; Cristóbal-Narváez, P.; Ballespí, S.; Barrantes-Vidal, N.; Rosa, A. Interaction between FKBP5 gene and childhood trauma on psychosis, depression and anxiety symptoms in a non-clinical sample. Psychoneuroendocrinology 2017, 85, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Cristóbal-Narváez, P.; Sheinbaum, T.; Myin-Germeys, I.; Kwapil, T.R.; de Castro-Catala, M.; Domínguez-Martínez, T.; Racioppi, A.; Monsonet, M.; Hinojosa-Marqués, L.; van Winkel, R.; et al. The role of stress-regulation genes in moderating the association of stress and daily-life psychotic experiences. Acta Psychiatr. Scand. 2017, 136, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, S.; Moya, J.; Ibáñez, M.I.; Villa, H.; Mezquita, L.; Ortet, G.; Gastó, C.; Fañanás, L.; Arias, B. Research Letter: Childhood trauma and the rs1360780 SNP of FKBP5 gene in psychosis: A replication in two general population samples. Psychol. Med. 2016, 46, 221–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristóbal-Narváez, P.; Sheinbaum, T.; Rosa, A.; Ballespí, S.; De Castro-Catala, M.; Peña, E.; Kwapil, T.R.; Barrantes-Vidal, N. The interaction between childhood bullying and the FKBP5 gene on psychotic-like experiences and stress reactivity in real life. PLoS ONE 2016, 11, e0158809. [Google Scholar] [CrossRef] [Green Version]
- Womersley, J.S.; Martin, L.I.; van der Merwe, L.; Seedat, S.; Hemmings, S.M.J. Hypothalamic-pituitary-adrenal axis variants and childhood trauma influence anxiety sensitivity in South African adolescents. Metab. Brain Dis. 2018, 33, 601–613. [Google Scholar] [CrossRef]
- Mahon, P.B.; Zandi, P.P.; Potash, J.B.; Nestadt, G.; Wand, G.S. Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults. Psychopharmacology 2013, 227, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.D.W.; Richards, S.; et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [Green Version]
- King, D.C.; Taylor, J.; Elnitski, L.; Chiaromonte, F.; Miller, W.; Hardison, R.C. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res. 2005, 15, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Collip, D.; Myin-Germeys, I.; Wichers, M.; Jacobs, N.; Derom, C.; Thiery, E.; Lataster, T.; Simons, C.; Delespaul, P.; Marcelis, M.; et al. FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br. J. Psychiatry 2013, 202, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Nijenhuis, E.R.S.; Van der Hart, O.; Kruger, K. The psychometric characteristics of the traumatic experiences checklist (TEC): First findings among psychiatric outpatients. Clin. Psychol. Psychother. 2002, 9, 200–210. [Google Scholar] [CrossRef]
- Ising, H.K.; Veling, W.; Loewy, R.L.; Rietveld, M.W.; Rietdijk, J.; Dragt, S.; Klaassen, R.M.C.; Nieman, D.H.; Wunderink, L.; Linszen, D.H.; et al. The validity of the 16-item version of the prodromal questionnaire (PQ-16) to screen for ultra high risk of developing psychosis in the general help-seeking population. Schizophr. Bull. 2012, 38, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frydecka, D.; Kotowicz, K.; Gawęda, Ł.; Prochwicz, K.; Kłosowska, J.; Rymaszewska, J.; Samochowiec, A.; Samochowiec, J.; Podwalski, P.; Pawlak-Adamska, E.; et al. Effects of interactions between variation in dopaminergic genes, traumatic life events, and anomalous self-experiences on psychosis proneness: Results from a cross-sectional study in a nonclinical sample. Eur. Psychiatry 2020, 63, 1–17. [Google Scholar] [CrossRef]
- Cozier, Y.C.; Palmer, J.R.; Rosenberg, L. Comparison of methods for collection of DNA samples by mail in the black women’s health study. Ann. Epidemiol. 2004, 14, 117–122. [Google Scholar] [CrossRef]
- Lefort, M.-C.; Boyer, S.; Barun, A.; Emami Khoyi, A.; Ridden, J.; Smith, V.; Sprague, R.; Waterhouse, B.; Cruickshank, R. Blood, sweat and tears: Non-invasive vs. non-disruptive DNA sampling for experimental biology. PeerJ 2014. [Google Scholar] [CrossRef] [Green Version]
- Millikan, R. The changing face of epidemiology in the genomics era. Epidemiology 2002, 13, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Bonin, A.; Bellemain, E.; Eidesen, P.B.; Pompanon, F.; Brochmann, C.; Taberlet, P. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 2004, 13, 3261–3273. [Google Scholar] [CrossRef]
- Binder, E.B.; Salyakina, D.; Lichtner, P.; Wochnik, G.M.; Ising, M.; Pütz, B.; Papiol, S.; Seaman, S.; Lucae, S.; Kohli, M.A.; et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet. 2004, 36, 1319–1325. [Google Scholar] [CrossRef]
- Luijk, M.P.C.M.; Velders, F.P.; Tharner, A.; van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Jaddoe, V.W.V.; Hofman, A.; Verhulst, F.C.; Tiemeier, H. FKBP5 and resistant attachment predict cortisol reactivity in infants: Gene-environment interaction. Psychoneuroendocrinology 2010, 35, 1454–1461. [Google Scholar] [CrossRef]
- Zannas, A.S.; Binder, E.B. Gene-environment interactions at the FKBP5 locus: Sensitive periods, mechanisms and pleiotropism. Genes, Brain Behav. 2014, 13, 25–37. [Google Scholar] [CrossRef]
- Yaylaci, F.T.; Cicchetti, D.; Rogosch, F.A.; Bulut, O.; Hetzel, S.R. The interactive effects of child maltreatment and the FK506 binding protein 5 gene (FKBP5) on dissociative symptoms in adolescence. Dev. Psychopathol. 2017, 29, 1105–1117. [Google Scholar] [CrossRef]
- Longden, E.; Branitsky, A.; Moskowitz, A.; Berry, K.; Bucci, S.; Varese, F. The relationship between dissociation and symptoms of psychosis: A meta-analysis. Schizophr. Bull. 2020, 46. [Google Scholar] [CrossRef]
- Anglin, D.M.; Espinosa, A.; Barada, B.; Tarazi, R.; Feng, A.; Tayler, R.; Allicock, N.M.; Pandit, S. Comparing the Role of Aberrant Salience and Dissociation in the Relation between Cumulative Traumatic Life Events and Psychotic-Like Experiences in a Multi-Ethnic Sample. J. Clin. Med. 2019, 8, 1223. [Google Scholar] [CrossRef] [Green Version]
- Mitjans, M.; Catalán, R.; Vázquez, M.; González-Rodríguez, A.; Penadés, R.; Pons, A.; Massana, G.; Munro, J.; Arranz, M.J.; Arias, B. Hypothalamic-pituitary-adrenal system, neurotrophic factors and clozapine response: Association with FKBP5 and NTRK2 genes. Pharmacogenet. Genom. 2015, 25, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.V.; Paez-Pereda, M.; Holsboer, F.; Hausch, F. The Prospect of FKBP51 as a Drug Target. ChemMedChem 2012, 7, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Amad, A.; Ramoz, N.; Peyre, H.; Thomas, P.; Gorwood, P. FKBP5 gene variants and borderline personality disorder. J. Affect. Disord. 2019, 248, 26–28. [Google Scholar] [CrossRef]
- de Castro-Catala, M.; van Nierop, M.; Barrantes-Vidal, N.; Cristóbal-Narváez, P.; Sheinbaum, T.; Kwapil, T.R.; Peña, E.; Jacobs, N.; Derom, C.; Thiery, E.; et al. Childhood trauma, BDNF Val66Met and subclinical psychotic experiences. Attempt at replication in two independent samples. J. Psychiatr. Res. 2016, 83, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Alemany, S.; Arias, B.; Aguilera, M.; Villa, H.; Moya, J.; Ibáñez, M.I.; Vossen, H.; Gastó, C.; Ortet, G.; Fañanás, L. Childhood abuse, the BDNF-Val66Met polymorphism and adult psychotic-like experiences. Br. J. Psychiatry 2011, 199, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Fisher, H.L.; Craig, T.K.; Fearon, P.; Morgan, K.; Dazzan, P.; Lappin, J.; Hutchinson, G.; Doody, G.A.; Jones, P.B.; McGuffin, P.; et al. Reliability and comparability of psychosis patients’ retrospective reports of childhood abuse. Schizophr. Bull. 2011, 37, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mahendran, R.; Chong, S.A.; Subramaniam, M. Elucidating the Impact of Childhood, Adulthood, and Cumulative Lifetime Trauma Exposure on Psychiatric Symptoms in Early Schizophrenia Spectrum Disorders. J. Trauma. Stress 2020, 34, 137–148. [Google Scholar] [CrossRef] [PubMed]
n | Mean ± SD or n (%) | |
---|---|---|
Age, years | 461 | 23.4 ± 3.0 |
Gender, M/F | 460 | 133/327 (40.7/59.3) |
Clinical diagnosis | 461 | 38 (8.2) |
EN | 461 | 157 (34.1) |
EA | 461 | 191 (41.4) |
PA | 461 | 71 (15.4) |
SA | 461 | 38 (8.2) |
PQ-16 | 461 | 4.1 ± 4.6 |
rs1360780 | 444 | |
CC | 260 (58.56) | |
CT | 159 (3.46) | |
TT | 31 (6.98) | |
rs9296158 | 445 | |
AA | 26 (5.84) | |
AG | 159 (35.73) | |
GG | 260 (58.43) | |
rs3800373 | 443 | |
GG | 37 (8.35) | |
TG | 144 (32.51) | |
TT | 262 (59.14) | |
rs9470080 | 443 | |
CC | 245 (55.30) | |
CT | 151 (34.09) | |
TT | 47 (10.61) | |
rs4713902 | 441 | |
CC | 50 (11.34) | |
CT | 154 (34.92) | |
TT | 237 (53.74) | |
rs737054 | 449 | |
CC | 224 (49.89) | |
CT | 182 (40.53) | |
TT | 43 (9.58) |
TLEs (+) | TLEs (-) | p | |
---|---|---|---|
EA | 5.10 ± 5.25 | 3.41 ± 3.81 | <0.001 |
EN | 5.25 ± 5.46 | 3.52 ± 3.91 | <0.001 |
PA | 5.24 ± 5.69 | 3.90 ± 4.30 | 0.022 |
SA | 7.10 ± 6.76 | 3.83 ± 4.22 | <0.001 |
TLEs | IV or Covariate | rs1360780 | rs9296158 | rs3800373 | rs9470080 | rs4713902 | rs737054 |
---|---|---|---|---|---|---|---|
EN | Age | F = 48.00, p < 0.001 | F = 47.28, p < 0.001 | F = 43.37, p < 0.001 | F = 42.87, p < 0.001 | F = 41.92, p < 0.001 | F = 45.36, p < 0.001 |
Gender | F = 1.62, p = 0.204 | F = 1.67, p = 0.197 | F = 1.59, p = 0.208 | F = 1.76, p = 0.186 | F = 1.55, p = 0.214 | F = 2.20, p = 0.139 | |
TLEs | F = 15.48, p < 0.001 | F = 14.54, p < 0.001 | F = 1.60, p = 0.207 | F = 0.33, p = 0.564 | F = 16.48, p < 0.001 | F = 17.54, p < 0.001 | |
FKBP5 | F = 1.15, p = 0.285 | F = 1.96, p = 0.162 | F = 3.24, p = 0.073 | F = 1.07, p = 0.301 | F = 0.24, p = 0.627 | F = 0.19, p = 0.660 | |
FKBP5 × TLEs | F = 1.04, p = 0.309 | F = 1.21, p = 0.273 | F = 1.43, p = 0.232 | F = 5.35, p = 0.21 | F = 2.45, p = 0.118 | F = 7.84, p = 0.005 | |
R2 | 0.142 | 0.141 | 0.150 | 0.144 | 0.134 | 0.141 | |
EA | Age | F = 48.84, p < 0.001 | F = 47.94, p < 0.001 | F = 43.58, p < 0.001 | F = 42.56, p < 0.001 | F = 44.25, p < 0.001 | F = 45.82, p < 0.001 |
Gender | F = 2.48, p = 0.116 | F = 2.53, p = 0.112 | F = 2.20, p = 0.139 | F = 2.14, p = 0.145 | F = 2.22, p = 0.137 | F = 2.67, p = 0.103 | |
TLEs | F = 20.13, p < 0.001 | F = 19.35, p < 0.001 | F = 2.55, p = 0.111 | F = 2.50, p = 0.115 | F = 19.79, p < 0.001 | F = 19.57, p < 0.001 | |
FKBP5 | F = 0.10, p = 0.747 | F = 0.48, p = 0.491 | F = 4.64, p = 0.032 | F = 2.45, p = 0.119 | F = 1.89, p = 0.170 | F = 0.67, p = 0.414 | |
FKBP5 × TLEs | F = 0.12, p = 0.731 | F = 0.06, p = 0.815 | F = 1.12, p = 0.290 | F = 2.18, p = 0.141 | F = 0.11, p = 0.739 | F = 0.832, p = 0.362 | |
R2 | 0.147 | 0.145 | 0.155 | 0.147 | 0.138 | 0.143 | |
PA | Age | F = 49.06, p < 0.001 | F = 48.56, p < 0.001 | F = 42.46, p < 0.001 | F = 41.35, p < 0.001 | F = 41.52, p < 0.001 | F = 45.54, p < 0.001 |
Gender | F = 4.43, p = 0.038 | F = 4.07, p = 0.044 | F = 3.59, p = 0.059 | F = 3.33, p = 0.069 | F = 3.15, p = 0.077 | F = 3.79, p = 0.052 | |
TLEs | F = 8.87, p = 0.003 | F = 7.44, p = 0.007 | F = 1.83, p = 0.177 | F = 2.17, p = 0.142 | F = 5.78, p = 0.017 | F = 8.305, p = 0.004 | |
FKBP5 | F = 4.12, p = 0.43 | F = 5.90, p = 0.016 | F = 1.95, p = 0.164 | F = 1.23, p = 0.269 | F = 0.90, p = 0.343 | F = 0.12, p = 0.729 | |
FKBP5 × TLEs | F = 5.53, p = 0.019 | F = 6.80, p = 0.009 | F = 0.10, p = 0.752 | F = 0.01, p = 0.925 | F = 0.00, p = 0.927 | F = 1.88, p = 0.171 | |
R2 | 0.141 | 0.141 | 0.131 | 0.121 | 0.111 | 0.125 | |
SA | Age | F = 45.09, p < 0.001 | F = 44.19, p < 0.001 | F = 39.66, p < 0.001 | F = 39.19, p < 0.001 | F = 40.52, p < 0.001 | F = 42.56, p < 0.001 |
Gender | F = 1.33, p = 0.250 | F = 1.42, p = 0.235 | F = 1.31, p = 0.252 | F = 1.35, p = 0.245 | F = 1.38, p = 0.242 | F = 1.57, p = 0.211 | |
TLEs | F = 16.78, p < 0.001 | F = 15.05, p < 0.001 | F = 5.95, p = 0.015 | F = 6.70, p = 0.010 | F = 11.50, p = 0.001 | F = 17.68, p < 0.001 | |
FKBP5 | F = 1.19, p = 0.275 | F = 0.96, p = 0.329 | F = 1.05, p = 0.305 | F = 1,79, p = 0.182 | F = 1.47, p = 0.227 | F = 0.18, p = 0.671 | |
FKBP5 × TLEs | F = 0.93, p = 0.337 | F = 0.37, p = 0.543 | F = 0.39, p = 0.531 | F = 0.19, p = 0.732 | F = 0.38, p = 0.538 | F = 0.93, p = 0.336 | |
R2 | 0.146 | 0.141 | 0.145 | 0.129 | 0.125 | 0.139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stramecki, F.; Frydecka, D.; Gawęda, Ł.; Prochwicz, K.; Kłosowska, J.; Samochowiec, J.; Szczygieł, K.; Pawlak, E.; Szmida, E.; Skiba, P.; et al. The Impact of the FKBP5 Gene Polymorphisms on the Relationship between Traumatic Life Events and Psychotic-Like Experiences in Non-Clinical Adults. Brain Sci. 2021, 11, 561. https://doi.org/10.3390/brainsci11050561
Stramecki F, Frydecka D, Gawęda Ł, Prochwicz K, Kłosowska J, Samochowiec J, Szczygieł K, Pawlak E, Szmida E, Skiba P, et al. The Impact of the FKBP5 Gene Polymorphisms on the Relationship between Traumatic Life Events and Psychotic-Like Experiences in Non-Clinical Adults. Brain Sciences. 2021; 11(5):561. https://doi.org/10.3390/brainsci11050561
Chicago/Turabian StyleStramecki, Filip, Dorota Frydecka, Łukasz Gawęda, Katarzyna Prochwicz, Joanna Kłosowska, Jerzy Samochowiec, Krzysztof Szczygieł, Edyta Pawlak, Elżbieta Szmida, Paweł Skiba, and et al. 2021. "The Impact of the FKBP5 Gene Polymorphisms on the Relationship between Traumatic Life Events and Psychotic-Like Experiences in Non-Clinical Adults" Brain Sciences 11, no. 5: 561. https://doi.org/10.3390/brainsci11050561
APA StyleStramecki, F., Frydecka, D., Gawęda, Ł., Prochwicz, K., Kłosowska, J., Samochowiec, J., Szczygieł, K., Pawlak, E., Szmida, E., Skiba, P., Cechnicki, A., & Misiak, B. (2021). The Impact of the FKBP5 Gene Polymorphisms on the Relationship between Traumatic Life Events and Psychotic-Like Experiences in Non-Clinical Adults. Brain Sciences, 11(5), 561. https://doi.org/10.3390/brainsci11050561