Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Variables
2.3. Neuropsychological Outcome Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capes, S.E.; Hunt, D.; Malmberg, K.; Pathak, P.; Gerstein, H.C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: A systematic overview. Stroke 2001, 32, 2426–2432. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Kim, C.; Oh, M.S.; Lee, J.H.; Jung, S.; Jang, M.U.; Lee, S.H.; Kim, Y.J.; Kim, Y.; Suh, S.W.; et al. Effects of glycemic variability and hyperglycemia in acute ischemic stroke on post-stroke cognitive impairments. J. Diabetes Complicat. 2018, 32, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.W.; Crawford, J.D.; Samaras, K.; Desmond, D.W.; Kohler, S.; Staals, J.; Verhey, F.R.J.; Bae, H.J.; Lee, K.J.; Kim, B.J.; et al. Association of prediabetes and type 2 diabetes with cognitive function after stroke: A STROKOG collaboration study. Stroke 2020, 51, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, J.; Shi, H. Hyperglycemia as a risk factor of ischemic stroke. J. Drug Metab. Toxicol. 2013, 4. [Google Scholar] [CrossRef]
- Zarean, E.; Lattanzi, S.; Looha, M.A.; Napoli, M.D.; Chou, S.H.; Jafarli, A.; Torbey, M.; Divani, A.A. Glycemic gap predicts in-hospital mortality in diabetic patients with intracerebral hemorrhage. J. Stroke Cereb. Dis. 2021, 30, 105669. [Google Scholar] [CrossRef] [PubMed]
- Kallani, M.; Mishra, A.; Himanshu, D. Glycemic gap as a prognostic marker for critically ill patients in ICU. J. Assoc. Phys. India 2020, 68, 51. [Google Scholar]
- Liao, W.I.; Wang, J.C.; Lin, C.S.; Yang, C.J.; Hsu, C.C.; Chu, S.J.; Chu, C.M.; Tsai, S.H. Elevated glycemic gap predicts acute respiratory failure and in-hospital mortality in acute heart failure patients with diabetes. Sci. Rep. 2019, 9, 6279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.I.; Lin, C.S.; Lee, C.H.; Wu, Y.C.; Chang, W.C.; Hsu, C.W.; Wang, J.C.; Tsai, S.H. An elevated glycemic gap is associated with adverse outcomes in diabetic patients with acute myocardial infarction. Sci. Rep. 2016, 6, 27770. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.H.; Kim, C.; Kang, M.K.; Yoon, B.W.; Kim, T.J.; Bae, J.S.; Lee, J.H. Personalized consideration of admission-glucose gap between estimated average and initial glucose levels on short-term stroke outcome. J. Pers. Med. 2021, 11. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Lee, S.H.; Jung, K.H.; Yu, K.H.; Lee, B.C.; Roh, J.K.; For Korean Stroke Registry Investigators. Dynamics of obesity paradox after stroke, related to time from onset, age, and causes of death. Neurology 2012, 79, 856–863. [Google Scholar] [CrossRef]
- Nathan, D.M.; Kuenen, J.; Borg, R.; Zheng, H.; Schoenfeld, D.; Heine, R.J.; For the A1c-Derived Average Glucose (ADAG) Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008, 31, 1473–1478. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.H.; Cho, S.J.; Oh, M.S.; Jung, S.; Lee, J.H.; Shin, J.H.; Koh, I.S.; Cha, J.K.; Park, J.M.; Bae, H.J.; et al. Cognitive impairment evaluated with Vascular Cognitive Impairment Harmonization Standards in a multicenter prospective stroke cohort in Korea. Stroke 2013, 44, 786–788. [Google Scholar] [CrossRef] [PubMed]
- Hachinski, V.; Iadecola, C.; Petersen, R.C.; Breteler, M.M.; Nyenhuis, D.L.; Black, S.E.; Powers, W.J.; DeCarli, C.; Merino, J.G.; Kalaria, R.N.; et al. National institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006, 37, 2220–2241. [Google Scholar] [CrossRef]
- Kang, Y.; Chin, J.H.; Na, D.L.; Lee, J.H.; Park, J.S. A normative study of the Korean version of controlled oral word association test (COWAT) in the elderly. Korean J. Clin. Psychol. 2000, 2000, 385–392. [Google Scholar]
- Yum, T.H.; Park, Y.S.; Oh, K.J.; Kim, J.H.; Lee, Y.H. Manual for Korean-Wechsler Adult Intelligence Scale; Korea Guidance Press: Seoul, Korea, 1992. [Google Scholar]
- Yi, H.; Chin, J.; Lee, B.H.; Kang, Y.; Na, D.L. Development and validation of Korean version of trail making test for elderly persons. Dement. Neurocogn. Disord. 2007, 6, 54–66. [Google Scholar]
- Kang, Y.; Kim, H.H.; Na, D.L. A short form of the Korean-boston naming test (K-BNT) for using in dementia patients. Korean J. Clin. Psychol. 1999, 18, 125–138. [Google Scholar]
- Kang, Y.; Na, D.L. Professional manual; Seoul neuropsychological screening battery. Hum. Brain Res. Consult. 2003. [Google Scholar]
- Kang, Y. A normative study of the Korean-mini mental state examination (K-MMSE) in the elderly. Korean J. Psychol. 2006, 25, 1–12. [Google Scholar]
- Sachdev, P.; Kalaria, R.; O’Brien, J.; Skoog, I.; Alladi, S.; Black, S.E.; Blacker, D.; Blazer, D.G.; Chen, C.; Chui, H.; et al. Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Dis. Assoc. Disord. 2014, 28, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Olsen, T.S. Blood glucose in acute stroke. Expert Rev. Neurother. 2009, 9, 409–419. [Google Scholar] [CrossRef]
- Levine, S.R.; Welch, K.M.; Helpern, J.A.; Chopp, M.; Bruce, R.; Selwa, J.; Smith, M.B. Prolonged deterioration of ischemic brain energy metabolism and acidosis associated with hyperglycemia: Human cerebral infarction studied by serial 31P NMR spectroscopy. Ann. Neurol. 1988, 23, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Siesjo, B.K.; Bendek, G.; Koide, T.; Westerberg, E.; Wieloch, T. Influence of acidosis on lipid peroxidation in brain tissues in vitro. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1985, 5, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstein, H.C.; Yusuf, S. Dysglycaemia and risk of cardiovascular disease. Lancet 1996, 347, 949–950. [Google Scholar] [CrossRef]
- Vehkavaara, S.; Seppala-Lindroos, A.; Westerbacka, J.; Groop, P.H.; Yki-Jarvinen, H. In vivo endothelial dysfunction characterizes patients with impaired fasting glucose. Diabetes Care 1999, 22, 2055–2060. [Google Scholar] [CrossRef]
- Hamilton, M.G.; Tranmer, B.I.; Auer, R.N. Insulin reduction of cerebral infarction due to transient focal ischemia. J. Neurosurg. 1995, 82, 262–268. [Google Scholar] [CrossRef]
- Kruyt, N.D.; Nys, G.M.; van der Worp, H.B.; van Zandvoort, M.J.; Kappelle, L.J.; Biessels, G.J. Hyperglycemia and cognitive outcome after ischemic stroke. J. Neurol. Sci. 2008, 270, 141–147. [Google Scholar] [CrossRef]
- Ergul, A.; Li, W.; Elgebaly, M.M.; Bruno, A.; Fagan, S.C. Hyperglycemia, diabetes and stroke: Focus on the cerebrovasculature. Vasc. Pharm. 2009, 51, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Ryu, W.S.; Woo, S.H.; Schellingerhout, D.; Jang, M.U.; Park, K.J.; Hong, K.S.; Jeong, S.W.; Na, J.Y.; Cho, K.H.; Kim, J.T.; et al. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain 2017, 140, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Duering, M.; Righart, R.; Csanadi, E.; Jouvent, E.; Herve, D.; Chabriat, H.; Dichgans, M. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 2012, 79, 2025–2028. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Tong, M.; Lester-Coll, N.; Plater, M., Jr.; Wands, J.R. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer’s disease. J. Alzheimers Dis. 2006, 10, 89–109. [Google Scholar] [CrossRef]
- Takechi, R.; Lam, V.; Brook, E.; Giles, C.; Fimognari, N.; Mooranian, A.; Al-Salami, H.; Coulson, S.H.; Nesbit, M.; Mamo, J.C.L. Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: An implication for causal link. Front. Aging Neurosci. 2017, 9, 399. [Google Scholar] [CrossRef]
- Kellar, D.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal Insulin reduces white matter hyperintensity progression in association with improvements in cognition and CSF biomarker profiles in mild cognitive impairment and Alzheimer’s disease. J. Prev. Alzheimers Dis. 2021. [Google Scholar] [CrossRef]
- den Heijer, T.; Vermeer, S.E.; van Dijk, E.J.; Prins, N.D.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 2003, 46, 1604–1610. [Google Scholar] [CrossRef] [Green Version]
NCI (n = 236) | PSCI (n = 65) | p-Value | |
---|---|---|---|
Glycemic Gap (mg/dL) | 7.5 ± 55.1 | 23.2 ± 59.2 | 0.045 |
Glycemic Gap Groups | 0.001 | ||
Non-Elevated | 129 (54.7%) | 24 (36.9%) | |
Mildly Elevated | 80 (33.9%) | 22 (33.8%) | |
Severely Elevated | 27 (11.4%) | 19 (29.2%) | |
Age (years) | 62.2 ± 12.2 | 66.4 ± 11.2 | 0.013 |
Male Sex (%) | 160 (67.8%) | 35 (53.8%) | 0.053 |
Education | 9.6 ± 5.4 | 8.7 ± 4.6 | 0.251 |
Hypertension | 135 (57.2%) | 42 (64.6%) | 0.351 |
Diabetes | 63 (26.7%) | 23 (35.4%) | 0.223 |
Hyperlipidemia | 54 (22.9%) | 8 (12.3%) | 0.090 |
Smoking | 105 (44.5%) | 32 (49.2%) | 0.590 |
Atrial Fibrillation | 6 (2.5%) | 4 (6.2%) | 0.295 |
Coronary Artery Disease | 12 (5.1%) | 5 (7.7%) | 0.615 |
Initial Stroke Severity (NIHSS) | 3.0 ± 3.6 | 5.3 ± 5.2 | 0.001 |
TOAST | 0.018 | ||
-SVO | 117 (50.0%) | 18 (28.1%) | |
-LAA | 87 (37.2%) | 33 (51.6%) | |
-CE | 10 (4.3%) | 7 (10.9%) | |
-OD | 4 (1.7%) | 1 (1.6%) | |
-UD | 16 (6.8%) | 5 (7.8%) | |
Lesion Location | |||
-Left Hemispheric Lesion | 60 (25.4%) | 26 (40.0%) | 0.032 |
-Subcortical Lesion | 44 (18.6%) | 10 (15.4%) | 0.672 |
-Multiple Lesion | 12 (5.1%) | 5 (7.7%) | 0.615 |
Initial Serum Glucose (mg/dL) | 143.5 ± 64.3 | 167.9 ± 70.5 | 0.008 |
HbA1c (%) | 6.4 ± 1.5 | 6.7 ± 1.6 | 0.163 |
Crude OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
---|---|---|---|---|
Glycemic gap | ||||
Non-Elevated | Reference | Reference | ||
Mildly Elevated | 1.48 (0.78–2.81) | 0.233 | 1.41 (0.71–2.80) | 0.326 |
Severely Elevated | 3.78 (1.82–7.86) | <0.001 | 3.65 (1.65–8.06) | 0.001 |
Age (per 10-year increase) | 1.34 (1.10–1.63) | 0.014 | 1.34 (1.00–1.79) | 0.062 |
Initial NIHSS | 1.12 (1.06–1.19) | <0.001 | 1.09 (1.02–1.17) | 0.018 |
TOAST | ||||
-SVO | Reference | Reference | ||
-LAA | 2.47 (1.30–4.67) | 0.006 | 2.01 (1.00–4.05) | 0.052 |
-CE | 4.55 (1.54–13.48) | 0.006 | 3.07 (0.19–10.35) | 0.071 |
-OD | 1.62 (0.17–15.37) | 0.671 | 1.51 (0.13–17.59) | 0.741 |
-UD | 2.03 (0.66–6.23) | 0.215 | 1.81 (0.54–6.13) | 0.338 |
Left Hemispheric | 1.96 (1.10–3.48) | 0.023 | 1.84 (0.97–3.49) | 0.064 |
Adjusted OR (95% CI) | p-Value | |
---|---|---|
HbA1c < 6.5% | ||
Non-elevated glycemic gap | Reference | |
Mildly-elevated glycemic gap | 1.98 (0.81–4.79) | 0.133 |
Severely-elevated glycemic gap | 4.58 (1.31–16.02) | 0.017 |
HbA1c ≥ 6.5% | ||
Non-elevated glycemic gap | Reference | |
Mildly-elevated glycemic gap | 1.14 (0.27–4.81) | 0.862 |
Severely-elevated glycemic gap | 2.58 (0.81–8.16) | 0.108 |
Non-Elevated Glycemic Gap | Mildly Elevated Glycemic Gap | Severely Elevated Glycemic Gap | * p-Value | |
---|---|---|---|---|
(n = 153) | (n = 102) | (n = 46) | ||
K-MMSE | −0.9 ± 2.0 | −1.0 ± 2.0 | −1.4 ± 1.9 | 0.372 |
Frontal | −0.9 ± 1.5 | −1.1 ± 1.5 | −1.9 ± 1.4 | 0.001 |
Language | −0.1 ± 1.0 | −0.3 ± 1.3 | −0.2 ± 1.2 | 0.536 |
Visuospatial | −1.0 ± 1.9 | −1.3 ± 1.9 | −1.6 ± 2.0 | 0.120 |
Memory | −1.0 ± 1.3 | −0.8 ± 1.2 | −1.4 ± 1.2 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Lim, J.-S.; Kim, Y.; Lee, J.H.; Kim, C.-H.; Lee, S.-H.; Jang, M.U.; Oh, M.S.; Lee, B.-C.; Yu, K.-H. Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients. Brain Sci. 2021, 11, 612. https://doi.org/10.3390/brainsci11050612
Lee M, Lim J-S, Kim Y, Lee JH, Kim C-H, Lee S-H, Jang MU, Oh MS, Lee B-C, Yu K-H. Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients. Brain Sciences. 2021; 11(5):612. https://doi.org/10.3390/brainsci11050612
Chicago/Turabian StyleLee, Minwoo, Jae-Sung Lim, Yerim Kim, Ju Hun Lee, Chul-Ho Kim, Sang-Hwa Lee, Min Uk Jang, Mi Sun Oh, Byung-Chul Lee, and Kyung-Ho Yu. 2021. "Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients" Brain Sciences 11, no. 5: 612. https://doi.org/10.3390/brainsci11050612
APA StyleLee, M., Lim, J. -S., Kim, Y., Lee, J. H., Kim, C. -H., Lee, S. -H., Jang, M. U., Oh, M. S., Lee, B. -C., & Yu, K. -H. (2021). Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients. Brain Sciences, 11(5), 612. https://doi.org/10.3390/brainsci11050612