How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models
Abstract
:1. Introduction
2. Methods and Materials
2.1. Participants
2.2. Test Protocols and Measures
2.3. Chinese Character Decoding Test
2.4. Auditory Semantic Integration during Speech Recognition against Interference
2.5. Reading Comprehension Test
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gough, P.B.; Tunmer, W.E. Decoding, reading, and reading disability. Remedial Spec. Educ. 1986, 7, 6–10. [Google Scholar] [CrossRef]
- Perfetti, C.A.; Landi, N.; Oakhill, J.V. The acquisition of reading comprehension skill. In The Science of Reading: A Handbook; Snowling, M.J., Hulme, C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 227–247. [Google Scholar]
- Vellutino, F.R.; Tunmer, W.E.; Jaccard, J.J.; Chen, R.S. Components of reading ability: Multivariate evidence for a convergent skills model of reading development. Sci. Stud. Read. 2007, 11, 3–32. [Google Scholar] [CrossRef]
- McNamara, D.S.; Magliano, J. Toward a Comprehensive Model of Comprehension. Psychol. Learn. Motiv. 2009, 51, 297–384. [Google Scholar]
- Perfetti, C.; Stafura, J. Word Knowledge in a Theory of Reading Comprehension. Sci. Stud. Read. 2014, 18, 22–37. [Google Scholar] [CrossRef]
- Hoover, W.A.; Gough, P.B. The simple view of reading. Read. Writ. 1990, 2, 127–160. [Google Scholar] [CrossRef]
- Buchweitz, A.; Mason, R.A.; Tomitch, L.M.; Just, M.A. Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension. Psychol. Neurosci. 2009, 2, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Regev, M.; Honey, C.J.; Simony, E.; Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 2013, 33, 15978–15988. [Google Scholar] [CrossRef]
- Deniz, F.; Nunez-Elizalde, A.O.; Huth, A.G.; Gallant, J.L. The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality. J. Neurosci. 2019, 39, 7722–7736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, A.; Clifton, C.J. Comprehending spoken language: A blueprint of the listener. In The Neurocognition of Language; Brown, C., Hagoort, P., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 123–166. [Google Scholar]
- Dubno, J.R.; Ahlstrom, J.B.; Horwitz, A.R. Use of context by young and aged adults with normal hearing. J. Acoust. Soc. Am. 2000, 107, 538–546. [Google Scholar] [CrossRef]
- Scott, S.K.; Rosen, S.; Wickham, L.; Wise, R.J. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J. Acoust. Soc. Am. 2004, 115, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Golestani, N.; Rosen, S.; Scott, S.K. Native-language benefit for understanding speech-in-noise: The contribution of semantics. Biling-Lang. Cogn. 2009, 12, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Calandruccio, L.; Dhar, S.; Bradlow, A.R. Speech-on-speech masking with variable access to the linguistic content of the masker speech. J. Acoust. Soc. Am. 2010, 128, 860–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.D.; Xu, Y.; Wang, B. The role of F0 variation in the intelligibility of Mandarin sentences. In Proceedings of the Speech Prosody 2010-Fifth International Conference, Chicago, IL, USA, 10–14 May 2010. [Google Scholar]
- Wang, J.J.; Shu, H.; Zhang, L.J.; Liu, Z.X.; Zhang, Y. The roles of fundamental frequency contours and sentence context in Mandarin Chinese speech intelligibility. J. Acoust. Soc. Am. 2013, 134, El91–El97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binns, C.; Culling, J.F. The role of fundamental frequency contours in the perception of speech against interfering speech. J. Acoust. Soc. Am. 2007, 122, 1765. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, Y.; Shu, H.; Zhang, L.J.; Zhang, Y. Use of semantic context and F0 contours by older listeners during Mandarin speech recognition in quiet and single-talker interference conditions. J. Acoust. Soc. Am. 2017, 141, El338–El344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernald, A. Making use of semantic context in early language understanding. In Proceedings of the Society for Research in Child Development, Minneapolis, MN, USA, 19–22 April 2001. [Google Scholar]
- Elliott, L.L. Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. J. Acoust. Soc. Am. 1979, 66, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Fallon, M.; Trehub, S.E.; Schneider, B.A. Children’s perception of speech in multitalker babble. J. Acoust. Soc. Am. 2000, 108, 3023–3029. [Google Scholar] [CrossRef] [Green Version]
- Stelmachowicz, P.G.; Hoover, B.M.; Lewis, D.E.; Kortekaas, R.W.; Pittman, A.L. The relation between stimulus context, speech audibility, and perception for normal-hearing and hearing-impaired children. J. Speech Lang. Hear. Res. 2000, 43, 902–914. [Google Scholar] [CrossRef]
- Cole, R.A.; Perfetti, C.A. Listening for mispronunciations m a children’s story: The use of context by children and adults. J. Verbal Learn. Verbal Behav. 1980, 19, 297–315. [Google Scholar] [CrossRef]
- Craig, C.H.; Kim, B.W.; Rhyner, P.M.; Chirillo, T.K. Effects of word predictability, child development, and aging on time-gated speech recognition performance. J. Speech Hear. Res. 1993, 36, 832–841. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Liang, M.; Guan, C.Q.; Zhang, L.; Shu, H.; Zhang, Y. Mandarin-Speaking Children’s Speech Recognition: Developmental Changes in the Influences of Semantic Context and F0 Contours. Front. Psychol. 2017, 8, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfetti, C.A.; Liu, Y.; Tan, L.H. The lexical constituency model: Some implications of research on Chinese for general theories of reading. Psychol. Rev. 2005, 112, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shu, H.; McBride-Chang, C.; Liu, H.Y.; Peng, H. Chinese children’s character recognition: Visuo-orthographic, phonological processing and morphological skills. J. Res. Read. 2012, 35, 287–307. [Google Scholar] [CrossRef]
- Seymour, P.H.K. Early reading development in European orthographies. In The Science of Reading: A Handbook; Snowling, M.J., Hulme, C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 296–315. [Google Scholar]
- Florit, E.; Cain, K. The Simple View of Reading: Is It Valid for Different Types of Alphabetic Orthographies? Educ. Psychol. Rev. 2011, 23, 553–576. [Google Scholar] [CrossRef]
- Garcia, J.R.; Cain, K. Decoding and Reading Comprehension: A Meta-Analysis to Identify Which Reader and Assessment Characteristics Influence the Strength of the Relationship in English. Rev. Educ. Res. 2014, 84, 74–111. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.K.; Ho, C.S.; Chan, D.W.; Tsang, S.M.; Lee, S.H. Contributions of syntactic awareness to reading in Chinese-speaking adolescent readers with and without dyslexia. Dyslexia 2013, 19, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.H.; Lo, J.C.M.; Ho, C.S.H.; Xiao, X.Y.; Chan, D.W. Syntactic and discourse skills in Chinese adolescent readers with dyslexia: A profiling study. Ann. Dyslexia 2014, 64, 222–247. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.H.; Ho, C.S.H.; Chan, D.W.; Tsang, S.M.; Lee, S.H. Cognitive skills and literacy performance of Chinese adolescents with and without dyslexia. Read. Writ. 2011, 24, 835–859. [Google Scholar] [CrossRef] [Green Version]
- Chall, J.S. Stages of Reading Development; McGraw-Hill Book: New York, NY, USA, 1983. [Google Scholar]
- Chen, R.S.; Vellutino, F.R. Prediction of reading ability: A cross-validation study of the simple view of reading. J. Lit. Res. 1997, 29, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Savage, R. Reading comprehension is not always the product of nonsense word decoding and linguistic comprehension: Evidence from teenagers who are extremely poor readers. Sci. Stud. Read. 2006, 10, 143–164. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Das, J.P.; Hayward, D. Revisiting the “simple view of reading” in a group of children with poor reading comprehension. J. Learn. Disabil. 2009, 42, 76–84. [Google Scholar] [CrossRef]
- Yeung, P.S.; Ho, C.S.H.; Chan, D.W.O.; Chung, K.K.H. A componential model of reading in Chinese. Learn. Individ. Differ. 2016, 45, 11–24. [Google Scholar] [CrossRef]
- McCandliss, B.D.; Cohen, L.; Dehaene, S. The visual word form area: Expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 2003, 7, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Zhang, L.J.; Shu, H.; Xi, J.; Wu, H.; Zhang, Y.; Li, P. Universality of categorical perception deficit in developmental dyslexia: An investigation of Mandarin Chinese tones. J. Child Psychol. Psychiatry 2012, 53, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Finn, E.S.; Shen, X.; Holahan, J.M.; Scheinost, D.; Lacadie, C.; Papademetris, X.; Shaywitz, S.E.; Shaywitz, B.A.; Constable, R.T. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity. Biol. Psychiatry 2014, 76, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Protopapas, A.; Parrila, R. Is Dyslexia a Brain Disorder? Brain Sci. 2018, 8, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J. What is Developmental Dyslexia? Brain Sci. 2018, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Lohvansuu, K.; Torppa, M.; Ahonen, T.; Eklund, K.; Hamalainen, J.A.; Leppanen, P.H.T.; Lyytinen, H. Unveiling the Mysteries of Dyslexia-Lessons Learned from the Prospective Jyvaskyla Longitudinal Study of Dyslexia. Brain Sci. 2021, 11, 427. [Google Scholar] [CrossRef]
- Shu, H.; Peng, H.; McBride-Chang, C. Phonological awareness in young Chinese children. Dev. Sci. 2008, 11, 171–181. [Google Scholar] [CrossRef]
- Shu, H.; Chen, X.; Anderson, R.C.; Wu, N.N.; Xuan, Y. Properties of school Chinese: Implications for learning to read. Child Dev. 2003, 74, 27–47. [Google Scholar] [CrossRef]
- Xue, J.; Shu, H.; Li, H.; Li, W.; Tian, X. The stability of literacy-related cognitive contributions to Chinese character naming and reading fluency. J. Psycholinguist. Res. 2013, 42, 433–450. [Google Scholar] [CrossRef]
- Xia, Z.C.; Hoeft, F.; Zhang, L.J.; Shu, H. Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation. Neuropsychologia 2016, 81, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Studebaker, G.A. A “rationalized” arcsine transform. J. Speech Hear. Res. 1985, 28, 455–462. [Google Scholar] [CrossRef]
- Moll, K.; Fussenegger, B.; Willburger, E.; Landerl, K. RAN is not a measure of orthographic processing. Evidence from the asymmetric German orthography. Sci. Stud. Read. 2009, 13, 1–25. [Google Scholar] [CrossRef]
- Xia, Z.C.; Zhang, L.J.; Hoeft, F.; Gu, B.; Gong, G.L.; Shu, H. Neural correlates of oral word reading, silent reading comprehension, and cognitive subcomponents. Int. J. Behav. Dev. 2018, 42, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Johnston, T.C.; Kirby, J.R. The contribution of naming speed to the simple view of reading. Read. Writ. 2006, 19, 339–361. [Google Scholar] [CrossRef]
- Joshi, R.M.; Tao, S.; Aaron, P.G.; Quiroz, B. Cognitive component of componential model of reading applied to different orthographies. J. Learn. Disabil. 2012, 45, 480–486. [Google Scholar] [CrossRef]
- Ho, C.S.H.; Zheng, M.; McBride, C.; Hsu, L.S.J.; Waye, M.M.Y.; Kwok, J.C.Y. Examining an extended simple view of reading in Chinese: The role of naming efficiency for reading comprehension. Contemp. Educ. Psychol. 2017, 51, 293–302. [Google Scholar] [CrossRef]
- Shu, H.; McBride-Chang, C.; Wu, S.; Liu, H.Y. Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. J. Educ. Psychol. 2006, 98, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Chik, P.P.M.; Ho, C.S.H.; Yeung, P.S.; Chan, D.W.O.; Chung, K.K.H.; Luan, H.; Lo, L.Y.; Lau, W.S.Y. Syntactic skills in sentence reading comprehension among Chinese elementary school children. Read. Writ. 2012, 25, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S.; Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Xia, Z.; Yang, J.; Shu, H.; Li, P. The Relationship between Intrinsic Couplings of the Visual Word Form Area with Spoken Language Network and Reading Ability in Children and Adults. Front. Hum. Neurosci. 2017, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Lyon, G.R.; Shaywitz, S.E.; Shaywitz, B.A. A definition of dyslexia. Ann. Dyslexia 2003, 53, 1–14. [Google Scholar] [CrossRef]
- Peelle, J.E.; Davis, M.H. Neural oscillations carry speech rhythm through to comprehension. Front. Psychol. 2012, 3, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, E. The Oscillatory Nature of Language; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Goswami, U. A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Lang. Linguist. Compass 2019, 13, e12328. [Google Scholar] [CrossRef]
- Kosem, A.; van Wassenhove, V. Distinct contributions of low- and high-frequency neural oscillations to speech comprehension. Lang. Cogn. Neurosci. 2017, 32, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Meyer, L. The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. Eur. J. Neurosci. 2018, 48, 2609–2621. [Google Scholar] [CrossRef]
- Prystauka, Y.; Lewis, A.G. The power of neural oscillations to inform sentence comprehension: A linguistic perspective. Lang. Linguist. Compass 2019, 13, e12347. [Google Scholar] [CrossRef]
- Bastiaansen, M.; Hagoort, P. Frequency-based Segregation of Syntactic and Semantic Unification during Online Sentence Level Language Comprehension. J. Cognit. Neurosci. 2015, 27, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- Kujala, J.; Pammer, K.; Cornelissen, P.; Roebroeck, A.; Formisano, E.; Salmelin, R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb. Cortex 2007, 17, 1476–1485. [Google Scholar] [CrossRef] [Green Version]
Measures | M | Range | SD |
---|---|---|---|
Chinese character decoding | 137 | 118–148 | 7.07 |
Recognition of speech with normal F0 contours | 0.93 | 0.31–1 | 0.12 |
Recognition of speech with flattened F0 contours | 0.80 | 0.23–1 | 0.14 |
Reading comprehension | 74.51 | 46–91 | 9.57 |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1. Chinese character decoding | - | |||
2. Recognition of speech with normal F0 contours a | 0.126 | - | ||
3. Recognition of speech with flattened F0 contours a | 0.362 ** | 0.547 *** | - | |
4. Reading comprehension | 0.384 *** | 0.182 | 0.39 ** | - |
Reading Comprehension | |||
---|---|---|---|
Step | Variables | R2 | ΔR2 |
1 | Age | 0.112 | 0.112 * |
Sex | |||
A | |||
2 | Chinese character decoding | 0.243 | 0.131 *** |
3 | Recognition of speech with normal F0 contours a | 0.252 | 0.009 |
B | |||
2 | Recognition of speech with normal F0 contours a | 0.135 | 0.023 |
3 | Chinese character decoding | 0.252 | 0.117 *** |
C | |||
2 | Chinese character decoding × Recognition of speech with normal F0 contours a | 0.219 | 0.106 ** |
Reading Comprehension | |||
---|---|---|---|
Step | Variables | R2 | ΔR2 |
1 | Age | 0.112 | 0.112 * |
Sex | |||
A | |||
2 | Chinese character decoding | 0.243 | 0.131 *** |
3 | Recognition of speech with flattened F0 contours a | 0.275 | 0.032 Ψ |
B | |||
2 | Recognition of speech with flattened F0 contours a | 0.200 | 0.088 ** |
3 | Chinese character decoding | 0.275 | 0.074 ** |
C | |||
2 | Chinese character decoding × Recognition of speech with flattened F0 contours a | 0.261 | 0.148 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xing, H.; Zhang, L.; Shu, H.; Zhang, Y. How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models. Brain Sci. 2021, 11, 830. https://doi.org/10.3390/brainsci11070830
Li Y, Xing H, Zhang L, Shu H, Zhang Y. How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models. Brain Sciences. 2021; 11(7):830. https://doi.org/10.3390/brainsci11070830
Chicago/Turabian StyleLi, Yu, Hongbing Xing, Linjun Zhang, Hua Shu, and Yang Zhang. 2021. "How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models" Brain Sciences 11, no. 7: 830. https://doi.org/10.3390/brainsci11070830
APA StyleLi, Y., Xing, H., Zhang, L., Shu, H., & Zhang, Y. (2021). How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models. Brain Sciences, 11(7), 830. https://doi.org/10.3390/brainsci11070830