Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies
Abstract
:1. Introduction
2. Case Report
2.1. Clinical Presentation
2.2. Patient History and Examination
2.3. Neuropsychological, Electroencephalographic, Neuroimaging and Biosamples Laboratory Data
2.4. 18F-FDG-PET Investigation
2.5. Diagnosis of Autoimmune Encephalitis and Therapeutic Treatment
3. Discussion
3.1. Potential Role of Human Neurexin-3α for Memory and Cognition
3.2. Characterization of Brain Metabolism in Mild Cognitive Impairment Associated with Serum Anti-Neurexin-3α Antibodies
3.3. Axonal Neurodegeneration in Possible Autoimmune Encephalitis Associated with Neurexin 3α-Antibodies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, N.; Malchow, B.; Zerr, I.; Stöcker, W.; Wiltfang, J.; Timäus, C. Neural cell-surface and intracellular autoantibodies in patients with cognitive impairment from a memory clinic cohort. J. Neural Transm. 2021, 128, 357–369. [Google Scholar] [CrossRef]
- Gibson, L.L.; McKeever, A.; Cullen, A.E.; Nicholson, T.R.; Aarsland, D.; Zandi, M.S.; Pollak, T.A. Neuronal surface autoantibodies in dementia: A systematic review and meta-analysis. J. Neurol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresa-Arribas, N.; Planagumà, J.; Petit-Pedrol, M.; Kawachi, I.; Katada, S.; Glaser, C.A.; Simabukuro, M.M.; Armangué, T.; Martinez-Hernandez, E.; Graus, F.; et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology 2016, 86, 2235–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.; Silva-Pinto, A.; Alves, J.; Neves, N.; Martínez-Hernández, E.; Abreu, P.; Sarmento, A. Postmalaria neurologic syndrome associated with neurexin-3α antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, F.; Sclip, A.; Jiang, M.; Südhof, T.C. Neurexins cluster Ca2+ channels within the presynaptic active zone. EMBO J. 2020, 39, e103208. [Google Scholar] [CrossRef]
- Südhof, T.C. Towards an Understanding of Synapse Formation. Neuron 2018, 100, 276–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loehrer, P.A.; Bien, C.I.; Dusoi, A.; Timmermann, L.; Simon, O.J. Neurexin-3α-associated autoimmune encephalitis: A case report of full recovery after rituximab therapy. Eur. J. Neurol. 2020, 27, e91–e93. [Google Scholar] [CrossRef]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, S.; Langer, N.J.; Nelson, K.A.; Aoto, J. Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses. J. Neurosci. 2019, 39, 9065–9082. [Google Scholar] [CrossRef]
- Aoto, J.; Földy, C.; Ilcus, S.M.C.; Tabuchi, K.; Südhof, T.C. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat. Neurosci. 2015, 18, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Rozic, G.; Lupowitz, Z.; Piontkewitz, Y.; Zisapel, N. Dynamic Changes in Neurexins’ Alternative Splicing: Role of Rho-Associated Protein Kinases and Relevance to Memory Formation. PLoS ONE 2011, 6, e18579. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Aoto, J.; Südhof, T.C. Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. Neuron 2019, 102, 993–1008.e5. [Google Scholar] [CrossRef]
- Diering, G.H.; Huganir, R.L. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2018, 100, 314–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Han, H.; Li, H.; Bai, Y.; Wang, W.; Tu, M.; Peng, Y.; Zhou, L.; He, W.; Wu, X.; et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J. Clin. Investig. 2015, 125, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Um, J.W.; Ko, J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog. Neurobiol. 2021, 200, 101983. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shan, W.; Zhao, X.; Ren, J.; Ren, G.; Chen, C.; Shi, W.; Lv, R.; Li, Z.; Liu, Y.; et al. The Clinical Value of 18F-FDG-PET in Autoimmune Encephalitis Associated with LGI1 Antibody. Front. Neurol. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Celicanin, M.; Blaabjerg, M.; Maersk-Moller, C.; Beniczky, S.; Marner, L.; Thomsen, C.; Bach, F.W.; Kondziella, D.; Andersen, H.; Somnier, F.; et al. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies—A national cohort study. Eur. J. Neurol. 2017, 24, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Rauer, S.; Mader, I.; Meyer, P.T. Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: Correlation with autoantibody types. J. Neurol. 2013, 260, 2744–2753. [Google Scholar] [CrossRef]
- Probasco, J.C.; Solnes, L.; Nalluri, A.; Cohen, J.; Jones, K.M.; Zan, E.; Javadi, M.S.; Venkatesan, A. Decreased occipital lobe metabolism by FDG-PET/CT: Decreased occipital lobe metabolism by FDG-PET/CT: An anti-NMDA receptor encephalitis biomarker. Neurol. Neuroimmunol. Neuroinflamm. 2017, 5, e413. [Google Scholar] [CrossRef] [Green Version]
- Solnes, L.B.; Jones, K.M.; Rowe, S.P.; Pattanayak, P.; Nalluri, A.; Venkatesan, A.; Probasco, J.C.; Javadi, M.S. Diagnostic Value of 18 F-FDG PET/CT Versus MRI in the Setting of Antibody-Specific Autoimmune Encephalitis. J. Nucl. Med. 2017, 58, 1307–1313. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ajona, D.; Prieto, E.; Grisanti, F.; Esparragosa, I.; Orduz, L.S.; Pérez-Larraya, J.G.; Arbizu, J.; Riverol, M. 18F-FDG-PET Imaging Patterns in Autoimmune Encephalitis: Impact of Image Analysis on the Results. Diagnostics 2020, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Dik, W.A.; Heron, M. Clinical significance of soluble interleukin-2 receptor measurement in immune-mediated diseases. Neth. J. Med. 2020, 78, 220–231. [Google Scholar] [PubMed]
- Lleó, A.; Núñez-Llaves, R.; Alcolea, D.; Chiva, C.; Balateu-Paños, D.; Colom-Cadena, M.; Gomez-Giro, G.; Muñoz, L.; Querol-Vilaseca, M.; Pegueroles, J.; et al. Changes in Synaptic Proteins Precede Neurodegeneration Markers in Preclinical Alzheimer’s Disease Cerebrospinal Fluid. Mol. Cell. Proteom. 2019, 18, 546–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.S.; Hermens, D.F.; Porter, M.A.; Redoblado-Hodge, M.A. A meta-analysis of cognitive deficits in first-episode Major Depressive Disorder. J. Affect. Disord. 2012, 140, 113–124. [Google Scholar] [CrossRef]
Laboratory Parameter | Laboratory Data | ||||
---|---|---|---|---|---|
2 Years Ago | 1 Year Ago | Diagnosis | Follow Up 5 Months | Follow Up 8 Months | |
PB | |||||
CRP mg/L (<0.2) | 12.2 | 3.2 | 8.3 | - | 6.0 |
Leukocytes 103/μL (4–11) | 14.4 | 9.25 | 8.59 | - | 9.8 |
CK (30–200 U/L) | 248 | - | - | - | - |
Immunologic marker | |||||
Rheumafactor (<15.9 IU/mL) | <10 | - | - | - | - |
Circulating immune complexes (<45 IU/mL) | <25 | - | - | - | - |
Complement C3c (0.82–1.93 g/L) | 1.35 | - | - | - | - |
Complement C4 (0.15–0.57 g/L) | 0.37 | - | - | - | - |
ANA/ENA (<0.7) | 0.1 | - | - | - | - |
ACE (20–70 IU/L) | 28 | - | - | - | - |
p-ANCA IF (<1:10) | negative | - | - | - | - |
c-ANCA IF (<1:10) | negative | - | - | - | - |
sIL-2R (223–710 IU/mL) | 1378 | - | - | - | - |
ASMA (<1:100) | negative | - | - | - | - |
ANA IF (<1:100) | 1:320 | - | - | - | - |
Tumor marker | |||||
ß-HCG IU/L (<0.9 IU/L) | - | - | 0.9 | - | - |
CA 15-3 kU/L (<12.9 U/L) | - | - | 31.3 | - | - |
CEA μg/L (<5 μg/L) | - | 3.7 | 5 | - | - |
NSE μg/L (<18.3 μg/L) | - | 26.3 | 18.3 | - | - |
S-100 μg/L (<0.15 μg/L) | - | - | 0.15 | - | - |
PSA μg/L (<4 μg/L) | - | - | 2.47 | - | - |
CYFRA 21-1 μg/L (<2.1 μg/L) | - | 3.8 | 1.0 | - | - |
Antibody | |||||
Yo | negative | + | + | - | - |
SOX1 | negative | negative | + | - | - |
Neurexin-3alpha | - | - | +(1:100) | - | - |
CSF | |||||
Antibody | |||||
Yo | negative | negative | negative | - | - |
SOX1 | negative | negative | negative | - | - |
Neurexin-3alpha | - | - | negative | - | - |
Cells | |||||
Cells/μL (˂5 μg/L) | 1 | 2 | 0 | - | - |
Lymphocytes % | 66 | - | 91 | - | - |
Monocytes % | 28 | - | 9 | - | - |
Proteins | |||||
Albumin mg/L | 507 | 338 | 591 | - | - |
IgG mg/L | 54.8 | 45.4 | 65.1 | - | - |
IgA mg/L | 6.3 | 4.5 | 7.8 | - | - |
IgM mg/L | 1.2 | 1.1 | 1.5 | - | - |
QAlb % | 14.8 | 8 | 14.1 | - | - |
QIgG % | 6.2 | 4.4 | 7.3 | - | - |
QIgA % | 4.3 | 2.3 | 4.1 | - | - |
QIgM % | 1.6 | 1.2 | 1.8 | - | - |
Specific antibody | |||||
Rubella-AI (<1.5 AI) | - | - | 1.0 | - | - |
VZV-AI (<1.5 AI) | - | negative | 1.1 | - | - |
HSV-AI (<1.5 AI) | - | 0.9 | 1.1 | - | - |
EBV-AI (<1.5 AI) | - | 0.7 | 0.8 | - | - |
CMV-AI (<1.5 AI) | - | negative | 0.8 | - | - |
Cell destruction marker | |||||
Tau protein pg/mL (<450 pg/mL) | - | 536 | 353 | - | - |
P-Tau 181 protein pg/mL (<61 pg/mL) | - | 90 | 70 | - | - |
ß-Amyloid 1–42 pg/mL (>450 pg/mL) | - | 1728 | 1534 | - | - |
ß-Amyloid 1–40 pg/mL | - | 17,743 | 18,777 | - | - |
ß-Amyloid 1–42/1–40 × 10 (>0.5) | - | 0.97 | 0.82 | - | - |
Neuropsychology | |||||
WAIS-IV Block Design | −0.7 | - | - | - | - |
WAIS-IV Matrix Reasoning | - | −0.7 | - | - | - |
TMT A | −1.0 | 0.0 | - | −0.5 | - |
TMT B | 0.4 | 0.7 | - | 0.1 | - |
WAIS-IV Coding | −0.7 | 0.0 | - | −0.7 | - |
VLMT Immediate Recall | −2.0 | −1.1 | - | −2.0 | - |
VLMT Long Delay Free Recall | −1.0 | −1.3 | - | −1.6 | - |
WMS-IV Logical Memory I | −2.8 | −2.1 | - | −2.8 | - |
WMS-IV Logical Memory II | −2.8 | −2.1 | - | −2.8 | - |
WMS-IV Visual Reproduction I | −0.7 | 0.7 | - | 0.0 | - |
WMS-IV Visual Reproduction II | - | 0.3 | - | −1.0 | - |
WAIS-IV Digit Span forward | 0.7 | 0.0 | - | 0.0 | - |
WAIS-IV Digit Span backward | 0.3 | 0.3 | - | −1.0 | - |
RWT Letter fluency | −1.5 | 1.0 | - | −1.0 | - |
RWT Semantic fluency | −1.4 | −1.9 | - | −1.9 | - |
NAB Maze Test | - | 1.9 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, N.; Lange, C.; Maass, F.; Hassoun, L.; Bouter, C.; Stöcker, W.; Schott, B.H.; Wiltfang, J.; Fitzner, D. Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies. Brain Sci. 2021, 11, 673. https://doi.org/10.3390/brainsci11060673
Hansen N, Lange C, Maass F, Hassoun L, Bouter C, Stöcker W, Schott BH, Wiltfang J, Fitzner D. Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies. Brain Sciences. 2021; 11(6):673. https://doi.org/10.3390/brainsci11060673
Chicago/Turabian StyleHansen, Niels, Claudia Lange, Fabian Maass, Lina Hassoun, Caroline Bouter, Winfried Stöcker, Björn Hendrik Schott, Jens Wiltfang, and Dirk Fitzner. 2021. "Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies" Brain Sciences 11, no. 6: 673. https://doi.org/10.3390/brainsci11060673
APA StyleHansen, N., Lange, C., Maass, F., Hassoun, L., Bouter, C., Stöcker, W., Schott, B. H., Wiltfang, J., & Fitzner, D. (2021). Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies. Brain Sciences, 11(6), 673. https://doi.org/10.3390/brainsci11060673