Experimental Platform to Study Spiking Pattern Propagation in Modular Networks In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Device Fabrication
2.2. Cell Culturing
2.3. Immunostaining
2.4. Neurite Analysis
2.5. Electrophysiology
2.6. Stimulation Protocol
2.7. Plasticity Induction Stimulation
- Test stimulation of a presynaptic part of a modular network simultaneously applied to four selected stimulation sites (electrodes) in four adjacent microchannels with 1–5 s interstimulus intervals depending on the spontaneous burst frequency (test 1);
- Repetition of the test stimulation to estimate the spontaneous changes of the responses (test 2);
- Tetanic stimulation consisting of 20 trains of 10 stimuli with a 50 ms interval between pulses and a 5 s interval between the trains [33] was delivered simultaneously to the same four electrodes in the adjacent microchannels;
- Repetition of the test stimulation to estimate plasticity-induced changes in spiking activity (test 3).
2.8. Analysis of Stimulus Responses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassett, D.S.; Sporns, O. Network neuroscience. Nat. Neurosci. 2017, 20, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Schröter, M.; Paulsen, O.; Bullmore, M.S.E.T. Micro-connectomics: Probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci. 2017, 18, 131–146. [Google Scholar] [CrossRef]
- Tosh, C.R.; McNally, L. The relative efficiency of modular and non-modular networks of different size. Proc. Biol. Sci. 2015, 282, 1–8. [Google Scholar]
- Nevill, J.T.; Mo, A.; Cord, B.J.; Palmer, T.D.; Poo, M.; Lee, L.P.; Heilshorn, S.C. Vacuum soft lithography to direct neuronal polarization. Soft Matter 2011, 7, 343–347. [Google Scholar] [CrossRef]
- Albers, J.; Offenhäusser, A. Signal Propagation between Neuronal Populations Controlled by Micropatterning. Front. Bioeng. Biotechnol. 2016, 4, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.M.; Dieterich, D.C.; Ito, H.T.; Kim, S.A.; Schuman, E.M. Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses. Neuron 2010, 66, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.; Menon, S.; Gupton, S.L. Passive microfluidic chamber for long-term imaging of axon guidance in response to soluble gradients. Lab. Chip 2015, 15, 2781–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forro, C.; Caron, D.; Angotzi, G.; Gallo, V.; Berdondini, L.; Santoro, F.; Palazzolo, G.; Panuccio, G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines 2021, 12, 124. [Google Scholar] [CrossRef]
- Shimba, K.; Sakai, K.; Iida, S.; Kotani, K.; Jimbo, Y. Long-Term Developmental Process of the Human Cortex Revealed In Vitro by Axon-Targeted Recording Using a Microtunnel-Augmented Microelectrode Array. IEEE Trans. Biomed. Eng. 2019, 66, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Peyrin, J.-M.; Deleglise, B.; Saias, L.; Vignes, M.; Gougis, P.; Magnifico, S.; Betuing, S.; Pietri, M.; Caboche, J.; Vanhoutte, P.; et al. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab. Chip 2011, 11, 3663–3673. [Google Scholar] [CrossRef]
- Le Feber, J.; Postma, W.; de Weerd, E.; Weusthof, M.; Rutten, W.L.C. Barbed channelsenhance unidirectional connectivity between neuronal networks cultured on multielectrode arrays. Front. Neurosci. 2015, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Na, S.; Kang, M.; Bang, S.; Park, D.; Kim, J.; Sim, S.J.; Chang, S.; Jeon, N.L. Microfluidic neural axon diode. Technology 2016, 4, 240–248. [Google Scholar] [CrossRef]
- Holloway, P.M.; Hallinan, G.I.; Hegde, M.; Lane, S.I.R.; Deinhardt, K.; West, J. Asymmetric confinement for defining outgrowth directionality. Lab Chip 2019, 19, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Courte, J.; Renault, R.; Jan, A.; Viovy, J.-L.; Peyrin, J.-M.; Villard, C. Reconstruction of directed neuronal networks in a microfluidic device with asymmetric microchannels. Methods Cell Biol. 2018, 148, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Forró, C.; Thompson-Steckel, G.; Weaver, S.; Weydert, S.; Ihle, S.; Dermutz, H.; Aebersold, M.J.; Pilz, R.; Demkó, L.; Vörös, J. Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens. Bioelectron. 2018, 122, 75–87. [Google Scholar] [CrossRef]
- Moutaux, E.; Charlot, B.; Genoux, A.; Saudou, F.; Cazorla, M. An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. Lab Chip 2018, 18, 3425–3435. [Google Scholar] [CrossRef]
- Feinerman, O.; Rotem, A.; Moses, E. Reliable neuronal logic devices from patterned hippocampal cultures. Nat. Phys. 2008, 4, 967–973. [Google Scholar] [CrossRef]
- Maisonneuve, B.G.; Vieira, J.; Larramendy, F.; Honegger, T. Microchannel patterning strategies for in vitro structural connectivity modulation of neural networks. bioRxiv 2021, 1–11. [Google Scholar] [CrossRef]
- Pan, L.; Alagapan, S.; Franca, E.; Leondopulos, S.S.; Demarse, T.B.; Brewer, G.J.; Wheeler, B.C. An in vitro method to manipulate the direction and functional strength between neural populations. Front. Neural Circuits 2015, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarse, T.B.; Pan, L.; Alagapan, S.; Brewer, G.J.; Wheeler, B.C. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks. Front. Neural Circuits 2016, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanagasabapathi, T.T.; Massobrio, P.; Barone, R.A.; Tedesco, M.; Martinoia, S.; Wadman, W.J.; Decré, M.M.J. Functional connectivity and dynamics of cortical–thalamic networks co-cultured in a dual compartment device. J. Neural Eng. 2012, 9, 036010. [Google Scholar] [CrossRef]
- Bisio, M.; Bosca, A.; Pasquale, V.; Berdondini, L.; Chiappalone, M. Emergence of Bursting Activity in Connected Neuronal Sub-Populations. PLoS ONE 2014, 9, e107400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladkov, A.; Pigareva, Y.; Kutyina, D.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A. Design of Cultured Neuron Networks in vitro with Predefined Connectivity Using Asymmetric Microfluidic Channels. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piasetzky, Y.; Bisio, M.; Kanner, S.; Goldin, M.; Olivenbaum, M.; Ben-Jacob, E.; Hanein, Y.; Chiappalone, M.; Barzilai, A.; Bonifazi, P. The emergence of dynamical instantaneous memory in the spontaneous activity of spatially confined neuronal assemblies in vitro. bioRxiv 2018, 1–30. [Google Scholar] [CrossRef]
- Poli, D.; Wheeler, B.C.; Demarse, T.B.; Brewer, G.J. Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks. J. Neural Eng. 2018, 15, 046009. [Google Scholar] [CrossRef]
- Raichman, N.; Ben-Jacob, E. Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks. J. Neurosci. Meth. 2008, 170, 96–110. [Google Scholar] [CrossRef]
- Levy, O.; Ziv, N.E.; Marom, S. Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. Eur. J. Neurosci. 2012, 35, 1753–1760. [Google Scholar] [CrossRef]
- Gladkov, A.; Kolpakov, V.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Pimashkin, A. Study of Stimulus-Induced Plasticity in Neural Networks Cultured in Microfluidic Chips. Sovrem. Teh. Med. 2017, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M. Microfluidic device for unidirectional axon growth. J. Phys. Conf. Ser. 2015, 643, 012025. [Google Scholar] [CrossRef] [Green Version]
- Pigareva, Y.; Grinchuk, O.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Pimashkin, A. Study of spontaneous bioelectrical activity of two hierarchically connected neural networks in vitro. J. Phys. Conf. Ser. 2020, 1695, 012198. [Google Scholar] [CrossRef]
- Habibey, R.; Golabchi, A.; Latifi, S.; Difato, F.; Blau, A. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 2015, 15, 4578–4590. [Google Scholar] [CrossRef]
- Pimashkin, A.; Gladkov, A.; Agrba, E.; Mukhina, I.; Kazantsev, V. Selectivity of stimulus induced responses in cultured hippocampal networks on microelectrode arrays. Cogn. Neurodyn. 2016, 10, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Jimbo, Y.; Tateno, T.; Robinson, H. Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys. J. 1999, 76, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Chiappalone, M.; Massobrio, P.; Martinoia, S. Network plasticity in cortical assemblies. Eur. J. Neurosci. 2008, 28, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Le Feber, J.; Witteveen, T.; van Veenendaal, T.M.; Dijkstra, J. Repeated stimulation of cultured networks of rat cortical neurons induces parallel memory traces. Learn. Mem. 2015, 22, 594–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadotte, A.J.; Demarse, T.B.; He, P.; Ding, M. Causal Measures of Structure and Plasticity in Simulated and Living Neural Networks. PLoS ONE 2008, 3, e3355. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigareva, Y.; Gladkov, A.; Kolpakov, V.; Mukhina, I.; Bukatin, A.; Kazantsev, V.B.; Pimashkin, A. Experimental Platform to Study Spiking Pattern Propagation in Modular Networks In Vitro. Brain Sci. 2021, 11, 717. https://doi.org/10.3390/brainsci11060717
Pigareva Y, Gladkov A, Kolpakov V, Mukhina I, Bukatin A, Kazantsev VB, Pimashkin A. Experimental Platform to Study Spiking Pattern Propagation in Modular Networks In Vitro. Brain Sciences. 2021; 11(6):717. https://doi.org/10.3390/brainsci11060717
Chicago/Turabian StylePigareva, Yana, Arseniy Gladkov, Vladimir Kolpakov, Irina Mukhina, Anton Bukatin, Victor B. Kazantsev, and Alexey Pimashkin. 2021. "Experimental Platform to Study Spiking Pattern Propagation in Modular Networks In Vitro" Brain Sciences 11, no. 6: 717. https://doi.org/10.3390/brainsci11060717
APA StylePigareva, Y., Gladkov, A., Kolpakov, V., Mukhina, I., Bukatin, A., Kazantsev, V. B., & Pimashkin, A. (2021). Experimental Platform to Study Spiking Pattern Propagation in Modular Networks In Vitro. Brain Sciences, 11(6), 717. https://doi.org/10.3390/brainsci11060717