Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgical Technique
2.3. Literature Review
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guzzi, G.; Della Torre, A.; Chirchiglia, D.; Volpentesta, G.; Lavano, A. Critical reappraisal of DBS targeting for movement disorders. J. Neurosurg. Sci. 2016, 60, 181–188. [Google Scholar]
- Lee, D.J.; Lozano, C.S.; Dallapiazza, R.F.; Lozano, A.M. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J. Neurosurg. 2019, 131, 333. [Google Scholar] [CrossRef] [Green Version]
- Abosch, A.; Timmermann, L.; Bartley, S.; Rietkerk, H.G.; Whiting, D.; Connolly, P.J.; Lanctin, D.; Hariz, M.I. An international survey of deep brain stimulation procedural steps. Stereotact. Funct. Neurosurg. 2013, 91, 1–11. [Google Scholar] [CrossRef]
- Winkler, D.; Tittgemeyer, M.; Schwarz, J.; Preul, C.; Strecker, K.; Meixensberger, J. The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1161–1163. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Levine, D.; Ramirez-Zamora, A.; Chockalingam, A.; Feustel, P.J.; Durphy, J.; Hanspal, E.; Novak, P.; Pilitsis, J.G. A comparison of unilateral deep brain stimulation (DBS), simultaneous bilateral DBS, and staged bilateral DBS lead accuracies. Neuromodul. J. Int. Neuromodul. Soc. 2017, 20, 478–483. [Google Scholar] [CrossRef]
- Petraglia, F.W.; Farber, S.H.; Han, J.L.; Verla, T.; Gallis, J.; Lokhnygina, Y.; Parente, P.; Hickey, P.; Turner, D.A.; Lad, S.; et al. Comparison of Bilateral vs. staged unilateral deep brain stimulation (DBS) in parkinson’s disease in patients under 70 years of age. Neuromodul. J. Int. Neuromodul. Soc. 2016, 19, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Maiti, T.K.; Konar, S.; Bir, S.; Kalakoti, P.; Nanda, A. Intra-operative micro-electrode recording in functional neurosurgery: Past, present, future. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2016, 32, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, M.A.; Anderson, S.; Murchison, C.; Seier, M.; Wilhelm, J.; Vederman, A. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology 2017, 89, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Bezchlibnyk, Y.B.; Sharma, V.D.; Naik, K.B.; Isbaine, F.; Gale, J.T.; Cheng, J.; Triche, S.D.; Miocinovic, S.; Buetefisch, C.M.; Willie, J.T.; et al. Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: A comparison of intraoperative MRI- and MER-guided lead placement. J. Neurosurg. 2020, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, Z.; Chapple, K.; Lambert, M.; Evidente, V.G.; Mahant, P.; Ospina, M.C.; Samanta, J.; Moguelcobos, G.; Salins, N.; Lieberman, A.; et al. Parkinson’s disease outcomes after intraoperative CT-guided “asleep deep” brain stimulation in the globus pallidus internus. J. Neurosurg. 2016, 124, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Mirzadeh, Z.; Chen, T.; Chapple, K.M.; Lambert, M.; Karis, J.P.; Dhall, R.; Ponce, F.A. Procedural variables influencing stereotactic accuracy and efficiency in deep brain stimulation surgery. Oper. Neurosurg. 2019, 17, 70–78. [Google Scholar] [CrossRef]
- Blasberg, F.; Wojtecki, L.; Elben, S.; Slotty, P.J.; Vesper, J.; Schnitzler, A.; Groiss, S.J. Comparison of awake vs. asleep surgery for subthalamic deep brain stimulation in parkinson’s disease. Neuromodul. J. Int. Neuromodul. Soc. 2018, 21, 541–547. [Google Scholar] [CrossRef]
- Chen, T.; Mirzadeh, Z.; Chapple, K.; Lambert, M.; Ponce, F.A. Complication rates, lengths of stay, and readmission rates in "awake" and “asleep” deep brain simulation. J. Neurosurg. 2017, 127, 360–369. [Google Scholar] [CrossRef]
- Van Horne, C.G.; Vaughan, S.W.; Massari, C.; Bennett, M.; Asfahani, W.S.; Quintero, J.E.; Gerhardt, G.A. Streamlining deep brain stimulation surgery by reversing the staging order. J. Neurosurg. 2015, 122, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Binder, D.K.; Rau, G.; Starr, P.A. Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact. Funct. Neurosurg. 2003, 80, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Voges, J.; Waerzeggers, Y.; Maarouf, M.; Lehrke, R.; Koulousakis, A.; Lenartz, D. Deep-brain stimulation: Long-term analysis of complications caused by hardware and surgery—Experiences from a single centre. J. Neurol. Neurosurg. Psychiatry 2006, 77, 868–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seijo, F.J.; Alvarez-Vega, M.A.; Gutierrez, J.C.; Fdez-Glez, F.; Lozano, B. Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. Acta Neurochir. 2007, 149, 867–875; discussion 76. [Google Scholar] [CrossRef] [PubMed]
- Doshi, P.K. Long-term surgical and hardware-related complications of deep brain stimulation. Stereotact. Funct. Neurosurg. 2011, 89, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fenoy, A.J.; Simpson, R.K. Risks of common complications in deep brain stimulation surgery: Management and avoidance. J. Neurosurg. 2014, 120, 132–139. [Google Scholar] [CrossRef]
- Tolleson, C.; Stroh, J.; Ehrenfeld, J.; Neimat, J.; Konrad, P.; Phibbs, F. The factors involved in deep brain stimulation infection: A large case series. Stereotact. Funct. Neurosurg. 2014, 92, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Falowski, S.M.; Ooi, Y.C.; Bakay, R.A. Long-term evaluation of changes in operative technique and hardware-related complications with deep brain stimulation. Neuromodul. J. Int. Neuromodul. Soc. 2015, 18, 670–677. [Google Scholar] [CrossRef]
- Morishita, T.; Hilliard, J.D.; Okun, M.S.; Neal, D.; Nestor, K.A.; Peace, D.; Hozouri, A.A.; Davison, M.R.; Bova, F.J.; Sporrer, J.M.; et al. Postoperative lead migration in deep brain stimulation surgery: Incidence, risk factors, and clinical impact. PLoS ONE 2017, 12, e0183711. [Google Scholar]
- Abode-Iyamah, K.O.; Chiang, H.Y.; Woodroffe, R.W.; Park, B.; Jareczek, F.J.; Nagahama, Y.; Winslow, N.; Herwaldt, L.A.; Greenlee, J.D.W. Deep brain stimulation hardware-related infections: 10-year experience at a single institution. J. Neurosurg. 2018, 130, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Kochanski, R.B.; Bus, S.; Brahimaj, B.; Borghei, A.; Kraimer, K.L.; Keppetipola, K.M.; Beehler, B.; Pal, G.; Metman, L.V.; Sani, S. The impact of microelectrode recording on lead location in deep brain stimulation for the treatment of movement disorders. World Neurosurg. 2019, 132, e487–e495. [Google Scholar] [CrossRef] [PubMed]
- Mostofi, A.; Evans, J.M.; Partington-Smith, L.; Yu, K.; Chen, C.; Silverdale, M.A. Outcomes from deep brain stimulation targeting subthalamic nucleus and caudal zona incerta for Parkinson’s disease. NPJ Parkinsons Dis. 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abboud, H.; Genc, G.; Saad, S.; Thompson, N.; Oravivattanakul, S.; Alsallom, F.; Yu, X.X.; Floden, D.; Gostkowski, M.; Ahmed, A.; et al. Factors associated with postoperative confusion and prolonged hospital stay following deep brain stimulation surgery for parkinson disease. Neurosurgery 2019, 86, 524–529. [Google Scholar] [CrossRef]
- Pepper, J.; Zrinzo, L.; Mirza, B.; Foltynie, T.; Limousin, P.; Hariz, M. The risk of hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. Stereotact. Funct. Neurosurg. 2013, 91, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.H.; Rowell, D.; Connelly, L.B. Cost-effectiveness of deep brain stimulation with movement disorders: A systematic review. Mov. Disord. Clin. Pract. 2019, 6, 348–358. [Google Scholar] [CrossRef]
- Centers for Medicare & Medicaid Services. Medicare Program: Hospital Inpatient Prospective Payment Systems for Acute Care Hospitals and Policy Changes and FY2020 Rates Final Rule 84 Fed. Reg. 42044–42701. Published 16 August 2019. Available online: https://www.govinfo.gov/content/pkg/FR-2019-08-16/pdf/2019-16762.pdf; Correction Notice 84 Fed. Reg. 53603–53630. Published 8 October 2019. Available online: https://www.govinfo.gov/content/pkg/FR-2019-10-08/pdf/2019-21865.pdf (accessed on 16 April 2020).
Within 90 Days | >90 Days | Total (as of the Last Follow-Up) | ||||
---|---|---|---|---|---|---|
Number | Percent (of All Patients) | Number | Percent (of All Patients) | Number | Percent (of All Patients) | |
Infection | 2 | 2.7% | 2 | 2.7% | 4 | 5.5% |
Lead Fracture | 1 | 1.4% | 1 | 1.4% | 2 | 2.7% |
Wound Dehiscence | 0 | 0% | 2 | 2.7% | 2 | 2.7% |
Hypotension | 1 | 1.4% | 0 | 0% | 1 | 1.4% |
IPG Site Hematoma | 1 | 1.4% | 0 | 0% | 1 | 1.4% |
Total | 6 | 8.2% | 5 | 6.8% | 11 | 15.1% |
Number | Percent (of All Patients Included) | |
---|---|---|
Infection | 2 | 2.7% |
Lead Fracture | 1 | 1.4% |
Hypotension | 1 | 1.4% |
IPG Site Hematoma | 1 | 1.4% |
Pain | 1 | 1.4% |
Total | 6 | 8.2% |
No. of Patients (Electrodes) | Staging | Infection | Hardware Complication | Wound Dehiscence/Erosion | Hemorrhage | Seizures | Loss of Efficacy | Other | |
---|---|---|---|---|---|---|---|---|---|
Abode-Iyamah, et al. (2019) | 242 (464) | S: 228 N: 17 | S 15 (6.6%) N 1 (5.9%) | NR | S: 9 (4.0%) N: 0 (0%) | NR | NR | NR | Postoperative Seroma S: 1 (0.4%) N: 0 (0%) |
Chen, et al. (2017) | 284 (490) | S: 200 N: 84 | S: 3 (1.5%) N: 0 (0%) | High impedance S: 1 (0.5%) N: 1 (1.2%) | S: 1 (0.3) N: 0 (0%) | S: 3 (1.5%) N: 1 (1.2%) | S: 2 (1%) N: 2 (2.4%) | NR | |
Fenoy (2014) | 728 (1333) | Transitioned from N to S, data not segregated | 23 (3.2%) | Lead malposition 9 (1.2%) Lead migration 4 (0.5%) High impedance 4 (0.5%) Fracture 10 (1.4%) | 4 (0.5%) | Symptomatic 8 (1.1%) Asymptomatic IVH 25 (3.4%) ICH 4 (0.5%) | 5 (0.7%) | 29 (4%) | IPG flipped, malpositioned or discomfort 8 (1.1%) |
Petraglia (2016) | 713 (1426) | Sim Bilat: 556 Staged Bilat: 157 IPG placement timing NR | Sim Bilat: 24 (4.3%) Staged Bilat: 11 (7%) | Sim Bilat: 3 (0.5%) Staged Bilat: 0 (0%) | NR | Sim Bilat: 16 (2.9%) Staged Bilat: 4 (2.5%) | NR | NR | Lead Revision Sim Bilat: 18 (3.2%) Staged Bilat: 20 (12.7%) Generator Revision Sim Bilat: 17 (3.1%) Staged Bilat: 6 (3.8%) |
Doshi (2010) | 153 (298) | All staged | 6 (3.9%) | Lead malposition 4 (2.6%) Lead migration 0 (0%) IPG malfunction 2 (1.3%) Fracture 0 (0%) | 1 (0.7%) | 2 (1.3%) | NR | 2 (1.3%) | |
Voges, et al. (2006) | 262 (472) 180 (352) assessed for long-term complications | S: 194 (74.1%) N: 64 (24.4%) data not segregated | 15 (5.7%) | Electrode damage/fracture 4 (2.2%) Local discomfort 12 (6.7%) Electrode migration 5 (2.8%) Connector displacement 1 (0.6%) | 1 (0.6%) | 1 (0.4%) | 0 (0%) | NR | IPG implantation site hematoma 3 (1.25) Seroma at IPG site 2 (1.1%) |
Seijo, et al. (2011) | 130 (252) | All staged | 2 (1.5%) | Lead fracture 1 (0.8%) | NR | 9 (6.9%) | 13 (10%) | NR | CSF leak 1 (0.8%) |
Tolleson, et al. (2014) | 447 (823) | All staged | 26 (5.8%) | Lead migration 2 (0.5%) Lead and IPG malfunction 2 (0.5%) | Infected group 8 (1.8%) Noninfected group 9 (2%) | 2 (0.5%) | 1 (0.2%) | NR | Pain along apparatus 4 (0.9%) |
Kochanski, et al. (2019) | 178 (270) | Both Staged and Nonstaged procedures include; not segregated | 3 (1.7%) | Malpositioned lead 0 (0%) | NR | 3 (1.7%) | 2 (1.1%) | NR | |
Falowski, et al. (2015) | 432 (606) | S: 326 (475) N: 106 (131) | S: 11 (3.4%) N: 4 (3.8%) | Lead fractures S 7 (2.1%) N 7 (6.6%) High impedance S 5 (1.5%) N NR Lead migration S 1 (0.3%) N NR | S: 3 (0.9%) N: NR | S: 12 (3.7%) N: 8 (7.5%) | NR | S: 17 (5.2%) N: NR | Extension lead coiling S: 2 (0.6%) N: NR Seroma S: 1 (0.3%) N: NR |
Morishita, et al. (2017) | 132 (138) | All staged | 17 (12.9%) | Fracture 7 (5.1%) Lead migration 16 (12.1%) | NR | Symptomatic ICH 5 (3.8%) Asymptomatic ICH 4 (3%) | 9 (6.8%) | NR | Air embolus 2 (1.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brooks, A.; Hoyt, A.T. Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series. Brain Sci. 2021, 11, 592. https://doi.org/10.3390/brainsci11050592
Brooks A, Hoyt AT. Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series. Brain Sciences. 2021; 11(5):592. https://doi.org/10.3390/brainsci11050592
Chicago/Turabian StyleBrooks, Arrin, and Alastair T. Hoyt. 2021. "Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series" Brain Sciences 11, no. 5: 592. https://doi.org/10.3390/brainsci11050592
APA StyleBrooks, A., & Hoyt, A. T. (2021). Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series. Brain Sciences, 11(5), 592. https://doi.org/10.3390/brainsci11050592