Inhibitory Dimensions and Delay of Gratification: A Comparative Study on Individuals with Down Syndrome and Typically Developing Children
Abstract
:1. Introduction
1.1. Developmental Trajectories of Inhibition and Delay of Gratification in Typical Development
1.2. Inhibitory Sub-Components and Delay of Gratification in People with Down Syndrome
1.3. The Present Study
- (1)
- (2)
- Try to add some information on cross-sectional developmental trajectories of inhibitory sub-components and delay of gratification in a sample of people with DS clustered in two different groups on the basis of their CA.
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Response Inhibition Tasks
2.3.2. Interference Suppression Tasks
2.3.3. Delay of Gratification Tasks
3. Results
3.1. Investigating Inhibitory and Delay of Gratification Differences Between the Two Groups with Down Syndrome with Different Chronological Ages
4. Discussion
4.1. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherman, S.L.; Allen, E.G.; Bean, L.H.; Freeman, S.B. Epidemiology of Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 221–227. [Google Scholar] [CrossRef]
- Mégarbané, A.; Ravel, A.; Mircher, C.; Sturtz, F.; Grattau, Y.; Rethoré, M.-O.; Delabar, J.-M.; Mobley, W.C. The 50th anniversary of the discovery of trisomy 21: The past, present, and future of research and treatment of Down syndrome. Genet. Med. 2009, 11, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittles, A.H.; Glasson, E.J. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev. Med. Child Neurol. 2004, 46, 282. [Google Scholar] [CrossRef]
- Daunhauer, L.A.; Gerlach-McDonald, B.; Will, E.; Fidler, D.J. Performance and Ratings Based Measures of Executive Function in School-Aged Children with Down Syndrome. Dev. Neuropsychol. 2017, 42, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Pochon, R.; Touchet, C.; Ibernon, L. Emotion Recognition in Adolescents with Down Syndrome: A Nonverbal Approach. Brain Sci. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, L.; Cuskelly, M. Associations of Child and Adolescent Mastery Motivation and Self-Regulation with Adult Outcomes: A Longitudinal Study of Individuals with Down Syndrome. Am. J. Intellect. Dev. Disabil. 2017, 122, 235–246. [Google Scholar] [CrossRef]
- Lanfranchi, S.; Jerman, O.; Dal Pont, E.; Alberti, A.; Vianello, R. Executive function in adolescents with Down Syndrome: Executive function in Down Syndrome. J. Intellect. Disabil. Res. 2010, 54, 308–319. [Google Scholar] [CrossRef]
- Will, E.; Fidler, D.J.; Daunhauer, L.; Gerlach-McDonald, B. Executive function and academic achievement in primary-grade students with Down syndrome: EF and academics in Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, J.R.; Yerys, B.E. More than IQ: Executive function explains adaptive behavior above and beyond nonverbal IQ in youth with autism and lower IQ. Am. J. Intellect. Dev. Disabil. 2019, 124, 191–205. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S.; et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelazo, P.D. Executive Function and Psychopathology: A Neurodevelopmental Perspective. Annu. Rev. Clin. Psychol. 2020, 16, 431–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.; Koechlin, E. Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biol. 2012, 10, e1001293. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Anderson, J.E.; Richler, J.; Wallner-Allen, K.; Beaumont, J.L.; Weintraub, S.L. Nih toolbox cognition battery (cb): Measuring executive function and attention: Nih toolbox cognition battery (cb). Monogr. Soc. Res. Child Dev. 2013, 78, 16–33. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Müller, U. Executive Function in Typical and Atypical Development. In Blackwell Handbook of Childhood Cognitive Development; Goswami, U., Ed.; Blackwell Publishers Ltd.: Hoboken, NJ, USA, 2002; pp. 445–469. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Carlson, S.M. Hot and Cool Executive Function in Childhood and Adolescence: Development and Plasticity. Child Dev. Perspect. 2012, 6, 354–360. [Google Scholar] [CrossRef]
- Prencipe, A.; Kesek, A.; Cohen, J.; Lamm, C.; Lewis, M.D.; Zelazo, P.D. Development of hot and cool executive function during the transition to adolescence. J. Exp. Child Psychol. 2011, 108, 621–637. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Blair, C.B.; The Family Life Project Investigators. Measuring executive function in early childhood: A case for formative measurement. Psychol. Assess. 2016, 28, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Bernier, A.; Carlson, S.M.; Whipple, N. From External Regulation to Self-Regulation: Early Parenting Precursors of Young Children’s Executive Functioning. Child Dev. 2010, 81, 326–339. [Google Scholar] [CrossRef]
- Montroy, J.J.; Merz, E.C.; Williams, J.M.; Landry, S.H.; Johnson, U.Y.; Zucker, T.A.; Assel, M.; Taylor, H.B.; Lonigan, C.J.; Phillips, B.M.; et al. Hot and cool dimensionality of executive function: Model invariance across age and maternal education in preschool children. Early Child. Res. Q. 2019, 49, 188–201. [Google Scholar] [CrossRef]
- Clark, C.A.C.; Pritchard, V.E.; Woodward, L.J. Preschool executive functioning abilities predict early mathematics achievement. Dev. Psychol. 2010, 46, 1176–1191. [Google Scholar] [CrossRef] [PubMed]
- Garon, N. A Review of Hot Executive Functions in Preschoolers. J. Self-Regul. Regul. 2016, 2, 57–80. [Google Scholar] [CrossRef]
- Kim, H.; Carlson, A.G.; Curby, T.W.; Winsler, A. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities. Res. Dev. Disabil. 2016, 53, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Rey-Mermet, A.; Gade, M. Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 2018, 25, 1695–1716. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, E.; Viterbori, P.; Traverso, L.; Usai, M.C. Inhibitory processes in toddlers: A latent-variable approach. Front. Psychol. 2014, 5, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traverso, L.; Fontana, M.; Usai, M.C.; Passolunghi, M.C. Response Inhibition and Interference Suppression in Individuals With Down Syndrome Compared to Typically Developing Children. Front. Psychol. 2018, 9, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brydges, C.R.; Fox, A.M.; Reid, C.L.; Anderson, M. The differentiation of executive functions in middle and late childhood: A longitudinal latent-variable analysis. Intelligence 2014, 47, 34–43. [Google Scholar]
- Traverso, L.; Viterbori, P.; Malagoli, C.; Usai, M.C. Distinct inhibition dimensions differentially account for working memory performance in 5-year-old children. Cogn. Dev. 2020, 55, 100909. [Google Scholar] [CrossRef]
- Garon, N.; Bryson, S.E.; Smith, I.M. Executive function in preschoolers: A review using an integrative framework. Psychol. Bull. 2008, 134, 31–60. [Google Scholar] [CrossRef] [Green Version]
- Groppe, K.; Elsner, B. Executive function and food approach behavior in middle childhood. Front. Psychol. 2014, 5, 447. [Google Scholar]
- Hongwanishkul, D.; Happaney, K.R.; Lee, W.S.C.; Zelazo, P.D. Assessment of Hot and Cool Executive Function in Young Children: Age-Related Changes and Individual Differences. Dev. Neuropsychol. 2005, 28, 617–644. [Google Scholar] [CrossRef]
- Mischel, W.; Shoda, Y.; Rodriguez, M. Delay of gratification in children. Science 1989, 244, 933–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochanska, G.; Murray, K.T.; Harlan, E.T. Effortful Control in Early Childhood: Continuity and Change, Antecedents, and Implications for Social Development. Dev. Psychol. 2000, 36, 220. [Google Scholar] [PubMed]
- Joyce, A.W.; Kraybill, J.H.; Chen, N.; Cuevas, K.; Deater-Deckard, K.; Bell, M.A. A Longitudinal Investigation of Conflict and Delay Inhibitory Control in Toddlers and Preschoolers. Early Educ. Dev. 2016, 27, 788–804. [Google Scholar] [CrossRef] [Green Version]
- Watts, T.W.; Duncan, G.J.; Quan, H. Revisiting the Marshmallow Test: A Conceptual Replication Investigating Links Between Early Delay of Gratification and Later Outcomes. Psychol. Sci. 2018, 29, 1159–1177. [Google Scholar] [CrossRef]
- Nakamichi, K. Differences in Young Children’s Peer Preference by Inhibitory Control and Emotion Regulation. Psychol. Rep. 2017, 120, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Sabat, C.; Arango, P.; Tassé, M.J.; Tenorio, M. Different abilities needed at home and school: The relation between executive function and adaptive behaviour in adolescents with Down syndrome. Sci. Rep. 2020, 10, 1683. [Google Scholar] [CrossRef] [PubMed]
- Tungate, A.S.; Conners, F.A. Executive function in Down syndrome: A meta-analysis. Res. Dev. Disabil. 2021, 108, 103802. [Google Scholar] [CrossRef]
- Gioia, G.A.; Espy, K.A.; Isquith, P.K. Behavior Rating Inventory of Executive Function-Preschool Version; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2003. [Google Scholar]
- Lee, N.R.; Anand, P.; Will, E.; Adeyemi, E.I.; Clasen, L.S.; Blumenthal, J.D.; Giedd, J.N.; Daunhauer, L.A.; Fidler, D.J.; Edgin, J.O. Everyday executive functions in Down syndrome from early childhood to young adulthood: Evidence for both unique and shared characteristics compared to youth with sex chromosome trisomy (XXX and XXY). Front. Behav. Neurosci. 2015, 9, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveall, S.J.; Conners, F.A.; Tungate, A.S.; Hahn, L.J.; Osso, T.D. A cross-sectional analysis of executive function in Down syndrome from 2 to 35 years: A cross-sectional analysis of executive function in Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Daunhauer, L.A.; Fidler, D.J.; Hahn, L.; Will, E.; Lee, N.R.; Hepburn, S. Profiles of Everyday Executive Functioning in Young Children With Down Syndrome. Am. J. Intellect. Dev. Disabil. 2014, 119, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.R.; Fidler, D.J.; Blakeley-Smith, A.; Daunhauer, L.; Robinson, C.; Hepburn, S.L. Caregiver Report of Executive Functioning in a Population-Based Sample of Young Children With Down Syndrome. Am. J. Intellect. Dev. Disabil. 2011, 116, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, B.; Fidler, D.; Talapatra, D.; Riley, K. Adaptive behaviour, executive function and employment in adults with Down syndrome: Employment in adults with Down syndrome. J. Intellect. Disabil. Res. 2018, 62, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Edgin, J.O.; Mason, G.M.; Allman, M.J.; Capone, G.T.; DeLeon, I.; Maslen, C.; Reeves, R.H.; Sherman, S.L.; Nadel, L. Development and validation of the Arizona Cognitive Test Battery for Down syndrome. J. Neurodev. Disord. 2010, 2, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schott, N.; Holfelder, B. Relationship between motor skill competency and executive function in children with Down’s syndrome: Motor skill competency and executive function in children with Down’s syndrome. J. Intellect. Disabil. Res. 2015, 59, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Carney, D.P.J.; Brown, J.H.; Henry, L.A. Executive function in Williams and down syndromes. Res. Dev. Disabil. 2013, 34, 46–55. [Google Scholar] [CrossRef]
- Pennington, B.F.; Moon, J.; Edgin, J.; Stedron, J.; Nadel, L. The Neuropsychology of Down Syndrome: Evidence for Hippocampal Dysfunction. Child Dev. 2003, 74, 75–93. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Lanfranchi, S. Inhibitory mechanisms in Down syndrome: Is there a specific or general deficit? Res. Dev. Disabil. 2013, 34, 65–71. [Google Scholar] [CrossRef]
- Fontana, M.; Usai, M.C.; Toffalini, E.; Passolunghi, M.C. Meta-analysis on inhibition from childhood to young adulthood in people with Down syndrome. Res. Dev. Disabil. 2021, 109, 103838. [Google Scholar] [CrossRef]
- Costanzo, F.; Varuzza, C.; Menghini, D.; Addona, F.; Gianesini, T.; Vicari, S. Executive functions in intellectual disabilities: A comparison between Williams syndrome and Down syndrome. Res. Dev. Disabil. 2013, 34, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Daunhauer, L.A.; Will, E.; Schworer, E.; Fidler, D.J. Young students with Down syndrome: Early longitudinal academic achievement and neuropsychological predictors. J. Intellect. Dev. Disabil. 2020, 45, 211–221. [Google Scholar] [CrossRef]
- Cuskelly, M.; Einam, M.; Jobling, A. Delay of gratification in young adults with Down syndrome. Down Syndr. Res. Pract. 2001, 7, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Cuskelly, M.; Zhang, A.; Hayes, A. A Mental Age-Matched Comparison Study of Delay of Gratification in Children with Down Syndrome. Int. J. Disabil. Dev. Educ. 2003, 50, 239–251. [Google Scholar] [CrossRef]
- Cuskelly, M.; Gilmore, L.; Glenn, S.; Jobling, A. Delay of gratification: A comparison study of children with Down syndrome, moderate intellectual disability and typical development: Delay of gratification. J. Intellect. Disabil. Res. 2016, 60, 865–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usai, M.C.; Traverso, L.; Gandolfi, E.; Viterbori, P. FE-PS 2-6. Batteria per la Valutazione delle Funzioni Esecutive in età Prescolare; Edizioni Centro Studi Erickson: Trento, Italy, 2017. [Google Scholar]
- Belacchi, C.; Scalisi, T.G.; Cannoni, E.; Cornoldi, C. Manuale, CPM Coloured Progressive Matrices. Standardizzazione Italiana; Giunti, O.S. Organizzazioni Speciali: Firenze, Italy, 2008. [Google Scholar]
- Carlson, S.M.; Moses, L.J. Individual Differences in Inhibitory Control and Children’s Theory of Mind. Child Dev. 2001, 72, 1032–1053. [Google Scholar] [CrossRef]
- Davidson, M.C.; Amso, D.; Anderson, L.C.; Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006, 44, 2037–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.R.; Miller, P.H. A Developmental Perspective on Executive Function: Development of Executive Functions. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullane, J.C.; Corkum, P.V.; Klein, R.M.; McLaughlin, E. Interference Control in Children with and without ADHD: A Systematic Review of Flanker and Simon Task Performance. Child Neuropsychol. 2009, 15, 321–342. [Google Scholar] [CrossRef]
- Bachorowski, J.-A.; Newman, J.P. Impulsivity in adults: Motor inhibition and time-interval estimation. Personal. Individ. Differ. 1985, 6, 133–136. [Google Scholar] [CrossRef]
- Traverso, L.; Mantini, C.; Usai, M.C.; Viterbori, P. Valutare le capacità di regolazione in età prescolare: Il Preschool Matching Familiar Figure Task. Psicologia Clinica Dello Sviluppo 2016, 20, 189–210. [Google Scholar]
- Kagan, J. Reflection-impulsivity: The generality and dynamics of conceptual tempo. J. Abnorm. Psychol. 1966, 71, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlin, L.; Bohlin, G. Response inhibition, hyperactivity and conduct problems among preschool children. J. Clin. Child Adolesc. Psychol. 2002, 31, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, F.; Logan, G.D. Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. J. Exp. Psychol. Gen. 2008, 137, 649–672. [Google Scholar] [CrossRef] [Green Version]
- Ridderinkhof, K.R.; van der Molen, M.W. A Psychophysiological Analysis of Developmental Differences in the Ability to Resist Interference. Child Dev. 1995, 66, 1040–1056. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Barnett, W.S.; Thomas, J.; Munro, S. Preschool program improves cognitive control. Science 2007, 318, 1387–1388. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochanska, G.; Murray, K.; Jacques, T.Y.; Koenig, A.L.; Vandegeest, K.A. Inhibitory control in young children and its role in emerging internalization. Child Dev. 1996, 67, 490–507. [Google Scholar] [CrossRef]
- Carlson, S.M.; White, R.E.; Davis-Unger, A.C. Evidence for a relation between executive function and pretense representation in preschool children. Cogn. Dev. 2014, 29, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Daunhauer, L.A.; Fidler, D.J. The Down Syndrome Behavioral Phenotype: Implications for Practice and Research in Occupational Therapy. Occup. Ther. Health Care 2011, 25, 7–25. [Google Scholar] [CrossRef]
- Chen, C.-C.; Ringenbach, S.D.R.; Albert, A.; Semken, K. Fine Motor Control is Related to Cognitive Control in Adolescents with Down Syndrome. Int. J. Disabil. Dev. Educ. 2014, 61, 6–15. [Google Scholar] [CrossRef]
- Pitchford, N.J.; Papini, C.; Outhwaite, L.A.; Gulliford, A. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years. Front. Psychol. 2016, 7, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tilborg, A.; Segers, E.; van Balkom, H.; Verhoeven, L. Modeling individual variation in early literacy skills in kindergarten children with intellectual disabilities. Res. Dev. Disabil. 2018, 72, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Hedge, C.; Jarrold, C. A Novel Framework to Measure Executive Function in Down Syndrome with Applications for Early Clinical Diagnosis of Dementia. Am. J. Intellect. Dev. Disabil. 2019, 124, 354–373. [Google Scholar] [CrossRef]
- Yang, Y.; Conners, F.A.; Merrill, E.C. Visuo-spatial ability in individuals with Down syndrome: Is it really a strength? Res. Dev. Disabil. 2014, 35, 1473–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenecker, S.A.; Zubieta, J.-K.; Young, E.A.; Akil, H.; Nielson, K.A. A task to manipulate attentional load, set-shifting, and inhibitory control: Convergent validity and test–retest reliability of the Parametric Go/No-Go Test. J. Clin. Exp. Neuropsychol. 2007, 29, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Hauser-Cram, P.; Woodman, A.C.; Heyman, M. Early Mastery Motivation as a Predictor of Executive Function in Young Adults with Developmental Disabilities. Am. J. Intellect. Dev. Disabil. 2014, 119, 536–551. [Google Scholar] [CrossRef]
- Merrill, E.C.; O’dekirk, J.M. Visual selective attention and mental retardation. Cogn. Neuropsychol. 1994, 11, 117–132. [Google Scholar] [CrossRef]
- Van Belle, J.; van Hulst, B.M.; Durston, S. Developmental differences in intra-individual variability in children with ADHD and ASD. J. Child Psychol. Psychiatry Allied Discip. 2015, 56, 1316–1326. [Google Scholar] [CrossRef]
- Næss, K.-A.B.; Melby-Lervåg, M.; Hulme, C.; Lyster, S.-A.H. Reading skills in children with Down syndrome: A meta-analytic review. Res. Dev. Disabil. 2012, 33, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kam, C.-M.; Lee, T.M.C. Better Working Memory and Motor Inhibition in Children Who Delayed Gratification. Front. Psychol. 2016, 7, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischel, W.; Ayduk, O. Willpower in a cognitive affect processing system: The dynamics of delay of gratification. In Handbook of Self-Regulation: Research, Theory, and Applications; Vohs, K.D., Baumeister, R.F., Eds.; Guilford Press: New York, NY, USA, 2011; pp. 83–105. [Google Scholar]
- Kable, J. Valuation, intertemporal choice, and self-control. In Neuroeconomics, Second Edition: Decision Making and the Brain; Glimcher, P., Fehr, E., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2015; pp. 173–192. [Google Scholar]
- Cabezas, M.; Carriedo, N. Inhibitory control and temporal perception in cerebral palsy. Child Neuropsychol. 2020, 26, 362–387. [Google Scholar] [CrossRef]
- Lifshitz-Vahav, H. Compensation age theory: Effect of chronological age on individuals with intellectual disability. Educ. Train. Autism Dev. Disabil. 2015, 50, 142–154. [Google Scholar]
- Numminen, H.; Lehto, J.E.; Ruoppila, I. Tower of Hanoi and working memory in adult persons with intellectual disability. Res. Dev. Disabil. 2001, 22, 373–387. [Google Scholar] [CrossRef]
- Marzocchi, G.M.; Usai, M.C.; Howard, S.J. Editorial: Training and Enhancing Executive Function. Front. Psychol. 2020, 11, 2031. [Google Scholar] [CrossRef]
- Pellizzoni, S.; Fontana, M.; Passolunghi, M.C. Exploring the effect of cool and hot EFs training in four-year-old children. Eur. J. Dev. Psychol. 2020, 1–16. [Google Scholar] [CrossRef]
Groups | N | Mean | SD | Min-Max | F | p | Effect Size (Range) | |
---|---|---|---|---|---|---|---|---|
CDT | DS | 51 | 0.34 | 0.27 | 0.61–0.80 | 49.12 | 0.0001 *** | 0.29 (0.18–0.39) |
TD | 71 | 20.58 | 3.80 | 12–25 | ||||
PMFFT Errors | DS | 51 | 12.94 | 7.55 | 0–30 | 5.39 | 0.022 * | 0.04 (0.003–0.11) |
TD | 71 | 10.25 | 5.23 | 2–24 | ||||
PMFFT Time | DS | 51 | 170.46 | 136.88 | 30.94–636.71 | 5.12 | 0.025 * | 0.04 (0.003–0.11) |
TD | 71 | 128.72 | 62.62 | 47.84–399.04 | ||||
Grass/snow Accuracy | DS | 51 | 10.47 | 5.58 | 0–16 | 26.50 | 0.0001 *** | 0.18 (0.09–0.28) |
TD | 71 | 14.10 | 1.73 | 8–16 | ||||
Grass/snow Time | DS | 51 | 36.37 | 10.39 | 22.25–77.02 | 2.03 | 0.157 | 0.02 (0–0.07) |
TD | 71 | 34.30 | 5.45 | 25.55–49.86 | ||||
Go/no-go 1 Accuracy | DS | 51 | 5.14 | 1.63 | 0–6 | 2.34 | 0.128 | 0.02 (0–0.08) |
TD | 71 | 5.51 | 1.04 | 0–6 | ||||
Go/no-go 1 Time | DS | 51 | 835.47 | 1839.17 | 0–7443 | 0.29 | 0.588 | 0.002 (0–0.04) |
TD | 71 | 658.62 | 1729.35 | 0–7976 | ||||
Go/no-go 2 Accuracy | DS | 51 | 3.00 | 1.78 | 0–6 | 47.75 | 0.0001 *** | 0.28 (.017–0.38) |
TD | 71 | 4.94 | 1.33 | 0–6 | ||||
Go/no-go 2 Time | DS | 51 | 3348.71 | 2231.44 | 0–8314 | 33.09 | 0.0001 *** | 0.22 (0.11–0.31) |
TD | 71 | 1139.31 | 1986.75 | 0–12186 | ||||
Go/no-go 3 Accuracy | DS | 51 | 4.25 | 2.29 | 0–8 | 77.61 | 0.0001 *** | 0.39 (0.28–0.48) |
TD | 71 | 7.04 | 1.16 | 2–8 | ||||
Go/no-go 3 Time | DS | 51 | 3686.24 | 2602.06 | 0–11264 | 4.18 | 0.043 * | 0.03 (0.0005–0.10) |
TD | 71 | 4548.96 | 2054.10 | 0–11571 | ||||
Fish Flanker Accuracy | DS | 51 | 13.35 | 3.77 | 3–16 | 3.70 | 0.057 | 0.03 (0–0.09) |
TD | 71 | 14.58 | 3.23 | 1–16 | ||||
Fish Flanker Time | DS | 51 | 35902.61 | 16548.86 | 11307–86529 | 3.93 | 0.05 * | 0.07 (0.00002–0.10) |
TD | 71 | 30530.56 | 12674.24 | 15683–72647 | ||||
Hearts and Flowers Accuracy | DS | 51 | 5.35 | 3.41 | 0–10 | 1.15 | 0.285 | 0.01 (0–0.06) |
TD | 71 | 4.65 | 3.70 | 0–10 | ||||
Hearts and Flowers Time | DS | 51 | 20384.86 | 15145.43 | 5927.00–75480 | 3.02 | 0.085 | 0.03 (0–0.09) |
TD | 71 | 16766.06 | 7518.67 | 4995.00–37842 | ||||
Wrap delay Latency time | DS | 51 | 32.07 | 23.95 | 1.14–60 | 15.09 | 0.0001 *** | 0.11 (0.04–0.20) |
TD | 71 | 46.91 | 18.22 | 10.00–60 | ||||
Marshmallow Waiting time | DS | 51 | 206.19 | 117.14 | 11.8–300 | 23.86 | 0.0001 *** | 0.17 (0.07–0.26) |
TD | 71 | 283.91 | 55.51 | 60.2–300 |
Groups | N | Mean | SD | Min-Max | F | p | Effect Size | |
---|---|---|---|---|---|---|---|---|
CPM | DS1 | 21 | 19.57 | 5.9 | 12–35 | 0.19 | 0.66 | 0.01 |
DS2 | 30 | 18.90 | 5.03 | 11–28 | ||||
CDT | DS1 | 21 | 14.95 | 8 | 1–28 | 2.77 | 0.07 | 0.10 |
DS2 | 30 | 11.53 | 7.02 | 0–30 | ||||
PMFFT Errors | DS1 | 21 | 126.54 | 118.82 | 30.94–580.21 | 9.02 | 0.0001 *** | 0.27 |
DS2 | 30 | 201.21 | 142.10 | 37.40–636.71 | ||||
PMFFT Time | DS1 | 21 | 9.10 | 5.16 | 0–16 | 2.26 | 0.12 | 0.09 |
DS2 | 30 | 11.43 | 5.75 | 0–16 | ||||
Grass/snow Accuracy | DS1 | 21 | 39.03 | 11.34 | 26.22–77.02 | 5.00 | 0.01 * | 0.17 |
DS2 | 30 | 34.51 | 9.42 | 25.25–64.19 | ||||
Grass/snow Time | DS1 | 21 | 4.19 | 2.16 | 0–6 | 1.92 | 0.16 | 0.07 |
DS2 | 30 | 5.80 | 0.48 | 4–6 | ||||
Go/no-go 1 Accuracy | DS1 | 21 | 1866.43 | 2538.44 | 0–7443 | 9.77 | 0.0001 *** | 0.29 |
DS2 | 30 | 113.80 | 282.18 | 0–1104 | ||||
Go/no-go 1 Time | DS1 | 21 | 2.33 | 1.98 | 0–6 | 7.98 | 0.001 ** | 0.25 |
DS2 | 30 | 3.47 | 1.48 | 0–6 | ||||
Go/no-go 2 Accuracy | DS1 | 21 | 3143.27 | 2115.81 | 0–8314 | 6.71 | 0.003 ** | 0.22 |
DS2 | 30 | 1139.31 | 1986.75 | 0–12186 | ||||
Go/no-go 2 Time | DS1 | 21 | 3.38 | 2.25 | 0–8 | 1.39 | 0.26 | 0.05 |
DS2 | 30 | 4.87 | 2.15 | 0–8 | ||||
Go/no-go 3 Accuracy | DS1 | 21 | 4346.67 | 2613.77 | 0–11264 | 12.19 | 0.0001 *** | 0.34 |
DS2 | 30 | 3223.93 | 2534.79 | 0–11189 | ||||
Go/no-go 3 Time | DS1 | 21 | 12.86 | 3.60 | 3–16 | 6.29 | 0.004 ** | 0.21 |
DS2 | 30 | 13.70 | 3.91 | 3–16 | ||||
Fish Flanker Accuracy | DS1 | 21 | 37921.22 | 16288.31 | 16520–67841 | 1.21 | 0.31 | 0.05 |
DS2 | 30 | 34604.93 | 16879.96 | 11307–86529 | ||||
Fish Flanker Time | DS1 | 21 | 5.52 | 3.46 | 0–10 | 0.31 | 0.74 | 0.01 |
DS2 | 30 | 5.23 | 3.42 | 0–10 | ||||
Hearts and Flowers Accuracy | DS1 | 21 | 16618.43 | 9356.85 | 5927–48740 | 1.06 | 0.35 | 0.04 |
DS2 | 30 | 23021.37 | 17822.64 | 8058–75480 | ||||
Hearts and Flowers Time | DS1 | 21 | 25.64 | 22.15 | 3.08–60 | 1.39 | 0.26 | 0.05 |
DS2 | 30 | 36.57 | 24.50 | 1.14–60 | ||||
Wrap delay Latency time | DS1 | 21 | 152.35 | 122.12 | 16.90–300 | 5.50 | 0.007 ** | 0.19 |
DS2 | 30 | 243.87 | 99.02 | 11.80–300 | ||||
Marshmallow Waiting time | DS1 | 21 | 152.35 | 122.12 | 16.9–300 | 4.53 | 0.02 * | 0.16 |
DS2 | 30 | 243.87 | 99.02 | 11.80–300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, M.; Usai, M.C.; Pellizzoni, S.; Passolunghi, M.C. Inhibitory Dimensions and Delay of Gratification: A Comparative Study on Individuals with Down Syndrome and Typically Developing Children. Brain Sci. 2021, 11, 636. https://doi.org/10.3390/brainsci11050636
Fontana M, Usai MC, Pellizzoni S, Passolunghi MC. Inhibitory Dimensions and Delay of Gratification: A Comparative Study on Individuals with Down Syndrome and Typically Developing Children. Brain Sciences. 2021; 11(5):636. https://doi.org/10.3390/brainsci11050636
Chicago/Turabian StyleFontana, Martina, Maria Carmen Usai, Sandra Pellizzoni, and Maria Chiara Passolunghi. 2021. "Inhibitory Dimensions and Delay of Gratification: A Comparative Study on Individuals with Down Syndrome and Typically Developing Children" Brain Sciences 11, no. 5: 636. https://doi.org/10.3390/brainsci11050636
APA StyleFontana, M., Usai, M. C., Pellizzoni, S., & Passolunghi, M. C. (2021). Inhibitory Dimensions and Delay of Gratification: A Comparative Study on Individuals with Down Syndrome and Typically Developing Children. Brain Sciences, 11(5), 636. https://doi.org/10.3390/brainsci11050636