Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Electroencephalography (EEG) Recording
2.3. Experimental Design
2.4. Preprocessing of the Scalp-Recorded EEG Data
2.5. Linear Regression Analysis with Stock-Price Changes on IC ERSP
2.6. Group-Level IC Clustering for the Final T-Test for Time1 and Time 2
3. Results
3.1. Behavioral Data
3.2. EEG Results
4. Discussion
4.1. Latency of the EEG Power Modulation and Relation to Stimulus-Preceding Negativity (SPN)
4.2. Polarity of the Modulation and Relation to the Default Mode Network
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camerer, C. Bubbles and fads in asset prices. J. Econ. Surv. 1989, 3, 3–41. [Google Scholar] [CrossRef]
- Abreu, D.; Brunnermeier, M.K. Bubbles and Crashes. Econometrica 2003, 71, 173–204. [Google Scholar] [CrossRef]
- Brunnermeier, M.K.; Brunnermeier, M.K. Asset Pricing under Asymmetric Information: Bubbles, Crashes, Technical Analysis, and Herding; Oxford University Press on Demand: New York, NY, USA, 2001. [Google Scholar]
- Harvey, D.I.; Leybourne, S.J.; Sollis, R.; Taylor, A.M.R. Tests for explosive financial bubbles in the presence of non-stationary volatility. J. Empir. Financ. 2016, 38, 548–574. [Google Scholar] [CrossRef] [Green Version]
- Haracz, J.L.; Acland, D.J. Neuroeconomics of Asset-Price Bubbles: Toward the Prediction and Prevention of Major Bubbles; Working Paper; University of California: Berkeley, CA, USA, 2015. [Google Scholar]
- Mikkelsen, K.B.; Kidmose, P.; Hansen, L.K. On the Keyhole Hypothesis: High Mutual Information between Ear and Scalp EEG. Front. Hum. Neurosci. 2017, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glimcher, P.W.; Camerer, C.F.; Fehr, E.; Poldrack, R.A. Introduction. In Neuroeconomics; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–12. [Google Scholar]
- Fehr, E.; Rangel, A. Neuroeconomic Foundations of Economic Choice—Recent Advances. J. Econ. Perspect. 2011, 25, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Knutson, B.; Bossaerts, P. Neural antecedents of financial decisions. J. Neurosci. 2007, 27, 8174–8177. [Google Scholar] [CrossRef] [Green Version]
- Knutson, B.; Taylor, J.; Kaufman, M.; Peterson, R.; Glover, G. Distributed neural representation of expected value. J. Neurosci. 2005, 25, 4806–4812. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Snell, J.; Nelson, A.J.; Rustichini, A.; Glimcher, P.W. Neural representation of subjective value under risk and ambiguity. J. Neurophysiol. 2010, 103, 1036–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Martino, B.; O’Doherty, J.P.; Ray, D.; Bossaerts, P.; Camerer, C. In the mind of the market: Theory of mind biases value computation during financial bubbles. Neuron 2013, 79, 1222–1231. [Google Scholar] [CrossRef]
- Rudorf, S.; Hare, T.A. Interactions between dorsolateral and ventromedial prefrontal cortex underlie context-dependent stimulus valuation in goal-directed choice. J. Neurosci. 2014, 34, 15988–15996. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, A.; Onozaki, T.; Mizuno, T.; Asamizuya, T.; Ueno, K.; Cheng, K.; Iriki, A. Neural basis of economic bubble behavior. Neuroscience 2014, 265, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huettel, S.A.; Song, A.W.; McCarthy, G. Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. J. Neurosci. 2005, 25, 3304–3311. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Bhatt, M.; Adolphs, R.; Tranel, D.; Camerer, C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 2005, 310, 1680–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preuschoff, K.; Bossaerts, P.; Quartz, S.R. Neural differentiation of expected reward and risk in human subcortical structures. Neuron 2006, 51, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Plassmann, H.; O’Doherty, J.; Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 2007, 27, 9984–9988. [Google Scholar] [CrossRef] [Green Version]
- Webb, R.; Levy, I.; Lazzaro, S.C.; Rutledge, R.B.; Glimcher, P.W. Neural random utility: Relating cardinal neural observables to stochastic choice behavior. J. Neurosci. Psychol. Econ. 2019, 12, 45–72. [Google Scholar] [CrossRef]
- Kable, J.W.; Glimcher, P.W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 2007, 10, 1625–1633. [Google Scholar] [CrossRef]
- Prado, J.; Chadha, A.; Booth, J.R. The brain network for deductive reasoning: A quantitative meta-analysis of 28 neuroimaging studies. J. Cogn. Neurosci. 2011, 23, 3483–3497. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef]
- Cui, J.-F.; Chen, Y.-H.; Wang, Y.; Shum, D.H.K.; Chan, R.C.K. Neural correlates of uncertain decision making: ERP evidence from the Iowa Gambling Task. Front. Hum. Neurosci. 2013, 7, 776. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, G.M.; Masiak, J.; Kawiak, A.; Kwasniewicz, L.; Schneider, P.; Postepski, F.; Gajos-Balinska, A. Analysis of Decision-Making Process Using Methods of Quantitative Electroencephalography and Machine Learning Tools. Front. Neuroinform. 2019, 13, 73. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain; Oxford University Press, Inc.: New York, NY, USA, 2006. [Google Scholar]
- Paszkiel, S.; Szpulak, P. Methods of acquisition, archiving and biomedical data analysis of brain functioning. In Biomedical Engineering and Neuroscience; Hunek, W.P., Paszkiel, S., Eds.; Advances in intelligent systems and computing; Springer International Publishing: Cham, Switzerland, 2018; Volume 720, pp. 158–171. [Google Scholar]
- Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Poline, J.P.; Frith, C.D.; Frackowiak, R.S.J. Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Mapp. 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Makeig, S.; Bell, A.; Jung, T.-P.; Sejnowski, T. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 1996, 8, 145–151. [Google Scholar]
- Onton, J.; Makeig, S. Information-based modeling of event-related brain dynamics. Prog. Brain Res. 2006, 159, 99–120. [Google Scholar] [PubMed] [Green Version]
- Smith, A.; Lohrenz, T.; King, J.; Montague, P.R.; Camerer, C.F. Irrational exuberance and neural crash warning signals during endogenous experimental market bubbles. Proc. Natl. Acad. Sci. USA 2014, 111, 10503–10508. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of artifact subspace reconstruction for automatic EEG artifact removal. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 1242–1245. [Google Scholar] [PubMed]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef]
- Blum, S.; Jacobsen, N.S.J.; Bleichner, M.G.; Debener, S. A riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front. Hum. Neurosci. 2019, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Plechawska-Wojcik, M.; Kaczorowska, M.; Zapala, D. The artifact subspace reconstruction (ASR) for EEG signal correction. A comparative study. In Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology—ISAT 2018: Part II.; Świątek, J., Borzemski, L., Wilimowska, Z., Eds.; Advances in intelligent systems and computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 853, pp. 125–135, Advances in intelligent systems and computing. [Google Scholar]
- Gabard-Durnam, L.J.; Mendez Leal, A.S.; Wilkinson, C.L.; Levin, A.R. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data. Front. Neurosci. 2018, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Mullen, T.R.; Kothe, C.A.E.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.-P.; Cauwenberghs, G. Real-Time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothe, C.A.; Makeig, S. BCILAB: A platform for brain-computer interface development. J. Neural Eng. 2013, 10, 056014. [Google Scholar] [CrossRef] [Green Version]
- Makeig, S.; Westerfield, M.; Jung, T.P.; Enghoff, S.; Townsend, J.; Courchesne, E.; Sejnowski, T.J. Dynamic brain sources of visual evoked responses. Science 2002, 295, 690–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.; Kreutz-delgado, K.; Makeig, S. AMICA: An Adaptive Mixture of Independent Component Analyzers with Shared Components; Swartz Center for Computatonal Neursoscience, University of California San Diego: San Diego, CA, USA, 2016. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.; Bouldin, D. A cluster separation measure. In IEEE Transactions on Patter Analysis and Machine Intelligence; IEEE: Los Alamitos, CA, USA, 1979. [Google Scholar]
- Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Simmons, W.K.; Bellgowan, P.S.F.; Baker, C.I. Circular analysis in systems neuroscience: The dangers of double dipping. Nat. Neurosci. 2009, 12, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyakoshi, M.; Gehrke, L.; Gramann, K.; Makeig, S.; Iversen, J. The AudioMaze: An EEG and motion capture study of human spatial navigation in sparse augmented reality. Eur. J. Neurosci. 2021. [Google Scholar] [CrossRef]
- Bentin, S.; Allison, T.; Puce, A.; Perez, E.; McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 1996, 8, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Zink, C.F.; Pagnoni, G.; Martin-Skurski, M.E.; Chappelow, J.C.; Berns, G.S. Human striatal responses to monetary reward depend on saliency. Neuron 2004, 42, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Wang, Z.; Liu, X.; Zheng, Y. Temporal dynamics of reward anticipation in the human brain. Biol. Psychol. 2017, 128, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Masaki, H.; Takeuchi, S.; Gehring, W.J.; Takasawa, N.; Yamazaki, K. Affective-motivational influences on feedback-related ERPs in a gambling task. Brain Res. 2006, 1105, 110–121. [Google Scholar] [CrossRef]
- Masaki, H.; Yamazaki, K.; Hackley, S.A. Stimulus-preceding negativity is modulated by action-outcome contingency. Neuroreport 2010, 21, 277–281. [Google Scholar] [CrossRef]
- Mühlberger, C.; Angus, D.J.; Jonas, E.; Harmon-Jones, C.; Harmon-Jones, E. Perceived control increases the reward positivity and stimulus preceding negativity. Psychophysiology 2017, 54, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Foti, D.; Hajcak, G. Genetic variation in dopamine moderates neural response during reward anticipation and delivery: Evidence from event-related potentials. Psychophysiology 2012, 49, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Mattox, S.T.; Valle-Inclán, F.; Hackley, S.A. Psychophysiological evidence for impaired reward anticipation in Parkinson’s disease. Clin. Neurophysiol. 2006, 117, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Knutson, B.; Westdorp, A.; Kaiser, E.; Hommer, D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 2000, 12, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, W.G.; Cooper, R.; Aldridge, V.J.; Mccallum, W.C.; Winter, A.L. Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 1964, 203, 380–384. [Google Scholar] [CrossRef]
- Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef]
- Sobel, J. Neuroeconomics: A comment on Bernheim. Am. Econ. J. Microecon. 2009, 1, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Frydman, C.; Camerer, C.F. The psychology and neuroscience of financial decision making. Trends Cogn. Sci. (Regul. Ed.) 2016, 20, 661–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miendlarzewska, E.A.; Kometer, M.; Preuschoff, K. Neurofinance. Organ. Res. Methods 2017, 22, 196–222. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E. Two views of brain function. Trends Cogn. Sci. (Regul. Ed.) 2010, 14, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E. The restless brain. Brain Connect. 2011, 1, 3–12. [Google Scholar] [CrossRef]
- Nakano, T.; Kato, M.; Morito, Y.; Itoi, S.; Kitazawa, S. Blink-related momentary activation of the default mode network while viewing videos. Proc. Natl. Acad. Sci. USA 2013, 110, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Zacharias, N.; Musso, F.; Müller, F.; Lammers, F.; Saleh, A.; London, M.; de Boer, P.; Winterer, G. Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study. Hum. Brain Mapp. 2020, 41, 107–119. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Cavazza, M. A Motivational Model of BCI-Controlled Heuristic Search. Brain Sci. 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Cinel, C.; Valeriani, D.; Poli, R. Neurotechnologies for human cognitive augmentation: Current state of the art and future prospects. Front. Hum. Neurosci. 2019, 13, 13. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, F.-M.; Miyakoshi, M. Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market. Brain Sci. 2021, 11, 670. https://doi.org/10.3390/brainsci11060670
Toma F-M, Miyakoshi M. Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market. Brain Sciences. 2021; 11(6):670. https://doi.org/10.3390/brainsci11060670
Chicago/Turabian StyleToma, Filip-Mihai, and Makoto Miyakoshi. 2021. "Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market" Brain Sciences 11, no. 6: 670. https://doi.org/10.3390/brainsci11060670
APA StyleToma, F.-M., & Miyakoshi, M. (2021). Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market. Brain Sciences, 11(6), 670. https://doi.org/10.3390/brainsci11060670