Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Conjunction Search Task
2.3. Behavioural Measures
2.4. Brain Activity Measurement
2.5. Brain Connectivity Estimation
- are the M × M coefficient matrices in which the element describes the dependence of on (). In this case, the present value of a specific process can be described as a linear function of the p past values of all processes, that is the model order, which in this work was estimated through Akaike Information Criterion (AIC) [56];
- is a vector of M zero-mean input processes. It is assumed to be composed of white and uncorrelated noises, which means that the correlation matrix of E(n) is equal to the covariance matrix for k = 0 and it is zero for each lag k > 0. Under the assumption of strict causality (e.g., the absence of instantaneous effects), the input white noises are uncorrelated, even at lag zero and their covariance matrix reduces to the diagonal matrix .
2.6. Eye Blink Measurement
2.7. Correlation between Eyes and Brain Features
3. Results
3.1. Behavioural Measures
3.2. Neurophysiological Correlates
3.3. Correlation between Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, W. The Principles of Psychology; Henry Holt and Co.: New York, NY, USA, 1890; Volume I. [Google Scholar]
- Endsley, M.R. Design and evaluation for situation awareness enhancement. In Proceedings of the Human Factors Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 1988; Volume 32. [Google Scholar]
- Simons, D.J.; Levin, D.T. Change blindness. Trends Cogn. Sci. 1997, 1, 261–267. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Bonelli, S.; Golfetti, A.; Pozzi, S.; Imbert, J.-P.; Granger, G.; Benhacene, R.; et al. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment. Front. Hum. Neurosci. 2016, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Colosimo, A.; Pozzi, S.; Bonelli, S.; Golfetti, A.; Kong, W.; Babiloni, F. On the use of cognitive neurometric indexes in aeronautic and air traffic management environments. In International Workshop on Symbiotic Interaction; Springer: Cham, Switzerland, 2015; pp. 45–56. [Google Scholar]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Pozzi, S.; Babiloni, F. A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 228, pp. 295–328. ISBN 0079-6123. [Google Scholar]
- Huang, Y.; Mohan, A.; De Ridder, D.; Sunaert, S.; Vanneste, S. The neural correlates of the unified percept of alcohol-related craving: A fMRI and EEG study. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Seeber, M.; Cantonas, L.-M.; Hoevels, M.; Sesia, T.; Visser-Vandewalle, V.; Michel, C.M. Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, M.K.; Guerra-Carrillo, B.; Miller Singley, A.T.; Bunge, S.A. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 2017, 25, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lv, J.; Hou, Y.; Shoemaker, T.; Dong, Q.; Li, K.; Liu, T. What makes a good movie trailer? Interpretation from simultaneous EEG and eyetracker recording. In Proceedings of the MM ’16: Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 82–86. [Google Scholar]
- Billeci, L.; Narzisi, A.; Tonacci, A.; Sbriscia-Fioretti, B.; Serasini, L.; Fulceri, F.; Apicella, F.; Sicca, F.; Calderoni, S.; Muratori, F. An integrated EEG and eye-tracking approach for the study of responding and initiating joint attention in Autism Spectrum Disorders. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wascher, E.; Heppner, H.; Hoffmann, S. Towards the measurement of event-related EEG activity in real-life working environments. Int. J. Psychophysiol. 2014, 91, 3–9. [Google Scholar] [CrossRef]
- Bodala, I.P.; Kukreja, S.; Li, J.; Thakor, N.V.; Al-Nashash, H. Eye tracking and EEG synchronization to analyze microsaccades during a workload task. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7994–7997. [Google Scholar]
- Brouwer, A.M.; Hogervorst, M.A.; Oudejans, B.; Ries, A.J.; Touryan, J. EEG and eye tracking signatures of target encoding during structured visual search. Front. Hum. Neurosci. 2017, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dimigen, O.; Sommer, W.; Hohlfeld, A.; Jacobs, A.M.; Kliegl, R. Coregistration of eye movements and EEG in natural reading: Analyses and review. J. Exp. Psychol. Gen. 2011, 140, 552–572. [Google Scholar] [CrossRef] [Green Version]
- Kulke, L.; Atkinson, J.; Braddick, O. Neural mechanisms of attention become more specialised during infancy: Insights from combined eye tracking and EEG. Dev. Psychobiol. 2017, 59, 250–260. [Google Scholar] [CrossRef]
- Kulke, L.V.; Atkinson, J.; Braddick, O.; Lebedev, M.; König, P.; Reilly, R.B.; Danckert, J.; Brunner, P. Neural differences between covert and overt attention studied using EEG with simultaneous remote eye tracking. Front. Hum. Neurosci. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Nikolaev, A.R.; Pannasch, S.; Ito, J.; Belopolsky, A.V. Eye movement-related brain activity during perceptual and cognitive processing. Front. Syst. Neurosci. 2014, 8, 2013–2014. [Google Scholar] [CrossRef] [Green Version]
- Barbato, G.; De Padova, V.; Paolillo, A.R.; Arpaia, L.; Russo, E.; Ficca, G. Increased spontaneous eye blink rate following prolonged wakefulness. Physiol. Behav. 2007, 90, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Bodala, I.P.; Li, J.; Thakor, N.V.; Al-Nashash, H. EEG and eye tracking demonstrate vigilance enhancement with challenge integration. Front. Hum. Neurosci. 2016, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaev, D.Y.; Major, S.; Murias, M.; Carpenter, K.L.H.; Carlson, D.; Sapiro, G.; Dawson, G. Relative Average Look Duration and its Association with Neurophysiological Activity in Young Children with Autism Spectrum Disorder. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Treisman, A.; Schmidt, H. Illusory conjunctions in the perception of objects. Cogn. Psychol. 1982, 14, 107–141. [Google Scholar] [CrossRef]
- Leonards, U.; Rettenbach, R.; Nase, G.; Sireteanu, R. Perceptual learning of highly demanding visual search tasks. Vision Res. 2002, 42, 2193–2204. [Google Scholar] [CrossRef] [Green Version]
- Treisman, A.; Kahneman, D. Changing views of attention and automaticity. In Varieties of Attention; Parasuraman, R., Davis, D.R., Eds.; Academic Press: Orlando, FA, USA, 1984; pp. 29–61. [Google Scholar]
- Donner, T.; Kettermann, A.; Diesch, E.; Ostendorf, F.; Villringer, A.; Brandt, S.A. Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search. Eur. J. Neurosci. 2000, 12, 3407–3414. [Google Scholar] [CrossRef]
- Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef]
- Snyder, J.J.; Kingstone, A. Inhibition of return at multiple locations and its impact on visual search. Vis. Cogn. 2007, 15, 238–256. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Huang, S.-L. The influence of attention levels on psychophysiological responses. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2012, 86, 39–47. [Google Scholar] [CrossRef]
- Stern, J.A.; Boyer, D.J.; Schroeder, D.J.; Touchstone, R.M.; Stoliarov, N. Blinks, Saccades; and Fixation Pauses During Vigilance Task Performance: 2: Gender and Time of Day; (No. DOT/FAA/AM-96/9); Civil Aerospace Medical Institute: Oklahoma City, OK, USA, 1996.
- Boehm-Davis, D.A.; Gray, W.D.; Schoelles, M.J. The eye blink as a physiological indicator of cognitive workload. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2000; Volume 44, pp. 6–116. [Google Scholar]
- Kramer, A.F. Physiological metrics of mental workload: A review of recent progress. Mult. Task Perform. 2020, 279–328. [Google Scholar] [CrossRef]
- Fukuda, K. Eye blinks: New indices for the detection of deception. Int. J. Psychophysiol. 2001, 40, 239–245. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yamaoka, K. Blink activity and task difficulty. Percept. Mot. Skills 1993, 77, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Veltman, J.A.; Gaillard, A.W.K. Physiological workload reactions to increasing levels of task difficulty. Ergonomics 1998, 41, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Fairhall, S.L.; Indovina, I.; Driver, J.; MacAluso, E. The brain network underlying serial visual search: Comparing overt and covert spatial orienting, for activations and for effective connectivity. Cereb. Cortex 2009, 19, 2946–2958. [Google Scholar] [CrossRef] [Green Version]
- Vossel, S.; Geng, J.J.; Fink, G.R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist 2014, 20, 150–159. [Google Scholar] [CrossRef]
- Bressler, S.L.; Tang, W.; Sylvester, C.M.; Shulman, G.L.; Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 2008, 28, 10056–10061. [Google Scholar] [CrossRef] [Green Version]
- Farrant, K.; Uddin, L.Q. Asymmetric development of dorsal and ventral attention networks in the human brain. Dev. Cogn. Neurosci. 2015, 12, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Siegel, M.; Donner, T.H.; Oostenveld, R.; Fries, P.; Engel, A.K. Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention. Neuron 2008, 60, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Ahveninen, J.; Huang, S.; Belliveau, J.W.; Chang, W.-T.; Hämäläinen, M. Dynamic oscillatory processes governing cued orienting and allocation of auditory attention. J. Cogn. Neurosci. 2013, 25, 1926–1943. [Google Scholar] [CrossRef] [Green Version]
- Maximo, J.O.; Neupane, A.; Saxena, N.; Joseph, R.M.; Kana, R.K. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity during Visual Search. Brain Connect. 2016, 6, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Dugué, L.; Marque, P.; VanRullen, R. Theta Oscillations Modulate Attentional Search Performance Periodically. J. Cogn. Neurosci. 2015, 27, 945–958. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. D), 5–12. [Google Scholar] [PubMed]
- Sameshima, K.; Baccala, L.A. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern. 2001, 84, 463–474. [Google Scholar]
- Kwon, S.; Watanabe, M.; Fischer, E.; Bartels, A. Attention reorganizes connectivity across networks in a frequency specific manner. Neuroimage 2017, 144, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Bruyer, R.; Brysbaert, M. Combining speed and accuracy in cognitive psychology: Is the Inverse Efficiency Score (IES) a better dependent variable than the mean Reaction Time (RT) and the Percentage of Errors (PE)? Psychol. Belg. 2011, 51, 5–13. [Google Scholar] [CrossRef]
- Elul, R. Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science 1969, 164, 328–331. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3187–3190. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef]
- Justen, C.; Herbert, C. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: A sLORETA study. BMC Neurosci. 2018, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Narum, S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006, 7, 783–787. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Gevers, M.R.; Anderson, B.D. Representations of jointly stationary stochastic feedback processes. Int. J. Control 1981, 33, 777–809. [Google Scholar] [CrossRef]
- Faes, L.; Erla, S.; Nollo, G. Measuring connectivity in linear multivariate processes: Definitions, interpretation, and practical analysis. Comput. Math. Methods Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.Y.; Baccalà, L.A.; Sameshima, K. Connectivity Inference between Neural Structures via Partial Directed Coherence. J. Appl. Stat. 2007, 34, 1259–1273. [Google Scholar]
- Antonacci, Y.; Astolfi, L.; Nollo, G.; Faes, L. Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks. Entropy 2020, 22, 732. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, M.; Pan, Y.; Lan, W.; Zheng, R.; Wu, F.X.; Wang, J. Complex Brain Network Analysis and Its Applications to Brain Disorders: A Survey. Complexity 2017, 2017. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Kleifges, K.; Bigdely-Shamlo, N.; Kerick, S.E.; Robbins, K.A. BLINKER: Automated extraction of ocular indices from EEG enabling large-scale analysis. Front. Neurosci. 2017, 11, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doughty, M.J. Assessment of short-term variability in human spontaneous blink rate during video observation with or without head / chin support. Clin. Exp. Optom. 2016, 99, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, F.H.; Jones, K.; Bartels, P.; Albert, M.; McAnulty, G.B.; Als, H. Quantified Neurophysiology with mapping: Statistical inference, Exploratory and Confirmatory data analysis. Brain Topogr. 1990, 3, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Bakdash, J.Z.; Marusich, L.R. Repeated measures correlation. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Min, Y.; Han, S.W. Response of multiple demand network to visual search demands. Neuroimage 2021, 229, 117755. [Google Scholar] [CrossRef]
- Magliacano, A.; Fiorenza, S.; Estraneo, A.; Trojano, L. Eye blink rate increases as a function of cognitive load during an auditory oddball paradigm. Neurosci. Lett. 2020, 736, 135293. [Google Scholar] [CrossRef]
- Shulman, G.L.; Pope, D.L.W.; Astafiev, S.V.; McAvoy, M.P.; Snyder, A.Z.; Corbetta, M. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J. Neurosci. 2010, 30, 3640–3651. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, Q.; Ding, Y.; Wang, C.; Li, H.; Wu, X.; Qu, T.; Li, L. Selective attention enhances beta-band cortical oscillation to speech under “cocktail-party” listening conditions. Front. Hum. Neurosci. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairclough, S.H.; Venables, L.; Tattersall, A. The influence of task demand and learning on the psychophysiological response. Int. J. Psychophysiol. 2005, 56, 171–184. [Google Scholar] [CrossRef]
- Berger, A.M.; Davelaar, E.J. Frontal Alpha Oscillations and Attentional Control: A Virtual Reality Neurofeedback Study. Neuroscience 2018, 378, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Mazloumi, A.; Kumashiro, M.; Izumi, H.; Higuchi, Y. Examining the Influence of Different Attentional Demands and Individuals ’ Cognitive Failure on Workload Assessment and Psychological Functioning. Int. J. Occup. Hyg. 2010, 2, 17–24. [Google Scholar]
- Gitelman, D.R.; Parrish, T.B.; Friston, K.J.; Mesulam, M.M. Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage 2002, 15, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauseng, P.; Klimesch, W.; Stadler, W.; Schabus, M.; Doppelmayr, M.; Hanslmayr, S.; Gruber, W.R.; Birbaumer, N. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur. J. Neurosci. 2005, 22, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Thut, G.; Nietzel, A.; Brandt, S.A.; Pascual-Leone, A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 2006, 26, 9494–9502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartocci, G.; Maglione, A.G.; Vecchiato, G.; Di Flumeri, G.; Colosimo, A.; Scorpecci, A.; Marsella, P.; Giannantonio, S.; Malerba, P.; Borghini, G.; et al. Mental workload estimations in unilateral deafened children. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1654–1657. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin College Division: Boston, MA, USA, 2003; Volume 663, ISBN 0618124055. [Google Scholar]
- Nielsen, J. Usability Engineering; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0080520294. [Google Scholar]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. Brain–Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems. Front. Hum. Neurosci. 2019, 13, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Barua, S.; Ahmed, M.U.; Begum, S.; Aricò, P.; Borghini, G.; Flumeri, G. Di A novel mutual information based feature set for drivers’ mental workload evaluation using machine learning. Brain Sci. 2020, 10, 551. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Graziani, I.; Imbert, J.-P.; Granger, G.; Benhacene, R.; Terenzi, M.; Pozzi, S.; et al. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7242–7245. [Google Scholar]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Sciaraffa, N.; Borghini, G.; Aricò, P.; Di Flumeri, G.; Colosimo, A.; Bezerianos, A.; Thakor, V.N.; Babiloni, F. Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network. Brain Sci. 2017, 7, 90. [Google Scholar] [CrossRef] [PubMed]
ROI | X | Y | Z |
---|---|---|---|
LIFG | −36 | 16 | −4 |
RIFG | 42 | 18 | −6 |
LTPJ | −52 | −54 | 23 |
RTPJ | 51 | −54 | 26 |
RFEF | 20 | −13 | 53 |
LFEF | −22 | −13 | 55 |
RIPS | 39 | −42 | 51 |
LIPS | −42 | −36 | 45 |
RVIS | 36 | −81 | −13 |
LVIS | −35 | −81 | −13 |
Parameter | Low Mean(Std) | High Mean(Std) | Z | p |
---|---|---|---|---|
EBR | 19.88(10.30) | 15.604(9.21) | 3.17 | 0.004 |
Duration | 0.221(0.046) | 0.217(0.036) | 0.86 | 0.386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciaraffa, N.; Borghini, G.; Di Flumeri, G.; Cincotti, F.; Babiloni, F.; Aricò, P. Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task. Brain Sci. 2021, 11, 562. https://doi.org/10.3390/brainsci11050562
Sciaraffa N, Borghini G, Di Flumeri G, Cincotti F, Babiloni F, Aricò P. Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task. Brain Sciences. 2021; 11(5):562. https://doi.org/10.3390/brainsci11050562
Chicago/Turabian StyleSciaraffa, Nicolina, Gianluca Borghini, Gianluca Di Flumeri, Febo Cincotti, Fabio Babiloni, and Pietro Aricò. 2021. "Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task" Brain Sciences 11, no. 5: 562. https://doi.org/10.3390/brainsci11050562
APA StyleSciaraffa, N., Borghini, G., Di Flumeri, G., Cincotti, F., Babiloni, F., & Aricò, P. (2021). Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task. Brain Sciences, 11(5), 562. https://doi.org/10.3390/brainsci11050562