Executive Function, Working Memory, and Verbal Fluency in Relation to Non-Verbal Intelligence in Greek-Speaking School-Age Children with Developmental Language Disorder
Abstract
:1. Introduction
1.1. Developmental Language Disorder
1.2. Non-Verbal Intelligence in Children with DLD
1.3. Working-Memory Capacity in Children with DLD
1.4. Executive Functions in Children with DLD
1.4.1. Updating in Children with DLD
1.4.2. Inhibition in Children with DLD
1.4.3. Task Switching in Children with DLD
1.5. Verbal Fluency in Children with DLD
1.6. Rationale of the Present Study
- Do Greek-speaking school-age children with DLD have lower scores than TD peers on non-verbal intelligence?
- Are Greek-speaking school-age children with DLD outperformed by TD peers in tasks tapping (a) WM capacity, (b) key EFs; that is updating, the resistance to distractor interference and resistance to proactive interference functions of inhibition, and task switching, and (c) verbal (phonological or semantic) fluency (executive-language measures)?
- Are any group differences in WM capacity, EFs, and verbal fluency independent of non-verbal intelligence?
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Tasks
2.3.1. Screening Tools
Non-Verbal Intelligence
Expressive Vocabulary
Sentence Completion
2.3.2. Main Assessment Tools
Working-Memory Capacity
Updating
Inhibition: Resistance to Distractor Interference
Inhibition: Resistance to Proactive Interference
Task Switching
Verbal Fluency
2.4. Procedure
3. Results
3.1. Do Greek-Speaking School-Age Children with DLD Have Lower Scores Than TD Peers on Non-Verbal Intelligence?
3.2. Are Greek-Speaking School-Age Children with DLD Outperformed by TD Peers in Tasks Tapping (a) WM Capacity; (b) Key EFs, That Is, Updating, the Resistance to Distractor Interference and Resistance to Proactive Interference Functions of Inhibition, and Task-Switching; as Well as (c) Verbal (Phonological and Semantic) Fluency (Executive Language Measures)?
3.3. Are Any Group Differences in WM Capacity, EFs, and Verbal Fluency Independent of Non-Verbal Intelligence?
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bishop, D.V. What causes specific language impairment in children? Curr. Dir. Psychol. Sci. 2006, 15, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, J.W.; Magimairaj, B.M.; Finney, M.C. Working Memory and Specific Language Impairment: An Update on the Relation and Perspectives on Assessment and Treatment. Am. J. Speech Lang. Pathol. 2010, 19, 78–94. [Google Scholar] [CrossRef]
- Tomas, E.; Vissers, C. Behind the scenes of developmental language disorder: Time to call neuropsychology back on stage. Front. Hum. Neurosci. 2019, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Conti-Ramsden, G.; Durkin, K. Language development and assessment in the preschool period. Neuropsychol. Rev. 2012, 22, 384–401. [Google Scholar] [CrossRef] [PubMed]
- Petruccelli, N.; Bavin, E.L.; Bretherton, L. Children with specific language impairment and resolved late talkers: Working memory profiles at 5 years. J. Speech Lang. Hear. Res. 2012, 55, 1690–1703. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working memory. Psychol. Learn. Motiv. 1974, 8, 47–89. [Google Scholar]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Garon, N.; Bryson, S.E.; Smith, I.M. Executive function in preschoolers: A review using an integrative framework. Psychol. Bull. 2008, 134, 31. [Google Scholar] [CrossRef] [Green Version]
- Lehto, J.E.; Juujärvi, P.; Kooistra, L.; Pulkkinen, L. Dimensions of executive functioning: Evidence from children. Br. J. Dev. Psychol. 2003, 21, 59–80. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. The relations among inhibition and interference control functions: A latent-variable analysis. J. Exp. Psychol. Gen. 2004, 133, 101. [Google Scholar] [CrossRef] [Green Version]
- Gallinat, E.; Spaulding, T.J. Differences in the performance of children with specific language impairment and their TD peers on non-verbal cognitive tests: A meta-analysis. J. Speech Lang. Hear. Res. 2014, 57, 1363–1382. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T. The CATALISE-2 consortium. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry 2017, 58, 1068–1080. [Google Scholar] [CrossRef]
- Leonard, L.B. Language learnability and specific language impairment in children. Appl. Psycholinguist. 2008, 10, 179–202. [Google Scholar] [CrossRef]
- Reilly, S.; Bishop, D.V.; Tomblin, B. Terminological debate over language impairment in children: Forward movement and sticking points. Int. J. Lang. Commun. Disord. 2014, 49, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Whitehurst, G.J.; Fischel, J.E. Practitioner Review: Early Developmental language Delay: What. If Anything. Should the Clinician Do About It? J. Child Psychol. Psychiatry 1994, 35, 613–648. [Google Scholar] [CrossRef] [PubMed]
- Paul, R. Clinical implications of the natural history of slow expressive language development. Am. J. Speech Lang. Pathol. 1996, 5, 5–21. [Google Scholar] [CrossRef]
- Rescorla, L.; Mirak, J.; Singh, L. Vocabulary growth in late talkers: Lexical development from 2; 0 to 3; 0. J. Child Lang. 2000, 27, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.L.; Redmond, S.M.; Hoffman, L. Mean Length of Utterance in Children with Specific Language Impairment and in Younger Control Children Shows Concurrent Validity and Stable and Parallel Growth Trajectories. J. Speech Lang. Hear. Res. 2006, 49, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Tomblin, J.B.; Smith, E.; Zhang, X. Epidemiology of specific language impairment: Prenatal and perinatal risk factors. J. Commun. Disord. 1997, 30, 325–344. [Google Scholar] [CrossRef]
- Law, J.; Boyle, J.; Harris, F.; Harkness, A.; Nye, C. Prevalence and natural history of primary speech and language delay: Findings from a systematic review of the literature. Int. J. Lang. Commun. Disord. 2000, 35, 165–188. [Google Scholar]
- Leonard, L.B.; Eyer, J.A.; Bedore, L.M.; Grela, B.G. Three accounts of the grammatical morpheme difficulties of English-speaking children with specific language impairment. J. Speech Lang. Hear. Res. 1997, 40, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Tomas, E.; Demuth, K.; Petocz, P. The role of frequency in learning morphophonological alternations: Implications for children with specific language impairment. J. Speech Lang. Hear. Res. 2017, 60, 1316–1329. [Google Scholar] [CrossRef]
- Law, J.; Charlton, J.; Dockrell, J.; Gascoigne, M.; McKean, C.; Theakston, A. Early Language Development: Needs, Provision, and Intervention for Preschool Children from Socio-Economically Disadvantage Backgrounds; Education Endowment Foundation: London, UK, 2017; p. 203. [Google Scholar]
- Bishop, D.V.; North, T.; Donlan, C. Genetic basis of specific language impairment: Evidence from a twin study. Dev. Med. Child Neurol. 1995, 37, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Tomblin, J.B.; Buckwalter, P.R. Heritability of poor language achievement among twins. J. Speech Lang. Hear. Res. 1998, 41, 188–199. [Google Scholar] [CrossRef]
- Bishop, D.V. Specific language impairment as a language learning disability. Child Lang. Teach Ther. 2009, 25, 163–165. [Google Scholar] [CrossRef]
- Graham, S.A.; Fisher, S.E. Decoding the genetics of speech and language. Curr. Opin. Neurobiol. 2013, 23, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.L. Language growth and genetics of specific language impairment. Int. J. Speech Lang. Pathol. 2013, 15, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Laws, G.; Bates, G.; Feuerstein, M.; Mason-Apps, E.; White, C. Peer acceptance of children with language and communication impairments in a mainstream primary school: Associations with type of language difficulty, problem behaviours and a change in placement organization. Child Lang. Teach Ther. 2012, 28, 73–86. [Google Scholar] [CrossRef]
- Van der Lely, H.K. Domain-specific cognitive systems: Insight from Grammatical-SLI. Trends Cogn. Sci. 2005, 9, 53–59. [Google Scholar] [CrossRef]
- Stavrakaki, S. Developmental perspectives on Specific Language Impairment: Evidence from the production of wh-questions by Greek SLI children over time. Adv. Speech Lang. Pathol. 2006, 8, 384–396. [Google Scholar] [CrossRef]
- Rothweiler, M.; Chilla, S.; Clahsen, H. Subject verb agreement in Specific Language Impairment: A study of monolingual and bilingual German-speaking children. Biling Lang. Cogn. 2012, 15, 39–57. [Google Scholar] [CrossRef]
- Bishop, D.V. Is specific language impairment a valid diagnostic category? Genetic and psycholinguistic evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994, 346, 105–111. [Google Scholar] [PubMed]
- Conti-Ramsden, G.; Botting, N. Classification of children with specific language impairment: Longitudinal considerations. J. Speech Lang. Hear. Res. 1999, 42, 1195–1204. [Google Scholar] [CrossRef]
- Yew, S.G.K.; O’Kearney, R. Emotional and behavioural outcomes later in childhood and adolescence for children with specific language impairments: Meta-analyses of controlled prospective studies. J. Child Psychol. Psychiatry 2013, 54, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Marton, K. Visuo-spatial processing and executive functions in children with specific language impairment. Int. J. Lang. Commun. Disord. 2008, 43, 181–200. [Google Scholar] [CrossRef]
- Henry, L.A.; Messer, D.J.; Nash, G. Executive functioning and verbal fluency in children with language difficulties. Learn. Instr. 2015, 39, 137–147. [Google Scholar] [CrossRef]
- Lukács, Á.; Ladányi, E.; Fazekas, K.; Kemény, F. Executive functions and the contribution of short-term memory span in children with specific language impairment. Neuropsychology 2016, 30, 296. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.T.; Tamis-LeMonda, C.S. Trajectories of the home learning environment across the first 5 years: Associations with children’s vocabulary and literacy skills at prekindergarten. Child Dev. 2011, 82, 1058–1075. [Google Scholar] [CrossRef]
- Weckerly, J.; Wulfeck, B.; Reilly, J. Verbal fluency deficits in children with specific language impairment: Slow rapid naming or slow to name? Child Neuropsychol. 2001, 7, 142–152. [Google Scholar] [CrossRef]
- Ullman, M.T.; Pierpont, E.I. Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex 2005, 41, 399–433. [Google Scholar] [CrossRef]
- Archibald, L.M.; Gathercole, S.E. Short-term and working memory in specific language impairment. Int. J. Lang. Commun. Disord. 2006, 41, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Falcaro, M.; Pickles, A.; Newbury, D.F.; Addis, L.; Banfield, E.; Fisher, S.E.; Monaco, A.P.; Simkin, Z.; Conti-Ramsden, G.; The SLI Consortium. Genetic and phenotypic effects of phonological short-term memory and grammatical morphology in specific language impairment. Genes Brain Behav. 2008, 7, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaulding, T.J.; Plante, E.; Vance, R.B. Sustained selective attention skills of preschool children with specific language impairment: Evidence for separate attentional capacities. J. Speech Lang. Hear. Res. 2008, 51, 16–34. [Google Scholar] [CrossRef]
- Finneran, D.A.; Francis, A.L.; Leonard, L.B. Sustained attention in children with Specific Language Impairment (SLI). J. Speech Lang. Hear. Res. 2009, 52, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Ebert, K.D.; Kohnert, K. Sustained attention in children with primary language impairment: A meta-analysis. J. Speech Lang. Hear. Res. 2011, 54, 1372–1384. [Google Scholar] [CrossRef] [Green Version]
- Tallal, P.; Piercy, M. Developmental aphasia: Impaired rate of non-verbal processing as a function of sensory modality. Neuropsychologia 1973, 11, 389–398. [Google Scholar] [CrossRef]
- Bishop, D.V.; Carlyon, R.P.; Deeks, J.M.; Bishop, S.J. Auditory temporal processing impairment: Neither necessary nor sufficient for causing language impairment in children. J. Speech Lang. Hear. Res. 1999, 42, 1295–1310. [Google Scholar] [CrossRef]
- Wright, B.A.; Bowen, R.W.; Zecker, S.G. Nonlinguistic perceptual deficits associated with reading and language disorders. Curr. Opin. Neurobiol. 2000, 10, 482–486. [Google Scholar] [CrossRef]
- Ziegler, J.C.; Goswami, U. Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychol. Bull. 2005, 131, 3. [Google Scholar] [CrossRef] [Green Version]
- Earle, F.S.; Gallinat, E.L.; Grela, B.G.; Lehto, A.; Spaulding, T.J. Empirical Implications of Matching Children With Specific Language Impairment to Children With Typical Development on Non-verbal IQ. J. Learn. Disabil. 2017, 50, 252–260. [Google Scholar] [CrossRef]
- Palikara, O.; Ralli, A.M. Developmental Language Disorder: Issues about terminology, prevalence, diagnostic criteria and heterogeneity. In Developmental Language Disorder in Children and Adolescents: Issues Regarding Orientation, Assessment and Intervention; Gutenberg: Athens, Greece, 2017; pp. 15–30. [Google Scholar]
- Bishop, D.V. Uncommon Understanding (Classic Edition): Development and Disorders of Language Comprehension in Children; Psychology Press, Taylor & Francis Group: London, UK, 2014. [Google Scholar]
- Botting, N. Non-verbal cognitive development and language impairment. J. Child Psychol. Psychiatry 2005, 46, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Kuusisto, M.A.; Nieminen, P.E.; Helminen, M.T.; Kleemola, L. Executive and intellectual functioning in school-aged children with specific language impairment. Int. J. Lang. Commun. Disord. 2017, 52, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.M. Pre-and perinatal hazards and family background in children with specific language impairments: A study of twins. Brain Lang. 1997, 56, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ebbels, S. Introducing the SLI debate. Int. J. Lang. Commun. Disord. 2014, 49, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Krassowski, E.; Plante, E. IQ variability in children with SLI: Implications for use of cognitive referencing in determining SLI. J. Commun. Disord. 1997, 30, 1–8. [Google Scholar] [CrossRef]
- Whitney, P.; Jameson, T.; Hinson, J.M. Impulsiveness and executive control of working memory. Pers. Individ. Dif. 2004, 37, 417–428. [Google Scholar] [CrossRef]
- Chrysochoou, E.; Bablekou, Z. Phonological loop and central executive contributions to oral comprehension skills of 5.5 to 9.5 years old children. Appl. Cogn. Psych. 2011, 25, 576–583. [Google Scholar] [CrossRef]
- Chrysochoou, E.; Bablekou, Z.; Tsigilis, N. Working Memory Contributions to Reading Comprehension Components in Middle Childhood Children. Am. J. Psychol. 2011, 124, 275–289. [Google Scholar] [CrossRef]
- Chrysochoou, E.; Bablekou, Z.; Masoura, E.; Tsigilis, N. Working memory and vocabulary development in Greek preschool and primary school children. Eur. J. Dev. Psychol. 2013, 10, 417–432. [Google Scholar] [CrossRef]
- Alloway, T.P. Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. Eur. J. Psychol. Assess. 2009, 25, 92–98. [Google Scholar] [CrossRef]
- Maehler, C.; Schuchardt, K. Working memory in children with specific learning disorders and/or attention deficits. Learn. Individ. Differ. 2016, 49, 341–347. [Google Scholar] [CrossRef]
- Vugs, B.; Cuperus, J.; Hendriks, M.; Verhoeven, L. Visuospatial working memory in specific language impairment: A meta-analysis. Res. Dev. Disabil. 2013, 34, 2586–2597. [Google Scholar] [CrossRef] [PubMed]
- Vugs, B.; Knoors, H.; Cuperus, J.; Hendriks, M.; Verhoeven, L. Interactions between working memory and language in young children with specific language impairment (SLI). Child Neuropsychol. 2016, 22, 955–978. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.A.; Messer, D.J.; Nash, G. Executive functioning in children with specific language impairment. J. Child Psychol. Psychiatry 2012, 53, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.; Bavin, E.; Efron, D.; Sciberras, E. A comparison of working memory profiles in school-aged children with specific language impairment, attention deficit/hyperactivity disorder, comorbid SLI and ADHD and their typically developing peers. Child Neuropsychol. 2012, 18, 190–207. [Google Scholar] [CrossRef]
- Marton, K.; Schwartz, R.G. Working memory capacity and language processes in children with specific language impairment. J. Speech Lang. Hear. Res. 2003, 46, 1138–1153. [Google Scholar] [CrossRef]
- Archibald, L.M.; Gathercole, S.E. Visuospatial immediate memory in specific language impairment. J. Speech Lang. Hear. Res. 2006, 49, 265–277. [Google Scholar] [CrossRef]
- Rodriguez, P.; Cucurull, G.; Gonzàlez, J.; Gonfaus, J.M.; Nasrollahi, K.; Moeslund, T.B.; Roca, F.X. Deep pain: Exploiting long short-term memory networks for facial expression classification. IEEE Trans. Cybern. 2017, 99, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Kapa, L.L.; Plante, E. Executive function in SLI: Recent advances and future directions. Curr. Dev. Disord. Rep. 2015, 2, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, J.W.; Evans, J.L.; Fargo, J.D.; Schwartz, S.; Gillam, R.B. Structural relationship between cognitive processing and syntactic sentence comprehension in children with and without developmental language disorder. J. Speech Lang. Hear. Res. 2018, 61, 2950–2976. [Google Scholar] [CrossRef] [PubMed]
- Im-Bolter, N.; Johnson, J.; Pascual-Leone, J. Processing limitations in children with specific language impairment: The role of executive function. Child Dev. 2006, 77, 1822–1841. [Google Scholar] [CrossRef]
- Ecker, U.K.; Lewandowsky, S.; Oberauer, K.; Chee, A.E. The components of working memory updating: An experimental decomposition and individual differences. J. Exp. Psychol. Learn Mem. Cogn. 2010, 36, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.L.; Gillam, R.B.; Montgomery, J.W. Cognitive predictors of spoken word recognition in children with and without developmental language disorders. J. Speech Lang. Hear. Res. 2018, 61, 1409–1425. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, T.J. Investigating mechanisms of suppression in preschool children with specific language impairment. J. Speech Lang. Hear. Res. 2010, 53, 725–738. [Google Scholar] [CrossRef]
- Roello, M.; Ferretti, M.L.; Colonnello, V.; Levi, G. When words lead to solutions: Executive function deficits in preschool children with specific language impairment. Res. Dev. Disabil. 2015, 37, 216–222. [Google Scholar] [CrossRef]
- Noterdaeme, M.; Amorosa, H.; Mildenberger, K.; Sitter, S.; Minow, F. Evaluation of attention problems in children with autism and children with a specific language disorder. Eur. Child Adolesc. Psychiatry 2001, 10, 58–66. [Google Scholar] [CrossRef]
- Marton, K.; Campanelli, L.; Scheuer, J.; Yoon, J.; Eichorn, N. Executive function profiles in children with and without specific language impairment. Riv. Psicolinguist. Appl. 2012, 12, 57–73. [Google Scholar]
- Victorino, K.R.; Schwartz, R.G. Control of auditory attention in children with specific language impairment. J. Speech Lang. Hear. Res. 2015, 58, 1245–1257. [Google Scholar] [CrossRef]
- Marton, K.; Campanelli, L.; Eichorn, N.; Scheuer, J.; Yoon, J. Information processing and proactive interference in children with and without specific language impairment. J. Speech Lang. Hear. Res. 2014, 57, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Dibbets, P.; Bakker, K.; Jolles, J. Functional MRI of task switching in children with specific language impairment (SLI). Neurocase 2006, 12, 71–79. [Google Scholar] [CrossRef]
- Pauls, L.J.; Archibald, L.M. Executive functions in children with specific language impairment: A meta-analysis. J. Speech Lang. Hear. Res. 2016, 59, 1074–1086. [Google Scholar] [CrossRef] [PubMed]
- Sauzéon, H.; Lestage, P.; Raboutet, C.; N’Kaoua, B.; Claverie, B. Verbal fluency output in children aged 7–16 as a function of the production criterion: Qualitative analysis of clustering, switching processes, and semantic network exploitation. Brain Lang. 2004, 89, 192–202. [Google Scholar] [CrossRef]
- Troyer, A.K. Normative data for clustering and switching on verbal fluency tasks. J. Clin. Exp. Neuropsychol. 2000, 22, 370–378. [Google Scholar] [CrossRef]
- Troyer, A.K.; Moscovitch, M.; Winocur, G. Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology 1997, 11, 138–146. [Google Scholar] [CrossRef]
- Adams, A.M.; Bourke, L.; Willis, C. Working memory and spoken language comprehension in young children. Int. J. Psychol. 1999, 34, 364–373. [Google Scholar] [CrossRef]
- Pennington, B.F.; Ozonoff, S. Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry 1999, 37, 51–87. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, D.M.; Kealey, T.; Semla, M.; Luu, H.; Rice, L.; Basso, M.R.; Roper, B. Verbal fluency: Language or executive function measure? Appl. Neuropsychol. Adult. 2016, 23, 29–34. [Google Scholar] [CrossRef]
- Luo, L.; Luk, G.; Bialystok, E. Effect of language proficiency and executive control on verbal fluency performance in bilinguals. Cognition 2010, 114, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Prigatano, G.P.; Gray, J.A. Predictors of performance on three developmentally sensitive neuropsychological tests in children with and without traumatic brain injury. Brain Inj. 2008, 22, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Ruff, R.M.; Light, R.H.; Parker, S.B.; Levin, H.S. The psychological construct of word fluency. Brain Lang. 1997, 57, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Aita, S.L.; Beach, J.D.; Taylor, S.E.; Borgogna, N.C.; Harrell, M.N.; Hill, B.D. Executive, language, or both? An examination of the construct validity of verbal fluency measures. Appl. Neuropsychol. Adult 2018, 26, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.K.; Young, M.; Garcia, C. Why do older adults have difficulty with semantic fluency? Aging Neuropsychol. Cogn. 2018, 25, 803–828. [Google Scholar] [CrossRef]
- Rodríguez, V.A.; Santana, G.R.; Expósito, S.H. Executive functions and language in children with different subtypes of specific language impairment. Neurología 2017, 32, 355–362. [Google Scholar] [CrossRef]
- Kail, R.; Leonard, L.B. Word-finding abilities in language-impaired children. ASHA Monogr. 1986, 25, 1–39. [Google Scholar]
- Weyandt, L.L.; Willis, W.G. Executive functions in school-aged children: Potential efficacy of tasks in discriminating clinical groups. Dev. Neuropsychol. 1994, 10, 27–38. [Google Scholar] [CrossRef]
- Mengisidou, M.; Marshall, C.R.; Stavrakaki, S. Semantic fluency difficulties in developmental dyslexia and developmental language disorder (DLD): Poor semantic structure of the lexicon or slower retrieval processes? Int. J. Lang. Commun. Disord. 2020, 55, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H. A developmental perspective on executive function. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef] [Green Version]
- Best, J.R.; Miller, P.H.; Jones, L.L. Executive functions after age 5: Changes and correlates. Dev. Rev. 2009, 29, 180–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denckla, M.B. A theory and model of executive function: A neuropsychological perspective. In Attention, Memory, and Executive Function; Lyon, G.R., Krasnegor, N.A., Eds.; Paul H. Brookes: Baltimore, MD, USA, 1996; pp. 263–278. [Google Scholar]
- Raven, J. The Raven Progressive Matrices tests: Their theoretical basis and measurement model. In Uses and Abuses of Intelligence: Studies Advancing Spearman and Raven’s Quest for Non-Arbitrary Metrics; Royal Fireworks Press: Unionville, NY, USA, 2008; pp. 17–68. [Google Scholar]
- Sideridis, G.; Antoniou, F.; Mouzaki, A.; Simos, P. Raven’s Educational CPM/CVS; Motivo: Athens, Greece, 2015. [Google Scholar]
- Tomblin, J.B.; Records, N.L.; Zhang, X. A system for the diagnosis of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 1996, 39, 1284–1294. [Google Scholar] [CrossRef]
- Georgas, J.; Paraskevopoulos, I.N.; Besevegis, E.; Giannitsas, N.D. The Hellenic WISC-III; Psychometric Laboratory, University of Athens: Athens, Greece, 1997. [Google Scholar]
- Paraskevopoulos, Ι.N.; Kalantzi-Aziz, A.; Giannitsas, N.D. Athena Test for the Diagnosis of Learning Difficulties; Ellinika Grammata: Athens, Greece, 1999. [Google Scholar]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic status and child development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burneo-Garcés, C.; Cruz-Quintana, F.; Pérez-García, M.; Fernández-Alcántara, M.; Fasfous, A.; Pérez-Marfil, M.N. Interaction between socioeconomic status and cognitive development in children aged 7, 9, and 11 years: A cross-sectional study. Dev. Neuropsychol. 2019, 44, 1–16. [Google Scholar] [CrossRef]
- Ladas, A.I.; Carroll, D.J.; Vivas, A.B. Attentional processes in low-socioeconomic status bilingual children: Are they modulated by the amount of bilingual experience? Child Dev. 2015, 86, 557–578. [Google Scholar] [CrossRef]
- Vivas, A.B.; Chrysochoou, E.; Ladas, A.I.; Salvari, V. The moderating effect of bilingualism on lifespan cognitive development. Cogn. Dev. 2020, 55, 100890. [Google Scholar] [CrossRef]
- Pickering, S.J.; Gathercole, S.E. Working Memory Test Battery for Children; Psychological Corporation: London, UK, 2001. [Google Scholar]
- Chrysochoou, Ε. Working Memory Contributions to Children’s Listening Comprehension in the Preschool and Elementary School Years. Ph.D. Thesis, Department of Early Childhood Education, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2006. [Google Scholar]
- Chrysochoou, E.; Bablekou, Z.; Kazi, S.; Tsigilis, N. Differences in Vocabulary Knowledge as a Function of Children’s Oral Comprehension Performance in Greek: A Cross-Sectional Developmental Study. Am. J. Psychol. 2018, 131, 211–223. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- Pelegrina, S.; Lechuga, M.T.; García-Madruga, J.A.; Elosúa, M.R.; Macizo, P.; Carreiras, M.; Funtes, L.J.; Bajo, M.T. Normative data on the n-back task for children and young adolescents. Front. Psychol. 2015, 6, 1544. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Chrysochoou, E.; Ralli, A.M.; Diakogiorgi, K.; Filippatou, D.; Roussos, P.; Dimitropoulou, P. Executive Functions and Reading Comprehension in School-Age Children. Conference Presentation Abstract. In Proceedings of the 5th Hellenic Conference on Developmental Psychology, Volos, Greece, 20–23 October 2016; Available online: http://developmental2016.uth.gr/ (accessed on 14 April 2021).
- Vicha, A. The Contribution of Working Memory and Motivation to Elementary Student’s Reading Comprehension. Master’s Thesis, Department of Primary Education, University of Ioannina, Ioannina, Greece, 2017. [Google Scholar]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Lonnemann, J.; Linkersdörfer, J.; Nagler, T.; Hasselhorn, M.; Lindberg, S. Spatial representations of numbers and letters in children. Front. Psychol. 2013, 4, 544. [Google Scholar] [CrossRef] [Green Version]
- McDermott, J.M.; Perez-Edgar, K.; Henderson, H.A.; Chronis-Tuscano, A.; Pine, D.S.; Fox, N.A. A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biol. Psychiatry 2009, 65, 445–448. [Google Scholar] [CrossRef] [Green Version]
- McDermott, J.M.; Perez-Edgar, K.; Fox, N.A. Variations of the flanker paradigm: Assessing selective attention in young children. Behav. Res. Methods 2007, 39, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.; Mattingley, J.B.; Huang-Pollock, C.; English, T.; Hester, R.; Vance, A.; Bellgrove, M.A. Abnormal spatial asymmetry of selective attention in ADHD. J. Child Psychol. Psychiatry 2009, 50, 1064–1072. [Google Scholar] [CrossRef]
- Censabella, S.; Noël, M.P. The inhibition of exogenous distracting information in children with learning disabilities. J. Learn. Disabil. 2005, 38, 400–410. [Google Scholar] [CrossRef]
- Censabella, S.; Noël, M.P. The inhibition capacities of children with mathematical disabilities. Child Neuropsychol. 2008, 14, 1–20. [Google Scholar] [CrossRef]
- Schneider, W.; Eschman, A.; Zuccolotto, A. E-Prime Reference Guide; Psychology Software Tools, Inc.: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Bernard, J.B.; Chung, S.T. The dependence of crowding on flanker complexity and target–flanker similarity. J. Vis. 2011, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Denton, S.E.; Shiffrin, R.M. Primes and flankers: Source confusions and discounting. Atten. Percept. Psychophys. 2012, 74, 852–866. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Pelegrina, S. The specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Disabil. 2010, 43, 541–552. [Google Scholar] [CrossRef]
- Cepeda, N.J.; Cepeda, M.L.; Kramer, A.F. Task switching and attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2000, 28, 213–226. [Google Scholar] [CrossRef]
- Kosmidis, M.H.; Vlahou, C.H.; Panagiotaki, P.; Kiosseoglou, G. The verbal fluency task in the Greek population: Normative data, and clustering and switching strategies. J. Int. Neuropsychol. Soc. 2004, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Kray, J.; Lindenberger, U. Adult age differences in task switching. Psychol. Aging 2000, 15, 126–147. [Google Scholar] [CrossRef] [PubMed]
- Meiran, N. Modeling cognitive control in task-switching. Psychol. Res. 2000, 63, 234–249. [Google Scholar] [CrossRef]
- Rubin, O.; Meiran, N. On the origins of the task mixing cost in the cuing task-switching paradigm. J. Exp. Psychol. Learn. Mem. Cogn. 2005, 31, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Koch, I.; Prinz, W.; Allport, A. Involuntary retrieval in alphabet-arithmetic tasks: Task-mixing and task-switching costs. Psychol. Res. 2005, 69, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Los, S.A. On the origin of mixing costs: Exporing information processing in pure and mixed blocks of trials. Acta Psychol. 1996, 94, 145–188. [Google Scholar] [CrossRef]
- Philipp, A.M.; Jolicoeur, P.; Falkenstein, M.; Koch, I. Response selection and response execution in task switching: Evidence from a go-signal paradigm. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 1062–1075. [Google Scholar] [CrossRef]
- Archibald, L.M. Working memory and language learning: A review. Child. Lang. Teach. Ther. 2017, 33, 5–17. [Google Scholar] [CrossRef]
- Marini, A.; Gentili, C.; Molteni, M.; Fabbro, F. Differential verbal working memory effects on linguistic production in children with Specific Language Impairment. Res. Dev. Disabil. 2014, 35, 3534–3542. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, D.F.; Harnishfeger, K.K. The resources construct in cognitive development: Diverse sources of evidence and a theory of inefficient inhibition. Dev. Rev. 1990, 10, 48–71. [Google Scholar] [CrossRef]
- Marton, K.; Kelmenson, L.; Pinkhasova, M. Inhibition control and working memory capacity in children with SLI. Psychologia 2007, 50, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, B.; Shafer, V.L.; Melara, R.D.; Schwartz, R.G. Can children with SLI detect cognitive conflict? Behavioral and electrophysiological evidence. J. Speech Lang. Hear. Res. 2014, 57, 1453–1467. [Google Scholar] [CrossRef] [PubMed]
- Ridderinkhof, K.R.; Band, G.P.; Logan, G.D. A study of adaptive behavior: Effects of age and irrelevant information on the ability to inhibit one’s actions. Acta Psychol. 1999, 101, 315–337. [Google Scholar] [CrossRef]
- De Luca, C.R.; Wood, S.J.; Anderson, V.; Buchanan, J.A.; Proffitt, T.M.; Mahony, K.; Pantelis, C. Normative data from the CANTAB. I: Development of executive function over the lifespan. J. Clin. Exp. Neuropsychol. 2003, 25, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Dempster, F.N.; Corkill, A.J. Interference and inhibition in cognition and behavior: Unifying themes for educational psychology. Educ. Psychol. Rev. 1999, 11, 1–88. [Google Scholar] [CrossRef]
- Schneider, D.W.; Logan, G.D. Task switching. Encycl. Neurosci. 2009, 9, 869–874. [Google Scholar]
- Ramus, F.; Szenkovits, G. What phonological deficit? Q. J. Exp. Psychol. 2008, 61, 129–141. [Google Scholar] [CrossRef]
- Lenio, S.; Lissemore, F.M.; Sajatovic, M.; Smyth, K.A.; Tatsuoka, C.; Woyczynski, W.A.; Lerner, A.J. Detrending changes the temporal dynamics of a semantic fluency task. Front. Aging Neurosci. 2016, 8, 252. [Google Scholar] [CrossRef]
- Marton, K.; Eichorn, N.; Campanelli, L.; Zakarias, L. Working memory and interference control in children with specific language impairment. Lang. Linguist. Compass 2016, 10, 211–224. [Google Scholar] [CrossRef]
- Ebert, K.D.; Pham, G. Including nonlinguistic processing tasks in the identification of developmental language disorder. Am. J. Speech Lang. Pathol. 2019, 28, 932–944. [Google Scholar] [CrossRef] [PubMed]
TD | DLD | ||||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | t-Tests and Effect Sizes | |||
Non-verbal intelligence (Std. Sc.) | 132.86 | (11.7) | 120.0 | (9.5) | t(56) = 4.6, p < 0.001, d = 1.21 |
WM capacity | |||||
Listening recall | 14.9 | (4.6) | 9.32 | (3.2) | See MANOVA results in Section 3.2 |
Backward digit recall | 15.07 | (3.9) | 11.21 | (4.2) | |
Updating | |||||
Targets recognized (sum) | 12.28 | (3.4) | 10.16 | (3.6) | t(52) = 2.21, p = 0.032, d = 0.60 |
Targets recognized (RT) | 939.21 | (342.8) | 865.04 | (261.2) | t(52) = 0.88, p = 0.381, d = 0.24 |
Inhibition | |||||
Resistance to distractor interference | 99.59 | (221.0) | 169.69 | (200.3) | t(56) = −1.266, p = 0.211, d = −0.33 |
Resistance to proactive interference | 2.67 | (1.8) | 3.34 | (1.9) | t(56) = −1.38, p = 0.172, d = −0.36 |
Task switching | |||||
Pure blocks’ trials (RT) | 1129.41 | (355.8) | 1100.66 | (336.5) | See mixed ANOVA results in Section 3.2 |
Switch trials (RT) | 1810.72 | (675.7) | 2591.57 | (858.8) | |
Non-switch trials (RT) | 1790.85 | (669.4) | 2496.53 | (746.9) | |
Verbal fluency | |||||
Phonological | 27.55 | (9.0) | 15.36 | (7.2) | t(55) = 5.638, p < 0.001, d = 1.49 |
Semantic | 40.69 | (11.7) | 33.83 | (9.1) | t(56) = 2.49, p = 0.016, d = 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ralli, A.M.; Chrysochoou, E.; Roussos, P.; Diakogiorgi, K.; Dimitropoulou, P.; Filippatou, D. Executive Function, Working Memory, and Verbal Fluency in Relation to Non-Verbal Intelligence in Greek-Speaking School-Age Children with Developmental Language Disorder. Brain Sci. 2021, 11, 604. https://doi.org/10.3390/brainsci11050604
Ralli AM, Chrysochoou E, Roussos P, Diakogiorgi K, Dimitropoulou P, Filippatou D. Executive Function, Working Memory, and Verbal Fluency in Relation to Non-Verbal Intelligence in Greek-Speaking School-Age Children with Developmental Language Disorder. Brain Sciences. 2021; 11(5):604. https://doi.org/10.3390/brainsci11050604
Chicago/Turabian StyleRalli, Asimina M., Elisavet Chrysochoou, Petros Roussos, Kleopatra Diakogiorgi, Panagiota Dimitropoulou, and Diamanto Filippatou. 2021. "Executive Function, Working Memory, and Verbal Fluency in Relation to Non-Verbal Intelligence in Greek-Speaking School-Age Children with Developmental Language Disorder" Brain Sciences 11, no. 5: 604. https://doi.org/10.3390/brainsci11050604
APA StyleRalli, A. M., Chrysochoou, E., Roussos, P., Diakogiorgi, K., Dimitropoulou, P., & Filippatou, D. (2021). Executive Function, Working Memory, and Verbal Fluency in Relation to Non-Verbal Intelligence in Greek-Speaking School-Age Children with Developmental Language Disorder. Brain Sciences, 11(5), 604. https://doi.org/10.3390/brainsci11050604