Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation
Abstract
:1. Introduction
2. Age-Related Changes in Sleep Organization and Structure
2.1. Sleep Timing
2.2. Sleep Duration
2.3. Sleep Initiation and Maintenance
2.4. Macro-Architecture/Sleep Stages
2.5. Micro-Architecture/Sleep Patterns
2.5.1. Whole-Sleep EEG Power Spectral Density
2.5.2. Slow Wave Activity (SWA 0.5–4.5 Hz) in NREM Sleep
2.5.3. Sigma Activity (11–16 Hz) and Sleep Spindles in NREM Sleep
3. Sleep Regulation: Interaction between Circadian and Homeostatic Drive
3.1. Circadian Drive
3.2. Sleep Homeostatic Drive
3.3. Sleep/Wake Regulation
3.4. Circadian Pacemaker and Rhythms
3.5. Sleep/Wake Regulation
4. Daytime Sleepiness and Vulnerability to Sleep Deprivation
4.1. Daytime Sleepiness
4.2. Vulnerability to Sleep Deprivation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crowley, K. Sleep and sleep disorders in older adults. Neuropsychol. Rev. 2011, 21, 41–53. [Google Scholar] [CrossRef]
- Patel, D.; Steinberg, J.; Patel, P. Insomnia in the elderly: A review. J. Clin. Sleep Med. 2018, 14, 1017–1024. [Google Scholar] [CrossRef]
- Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
- Carrier, J.; Semba, K.; Deurveilher, S.; Drogos, L.; Cyr-Cronier, J.; Lord, C.; Sekerovick, Z. Sex differences in age-related changes in the sleep-wake cycle. Front. Neuroendocrinol. 2017, 47, 66–85. [Google Scholar] [CrossRef]
- Jonasdottir, S.S.; Minor, K.; Lehmann, S. Gender differences in nighttime sleep patterns and variability across the adult lifespan: A global-scale wearables study. Sleep 2020, 44, zsaa169. [Google Scholar] [CrossRef]
- Duffy, J.F.; Dijk, D.-J.; Klerman, E.B.; Czeisler, C.A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275 Pt 2, R1478–R1487. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Juda, M.; Kantermann, T.; Allebrandt, K.; Gordijn, M.; Merrow, M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, D.; Lombardi, D.A.; Wellman-Marucci, H.; Roenneberg, T. Chronotypes in the Us—Influence of Age and Sex. Sleep 2017, 40, A59. [Google Scholar] [CrossRef] [Green Version]
- Merikanto, I.; Kronholm, E.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Partonen, T. Circadian preference links to depression in general adult population. J. Affect. Disord. 2015, 188, 143–148. [Google Scholar] [CrossRef]
- Didikoglu, A.; Maharani, A.; Tampubolon, G.; Canal, M.M.; Payton, A.; Pendleton, N. Longitudinal sleep efficiency in the elderly and its association with health. J. Sleep Res. 2019, 29, e12898. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Adams Hillard, P.J.; Katz, E.S.; et al. National sleep foundation’s updated sleep duration recommendations: Final report. Sleep Health 2015, 1, 233–243. [Google Scholar] [CrossRef]
- Mander, B.A.; Rao, V.; Lu, B.; Saletin, J.M.; Lindquist, J.R.; Ancoli-Israel, S.; Jagust, W.; Walker, M.P. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 2013, 16, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Sivertsen, B.; Pallesen, S.; Friborg, O.; Nilsen, K.B.; Bakke, O.K.; Goll, J.B.; Hopstock, L.A. Sleep patterns and insomnia in a large population-based study of middle-aged and older adults: The tromso study 2015–2016. J. Sleep Res. 2021, 30, e13095. [Google Scholar] [CrossRef]
- Luca, G.; Haba-Rubio, J.; Andries, D.; Tobback, N.; Vollenweider, P.; Waeber, G.; Marques-Vidal, P.; Preisig, M.; Heinzer, R.; Tafti, M. Age and gender variations of sleep in subjects without sleep disorders. Ann. Med. 2015, 47, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Moraes, W.; Piovezan, R.; Poyares, D.; Bittencourt, L.; Santos-Silva, R.; Tufik, S. Effects of aging on sleep structure throughout adulthood: A population-based study. Sleep Med. 2014, 15, 401–409. [Google Scholar] [CrossRef]
- Djonlagic, I.; Mariani, S.; Fitzpatrick, A.L.; Van Der Klei, V.M.G.T.H.; Johnson, D.A.; Wood, A.C.; Seeman, T.; Nguyen, H.T.; Prerau, M.J.; Luchsinger, J.A.; et al. Macro and micro sleep architecture and cognitive performance in older adults. Nat. Hum. Behav. 2021, 5, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Floyd, J.A.; Medler, S.M.; Ager, J.W.; Janisse, J.J. Age-related changes in initiation and maintenance of sleep: A meta-analysis. Res. Nurs. Health 2000, 23, 106–117. [Google Scholar] [CrossRef]
- Klerman, E.B.; Davis, J.B.; Duffy, J.F.; Dijk, D.-J.; Kronauer, R.E. Older people awaken more frequently but fall back asleep at the same rate as younger people. Sleep 2004, 27, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klerman, E.B.; Wang, W.; Duffy, J.F.; Dijk, D.-J.; Czeisler, C.A.; Kronauer, R.E. Survival analysis indicates that age-related decline in sleep continuity occurs exclusively during NREM sleep. Neurobiol. Aging 2013, 34, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000, 284, 861–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redline, S.; Kirchner, H.L.; Quan, S.F.; Gottlieb, D.J.; Kapur, V.; Newman, A. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch. Intern. Med. 2004, 164, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. Eeg Arousal Norms by Age. J. Clin. Sleep Med. 2007, 3, 271–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlemmer, A.; Parlitz, U.; Luther, S.; Wessel, N.; Penzel, T. Changes of sleep-stage transitions due to ageing and sleep disorder. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140093. [Google Scholar] [CrossRef]
- Dijk, D.-J.; Groeger, J.; Stanley, N.; Deacon, S. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep 2010, 33, 211–223. [Google Scholar] [CrossRef]
- Floyd, J.A.; Janisse, J.J.; Jenuwine, E.S.; Ager, J.W. Changes in REM-sleep percentage over the adult lifespan. Sleep 2007, 30, 829–836. [Google Scholar] [CrossRef]
- Dijk, D.J.; Beersma, D.G.; Van Den Hoofdakker, R.H. All night spectral analysis of EEG sleep in young adult and middle-aged male subjects. Neurobiol. Aging 1989, 10, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Dijk, D.J.; Duffy, J.F.; Riel, E.; Shanahan, T.L.; Czeisler, C.A. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J. Physiol. 1999, 516 Pt 2, 611–627. [Google Scholar] [CrossRef]
- Carrier, J.; Land, S.; Buysse, D.J.; Kupfer, D.J.; Monk, T.H. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 2001, 38, 232–242. [Google Scholar] [CrossRef]
- Landolt, H.-P.; Borbély, A.A. Age-dependent changes in sleep EEG topography. Clin. Neurophysiol. 2001, 112, 369–377. [Google Scholar] [CrossRef]
- Carrier, J.; Viens, I.; Poirier, G.; Robillard, R.; Lafortune, M.; Vandewalle, G.; Martin, N.; Barakat, M.; Paquet, J.; Filipini, D. Sleep slow wave changes during the middle years of life. Eur. J. Neurosci. 2011, 33, 758–766. [Google Scholar] [CrossRef]
- Dubé, J.; LaFortune, M.; Bedetti, C.; Bouchard, M.; Gagnon, J.F.; Doyon, J.; Evans, A.C.; Lina, J.-M.; Carrier, J. Cortical Thinning Explains Changes in Sleep Slow Waves during Adulthood. J. Neurosci. 2015, 35, 7795–7807. [Google Scholar] [CrossRef] [Green Version]
- De Gennaro, L.; Ferrara, M. Sleep spindles: An overview. Sleep Med. Rev. 2003, 7, 423–440. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Mander, B.A.; Jagust, W.J.; Knight, R.T.; Walker, M.P. Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 2018, 97, 221–230.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, K.; Trinder, J.; Kim, Y.; Carrington, M.J.; Colrain, I.M. The effects of normal aging on sleep spindle and K-complex production. Clin. Neurophysiol. 2002, 113, 1615–1622. [Google Scholar] [CrossRef]
- Mander, B.; Rao, V.; Lu, B.; Saletin, J.; Ancoli-Israel, S.; Jagust, W.J.; Walker, M.P. Impaired Prefrontal Sleep Spindle Regulation of Hippocampal-Dependent Learning in Older Adults. Cereb. Cortex 2014, 24, 3301–3309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.L.; Dzierzewski, J.M.; Mitchell, M.; Fung, C.H.; Jouldjian, S.; Alessi, C.A. Patterns of sleep quality during and after postacute rehabilitation in older adults: A latent class analysis approach. J. Sleep Res. 2013, 22, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.M.; Manoach, D.S.; Demanuele, C.; Cade, B.; Mariani, S.; Cox, R.; Panagiotaropoulou, G.; Saxena, R.; Pan, J.Q.; Smoller, J.W.; et al. Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource. Nat. Commun. 2017, 8, 15930. [Google Scholar] [CrossRef] [Green Version]
- Mander, B.A.; Zhu, A.; Lindquist, J.R.; Villeneuve, S.; Rao, V.; Lu, B.; Saletin, J.M.; Ancoli-Israel, S.; Jagust, W.; Walker, M.P. Degeneration of white matter pathways in older adults explains the failure of sleep spindles to promote motor memory consolidation. Sleep 2016, 39, A22. [Google Scholar]
- Fernandez, L.M.J.; Lüthi, A. Sleep Spindles: Mechanisms and Functions. Physiol. Rev. 2020, 100, 805–868. [Google Scholar] [CrossRef]
- Gagnon, J.-F.; Lafreniere, A.; Rauchs, G.; Petit, D.; Carrier, J. Chapter 45: Sleep in Normal Aging, Alzheimer’s Disease, and Mild Cognitive Impairment. In Handbook of Behavioral Neuroscience; Dringenberg, H.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 677–692. [Google Scholar]
- Taillard, J.; Sagaspe, P.; Berthomier, C.; Brandewinder, M.; Amieva, H.; Dartigues, J.-F.; Rainfray, M.; Harston, S.; Micoulaud-Franchi, J.-A.; Philip, P. Non-REM Sleep Characteristics Predict Early Cognitive Impairment in an Aging Population. Front. Neurol. 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Dijk, D.J.; von Schantz, M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J. Biol. Rhythm. 2005, 20, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Cain, S.W.; Chang, A.M.; Phillips, A.J.; Münch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.J.; Wright, K.P., Jr.; Czeisler, C.A. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 3), 15602–15608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschoff, J. Exogenous and Endogenous Components in Circadian Rhythms. Cold Spring Harb. Symp. Quant. Biol. 1960, 25, 11–28. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Richardson, G.S.; Zimmerman, J.C.; Moore-Ede, M.C.; Weitzman, E.D. Entrainment of human circadian rhythms by light-dark cycles: A reassessment. Photochem. Photobiol. 1981, 34, 239–247. [Google Scholar] [CrossRef]
- Prayag, A.S.; Najjar, R.P.; Gronfier, C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J. Pineal Res. 2019, 66, e12562. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Goto, M.; Menaker, M. No Evidence for Extraocular Photoreceptors in the Circadian System of the Syrian Hamster. J. Biol. Rhythm. 1999, 14, 197–201. [Google Scholar] [CrossRef]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.N.; Saafir, T.B.; Tosini, G. The role of retinal photoreceptors in the regulation of circadian rhythms. Rev. Endocrinol. Metab. Disord. 2009, 10, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Mistlberger, R.E.; Skene, D.J. Nonphotic Entrainment in Humans? J. Biol. Rhythm. 2005, 20, 339–352. [Google Scholar] [CrossRef]
- Barger, L.K.; Wright, K.P., Jr.; Hughes, R.J.; Czeisler, C.A. Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R1077–R1084. [Google Scholar] [CrossRef] [Green Version]
- Borbély, A.A.; Baumann, F.; Brandeis, D.; Strauch, I.; Lehmann, D. Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 1981, 51, 483–493. [Google Scholar] [CrossRef]
- Porkka-Heiskanen, T.; Strecker, R.E.; Thakkar, M.; Bjørkum, A.A.; Greene, R.W.; McCarley, R.W. Adenosine: A mediator of the sleep-inducing effects of prolonged wakefulness. Science 1997, 276, 1265–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landolt, H.P. Sleep Homeostasis: A Role for Adenosine in Humans? Biochem. Pharmacol. 2008, 75, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Bjorness, T.E.; Greene, R.W. Adenosine and Sleep. Curr. Neuropharmacol. 2009, 7, 238–245. [Google Scholar] [CrossRef]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar]
- Phillips, A.J.K.; Robinson, P.A. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J. Biol. Rhythm. 2007, 22, 167–179. [Google Scholar] [CrossRef]
- Fulcher, B.; Phillips, A.J.; Postnova, S.; Robinson, P.A. A physiologically based model of orexinergic stabilization of sleep and wak. PLoS ONE 2014, 9, e91982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaides, N.C.; Vgontzas, A.N.; Kritikou, I.; Chrousos, G. HPA Axis and Sleep; NCBI: South Dartmouth, MA, USA.
- Nakamura, T.J.; Takasu, N.N.; Nakamura, W. The suprachiasmatic nucleus: Age-related decline in biological rhythms. J. Physiol. Sci. 2016, 66, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Banks, G.; Nolan, P.M.; Peirson, S.N. Reciprocal interactions between circadian clocks and aging. Mamm. Genome 2016, 27, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; Amir, S. The aging clock: Circadian rhythms and later life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef]
- Duffy, J.F.; Scheuermaier, K.; Loughlin, K.R. Age-related sleep disruption and reduction in the circadian rhythm of urine output: Contribution to nocturia? Curr. Aging Sci. 2016, 9, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeitzer, J.M.; Daniels, J.E.; Duffy, J.F.; Klerman, E.B.; Shanahan, T.L.; Dijk, D.J.; Czeisler, C.A. Do plasma melatonin concentrations decline with age? Am. J. Med. 1999, 107, 432–436. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Duffy, J.F.; Shanahan, T.L.; Brown, E.N.; Mitchell, J.; Rimmer, D.W.; Ronda, J.M.; Silva, E.J.; Allan, J.S.; Emens, J.S.; et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999, 284, 2177–2181. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Logan, R.W.; Ma, T.; Lewis, D.; Tseng, G.C.; Sibille, E.; McClung, C.A. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2015, 113, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Monk, T.H. Aging human circadian rhythms: Conventional wisdom may not always be right. J. Biol. Rhythm. 2005, 20, 366–374. [Google Scholar] [CrossRef]
- Duffy, J.F.; Zeitzer, J.M.; Czeisler, C.A. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol. Aging 2007, 28, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.F.; Zeitzer, J.M.; Rimmer, D.W.; Klerman, E.B.; Dijk, D.-J.; Czeisler, C.A. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E297–E303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munch, M.; Knoblauch, V.; Blatter, K.; Wirz-Justice, A.; Cajochen, C. Is Homeostatic Sleep Regulation Under Low Sleep Pressure Modified by Age? Sleep 2007, 30, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Franken, P. A role for clock genes in sleep homeostasis. Curr. Opin. Neurobiol. 2013, 23, 864–872. [Google Scholar] [CrossRef]
- Skeldon, A.C.; Derks, G.; Dijk, D.J. Modelling changes in sleep timing and duration across the lifespan: Changes in circadian rhythmicity or sleep homeostasis? Sleep Med. Rev. 2016, 28, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Dijk, D.J.; Lockley, S.W. Integration of human sleep-wake regulation and circadian rhythmicity. J. Appl. Physiol. 1985 2002, 92, 852–862. [Google Scholar] [PubMed] [Green Version]
- Pigarev, I.N. The visceral theory of sleep. Neurosci. Behav. Physiol. 2014, 44, 421–434. [Google Scholar] [CrossRef]
- Pigarev, I.N.; Pigareva, M.L. Sleep, emotions and the visceral control. Hum. Physiol. 2013, 39, 590–601. [Google Scholar] [CrossRef]
- Dijk, D.-J.; Duffy, J.F.; Czeisler, C.A. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol. Int. 2000, 17, 285–311. [Google Scholar] [CrossRef]
- Najjar, R.; Zeitzer, J.M. Temporal integration of light flashes by the human circadian system. J. Clin. Investig. 2016, 126, 938–947. [Google Scholar] [CrossRef]
- Najjar, R.P.; Chiquet, C.; Teikari, P.; Cornut, P.L.; Claustrat, B.; Denis, P.; Cooper, H.M.; Gronfier, C. Aging of non-visual spectral sensitivity to light in humans: Compensatory mechanisms? PLoS ONE 2014, 9, e85837. [Google Scholar] [CrossRef] [Green Version]
- Teikari, P.; Najjar, R.; Knoblauch, K.; Dumortier, D.; Cornut, P.-L.; Denis, P.; Cooper, H.M.; Gronfier, C. Refined flicker photometry technique to measure ocular lens density. J. Opt. Soc. Am. A 2012, 29, 2469–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aujard, F.; Cayetanot, F.; Bentivoglio, M.; Perret, M. Age-Related Effects on the Biological Clock and its Behavioral Output in a Primate. Chronobiol. Int. 2006, 23, 451–460. [Google Scholar] [CrossRef]
- Cayetanot, F.; Bentivoglio, M.; Aujard, F. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate. Eur. J. Neurosci. 2005, 22, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.; Swaab, D. Living by the clock: The circadian pacemaker in older people. Ageing Res. Rev. 2006, 5, 33–51. [Google Scholar] [CrossRef]
- Gibson, E.M.; Williams, W.P., 3rd; Kriegsfeld, L.J. Aging in the circadian system: Considerations for health, disease prevention and longevity. Exp. Gerontol. 2009, 44, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef]
- Kunz, D.; Schmitz, S.; Mahlberg, R.; Mohr, A.; Stöter, C.; Wolf, K.-J.; Herrmann, W.M. A New Concept for Melatonin Deficit: On Pineal Calcification and Melatonin Excretion. Neuropsychopharmacology 1999, 21, 765–772. [Google Scholar] [CrossRef]
- Benloucif, S.; Green, K.; L’Hermite-Balériaux, M.; Weintraub, S.; Wolfe, L.; Zee, P. Responsiveness of the aging circadian clock to light. Neurobiol. Aging 2006, 27, 1870–1879. [Google Scholar] [CrossRef] [Green Version]
- Daneault, V.; Vandewalle, G.; Hebert, M.; Teikari, P.; Mure, L.S.; Doyon, J.; Gronfier, C.; Cooper, H.M.; Dumont, M.; Carrier, J. Does pupil constriction under blue and green monochromatic light exposure change with age? J. Biol. Rhythm. 2012, 27, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Daneault, V.; Hébert, M.; Albouy, G.; Doyon, J.; Dumont, M.; Carrier, J.; Vandewalle, G. Aging Reduces the Stimulating Effect of Blue Light on Cognitive Brain Functions. Sleep 2014, 37, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münch, M.; Scheuermaier, K.; Zhang, R.; Dunne, S.; Guzik, A.; Silva, E.; Ronda, J.; Duffy, J. Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects. Behav. Brain Res. 2011, 224, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.L.; Somerenbc, E.J.; Mainsterad, M.A. The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery. Sleep Med. Rev. 2010, 14, 269–280. [Google Scholar] [CrossRef]
- Freund, P.R.; Watson, J.; Gilmour, G.S.; Gaillard, F.; Sauve, Y. Differential changes in retina function with normal aging in humans. Doc. Ophthalmol. 2011, 122, 177–190. [Google Scholar] [CrossRef]
- Gerth, C.; Garcia, S.M.; Ma, L.; Keltner, J.L.; Werner, J.S. Multifocal electroretinogram: Age-related changes for different luminance levels. Graefe Arch. Clin. Exp. Ophthalmol. 2002, 240, 202–208. [Google Scholar] [CrossRef]
- Bitsios, P.; Prettyman, R.; Szabadi, E. Changes in autonomic function with age: A study of pupillary kinetics in healthy young and old people. Age Ageing 1996, 25, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Sample, P.A.; Esterson, F.D.; Weinreb, R.N.; Boynton, R.M. The aging lens: In vivo assessment of light absorption in 84 human eyes. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1306–1311. [Google Scholar]
- Van Norren, D.; Van De Kraats, J. Spectral transmission of intraocular lenses expressed as a virtual age. Br. J. Ophthalmol. 2007, 91, 1374–1375. [Google Scholar] [CrossRef] [Green Version]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [Green Version]
- Charman, W.N. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol. Opt. 2003, 23, 181–187. [Google Scholar] [CrossRef]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261. [Google Scholar] [CrossRef]
- Brown, T.M. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J. Pineal Res. 2020, 69, e12655. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.; Anderson, C.; Rajaratnam, S.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Benloucif, S.; Reid, K.J.; Weintraub, S.; Kennedy, N.; Wolfe, L.F.; Zee, P.C. Phase-shifting response to light in older adults. J. Physiol. 2014, 592, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Klerman, E.; Duffy, J.; Dijk, D.-J.; Czeisler, C. Circadian phase resetting in older people by ocular bright light exposure. J. Investig. Med. 2001, 49, 30–40. [Google Scholar] [CrossRef]
- Herljevic, M.; Middleton, B.; Thapan, K.; Skene, D. Light-induced melatonin suppression: Age-related reduction in response to short wavelength light. Exp. Gerontol. 2005, 40, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Sletten, T.; Revell, V.L.; Middleton, B.; Lederle, K.A.; Skene, D. Age-related changes in acute and phase-advancing responses to monochromatic light. J. Biol. Rhythm. 2009, 24, 73–84. [Google Scholar] [CrossRef]
- Zeitzer, J.; Dijk, D.; Kronauer, R.E.; Brown, E.N.; Czeisler, C.A. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526, 695–702. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Khalsa, S.B.; Boivin, D.B.; Duffy, J.F.; Shanahan, T.L.; Kronauer, R.E.; Czeisler, C.A. Temporal dynamics of late-night photic stimulation of the human circadian timing system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R839–R844. [Google Scholar] [CrossRef] [Green Version]
- Cajochen, C.; Zeitzer, J.M.; Czeisler, C.A.; Dijk, D.-J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000, 115, 75–83. [Google Scholar] [CrossRef]
- Prayag, A.S.; Jost, S.; Avouac, P.; Dumortier, D.; Gronfier, C. Dynamics of non-visual responses in humans: As fast as lightning? Front. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef]
- Chang, A.-M.; Santhi, N.; Hilaire, M.S.; Gronfier, C.; Bradstreet, D.S.; Duffy, J.F.; Lockley, S.W.; Kronauer, R.E.; Czeisler, C.A. Human responses to bright light of different durations. J. Physiol. 2012, 590, 3103–3112. [Google Scholar] [CrossRef] [Green Version]
- Najjar, R.P.; Teikari, P.; Cornut, P.L.; Claustrat, B.; Denis, P.; Cooper, H.M.; Gronfier, C. Non-visual photoresponses in the aged: Time course of spectral sensitivity. J. Sleep Res. 2012, 21 (Suppl. 1), 35. [Google Scholar] [CrossRef]
- Yoon, I.-Y.; Kripke, D.F.; Elliott, J.A.; Youngstedt, S.D.; Rex, K.M.; Hauger, R.L. Age-related changes of circadian rhythms and sleep-wake cycles. J. Am. Geriatr. Soc. 2003, 51, 1085–1091. [Google Scholar] [CrossRef]
- Strogatz, S.H.; Beersma, D.G.; Enright, J.T.; Gander, P.H. The mathematical structure of the human sleep-wake cycle. J. Biol. Rhythm. 1987, 2, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Münch, M.; Knoblauch, V.; Blatter, K.; Schröder, C.; Schnitzler, C.; Kräuchi, K.; Wirz-Justice, A.; Cajochen, C. Age-related attenuation of the evening circadian arousal signal in humans. Neurobiol. Aging 2005, 26, 1307–1319. [Google Scholar] [CrossRef]
- Schmidt, C.; Peigneux, P.; Cajochen, C. Age-related changes in sleep and circadian rhythms: Impact on cognitive performance and underlying neuroanatomical networks. Front. Neurol. 2012, 3, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, J.F.; Willson, H.J.; Wang, W.; Czeisler, C.A. Healthy older adults better tolerate sleep deprivation than young adults. J. Am. Geriatr. Soc. 2009, 57, 1245–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.J.; Wang, W.; Ronda, J.M.; Wyatt, J.K.; Duffy, J.F. Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults. Sleep 2010, 33, 481–490. [Google Scholar] [CrossRef]
- Li, J.; Vitiello, M.V.; Gooneratne, N.S. Sleep in Normal Aging. Sleep Med. Clin. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Doran, S.M.; Van Dongen, H.P.; Dinges, D.F. Sustained attention performance during sleep deprivation: Evidence of state instability. Arch. Ital. Biol. 2001, 139, 253–267. [Google Scholar]
- Van Dongen, H.P.A.; Dinges, D.F. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance. J. Sleep Res. 2003, 12, 181–187. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. Sleep loss in aging. Clin. Geriatr. Med. 1989, 5, 405–420. [Google Scholar] [CrossRef]
- Brendel, D.H.; Reynolds, C.F.; Jennings, J.R., 3rd; Hoch, C.C.; Monk, T.H.; Berman, S.R.; Hall, F.T.; Buysse, D.J.; Kupfer, D.J. Sleep stage physiology, mood, and vigilance responses to total sleep deprivation in healthy 80-year-olds and 20-year-olds. Psychophysiology 1990, 27, 677–685. [Google Scholar] [CrossRef]
- Reynolds, C.F.; Jennings, J.R., 3rd; Hoch, C.C.; Monk, T.H.; Berman, S.R.; Hall, F.T.; Matzzie, J.V.; Buysse, D.J.; Kupfer, D.J. Daytime sleepiness in the healthy “old old”: A comparison with young adults. J. Am. Geriatr. Soc. 1991, 39, 957–962. [Google Scholar]
- Smulders, F.; Kenemans, J.; Jonkman, L.; Kok, A. The effects of sleep loss on task performance and the electroencephalogram in young and elderly subjects. Biol. Psychol. 1997, 45, 217–239. [Google Scholar] [CrossRef]
- Adam, M.; Rétey, J.V.; Khatami, R.; Landolt, H.-P. Age-related changes in the time course of vigilant attention during 40 hours without sleep in men. Sleep 2006, 29, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Blatter, K.; Graw, P.; Münch, M.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav. Brain Res. 2006, 168, 312–317. [Google Scholar] [CrossRef]
- Lowden, A.; Anund, A.; Kecklund, G.; Peters, B.; Åkerstedt, T. Wakefulness in young and elderly subjects driving at night in a car simulator. Accid. Anal. Prev. 2009, 41, 1001–1007. [Google Scholar] [CrossRef]
- Filtness, A.J.; Reyner, L.A.; Horne, J.A. Driver sleepiness—Comparisons between young and older men during a monotonous afternoon simulated drive. Biol. Psychol. 2012, 89, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaspe, P.; Taillard, J.; Amieva, H.; Beck, A.; Rascol, O.; Dartigues, J.-F.; Capelli, A.; Philip, P. Influence of Age, Circadian and Homeostatic Processes on Inhibitory Motor Control: A Go/Nogo Task Study. PLoS ONE 2012, 7, e39410. [Google Scholar] [CrossRef] [Green Version]
- Scullin, M.K.; Bliwise, D.L. Sleep, cognition, and normal aging: Integrating a half century of multidisciplinary research. Perspect. Psychol. Sci. 2015, 10, 97–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philip, P.; Taillard, J.; Sagaspe, P.; Valtat, C.; Sanchez-Ortuno, M.; Moore, N.; Charles, A.; Bioulac, B. Age, performance and sleep deprivation. J. Sleep Res. 2004, 13, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Salthouse, T.A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Cajochen, C.; Münch, M.; Knoblauch, V.; Blatter, K.; Wirz-Justice, A. Age-related Changes in the Circadian and Homeostatic Regulation of Human Sleep. Chronobiol. Int. 2006, 23, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Mongrain, V.; Carrier, J.; Dumont, M. Difference in sleep regulation between morning and evening circadian types as indexed by antero-posterior analyses of the sleep EEG. Eur. J. Neurosci. 2006, 23, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Viola, A.U.; Archer, S.N.; James, L.M.; Groeger, J.A.; Lo, J.C.; Skene, D.J.; von Schantz, M.; Dijk, D.J. Per3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 2007, 17, 613–618. [Google Scholar] [CrossRef]
- Drapeau, C.; Carrier, J. Fluctuation of Waking Electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects. Sleep 2004, 27, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Urrila, A.; Stenuit, P.; Huhdankoski, O.; Kerkhofs, M.; Porkkaheiskanen, T. Psychomotor vigilance task performance during total sleep deprivation in young and postmenopausal women. Behav. Brain Res. 2007, 180, 42–47. [Google Scholar] [CrossRef]
- Groeger, J.A.; Stanley, N.; Deacon, S.; Dijk, D.-J. Dissociating effects of global SWS disruption and healthy aging on waking performance and daytime sleepiness. Sleep 2014, 37, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.T. On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychol. Bull. 2000, 126, 220–246. [Google Scholar] [CrossRef]
- Harrison, Y.; Horne, J.A. The impact of sleep deprivation on decision making: A review. J. Exp. Psychol. Appl. 2000, 6, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Harrison, Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med. Rev. 2001, 5, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Muzur, A.; Pace-Schott, E.F.; Hobson, J. The prefrontal cortex in sleep. Trends Cogn. Sci. 2002, 6, 475–481. [Google Scholar] [CrossRef]
- Blatter, K.; Opwis, K.; Münch, M.; Cajochen, C.; Wirz-Justice, A. Sleep loss-related decrements in planning performance in healthy elderly depend on task difficulty. J. Sleep Res. 2005, 14, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Chuah, Y.M.L.; Venkatraman, V.; Dinges, D.F.; Chee, M.W.L. The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation. J. Neurosci. 2006, 26, 7156–7162. [Google Scholar] [CrossRef] [PubMed]
- Drummond, S.P.A.; Paulus, M.P.; Tapert, S.F. Effects of two nights sleep deprivation and two nights recovery sleep on response inhibition. J. Sleep Res. 2006, 15, 261–265. [Google Scholar] [CrossRef]
- Sagaspe, P.; Charles, A.; Taillard, J.; Bioulac, B.; Philip, P. Inhibition and working memory: Effect of acute sleep deprivation on a random letter generation task. Can. J. Exp. Psychol. 2003, 57, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaspe, P.; Sanchez-Ortuno, M.; Charles, A.; Taillard, J.; Valtat, C.; Bioulac, B.; Philip, P. Effects of sleep deprivation on Color-Word, Emotional, and Specific Stroop interference and on self-reported anxiety. Brain Cogn. 2006, 60, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.M.; Whitney, P.; Belenky, G.; Hinson, J.; Van Dongen, H.P. Effects of sleep deprivation on dissociated components of executive functioning. Sleep 2010, 33, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blatter, K.; Cajochen, C. Circadian rhythms in cognitive performance: Methodological constraints, protocols, theoretical underpinnings. Physiol. Behav. 2007, 90, 196–208. [Google Scholar] [CrossRef]
- Dijk, D.-J.; Duffy, J.F.; Czeisler, C.A. Age-Related Increase in Awakenings: Impaired consolidation of NonREM sleep at all circadian phases. Sleep 2001, 24, 565–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Collette, F.; Leclercq, Y.; Sterpenich, V.; Vandewalle, G.; Berthomier, P.; Berthomier, C.; Phillips, C.; Tinguely, G.; Darsaud, A.; et al. Homeostatic Sleep Pressure and Responses to Sustained Attention in the Suprachiasmatic Area. Science 2009, 324, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Kostin, A.; Alam, M.A.; McGinty, D.; Alam, M.N. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021, 44. [Google Scholar] [CrossRef] [PubMed]
- Hodges, E.; Ashpole, N.M. Aging circadian rhythms and cannabinoids. Neurobiol. Aging 2019, 79, 110–118. [Google Scholar] [CrossRef]
- Cain, S.W.; Silva, E.J.; Chang, A.M.; Ronda, J.M.; Duffy, J.F. One night of sleep deprivation affects reaction time, but not interference or facilitation in a stroop task. Brain Cogn. 2011, 76, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, A.M.; Stern, Y. Cognitive reserve in aging. Curr. Alzheimer Res. 2011, 8, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Bratzke, D.; Steinborn, M.B.; Rolke, B.; Ulrich, R. Effects of sleep loss and circadian rhythm on executive inhibitory control in the stroop and simon tasks. Chronobiol. Int. 2012, 29, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Gaggioni, G.; Ly, J.Q.M.; Muto, V.; Chellappa, S.L.; Jaspar, M.; Meyer, C.; Delfosse, T.; Vanvinckenroye, A.; Dumont, R.; Coppieters ‘t Wallant, D.; et al. Age-related decrease in cortical excitability circadian variations during sleep loss and its links with cognition. Neurobiol. Aging 2019, 78, 52–63. [Google Scholar] [CrossRef]
- Van Egroo, M.; Narbutas, J.; Chylinski, D.; González, P.V.; Ghaemmaghami, P.; Muto, V.; Schmidt, C.; Gaggioni, G.; Besson, G.; Pépin, X.; et al. Preserved wake-dependent cortical excitability dynamics predict cognitive fitness beyond age-related brain alterations. Commun. Biol. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, P.A.; Belenky, G.; Krueger, J.M. A Local, Bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr. Top. Med. Chem. 2011, 11, 2414–2422. [Google Scholar] [CrossRef]
- Pigarev, I.N.; Pigareva, M.L. Partial sleep in the context of augmentation of brain function. Front. Syst. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Krueger, J.M.; Rector, D.M.; Roy, S.; Van Dongen, H.P.A.; Belenky, G.; Panksepp, J. Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 2008, 9, 910–919. [Google Scholar] [CrossRef]
- McKillop, L.E.; Fisher, S.P.; Cui, N.; Peirson, S.N.; Foster, R.G.; Wafford, K.A.; Vyazovskiy, V.V. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. J. Neurosci. 2018, 38, 3911–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterman, J.M.; Van Someren, E.J.W.; Vogels, R.L.C.; Van Harten, B.; Scherder, E.J.A. Fragmentation of the rest-activity rhythm correlates with age-related cognitive deficits. J. Sleep Res. 2009, 18, 129–135. [Google Scholar] [CrossRef]
- Yaffe, K.; Falvey, C.M.; Hoang, T. Connections between sleep and cognition in older adults. Lancet Neurol. 2014, 13, 1017–1028. [Google Scholar] [CrossRef]
- Lim, A.S.P.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubu, O.M.; Brannick, M.; Mortimer, J.; Umasabor-Bubu, O.; Sebastiao, Y.V.; Wen, Y.; Schwartz, S.; Borenstein, A.R.; Wu, Y.; Morgan, D.; et al. Sleep, cognitive impairment, and alzheimer’s disease: A systematic review and meta-analysis. Sleep 2017, 40. [Google Scholar] [CrossRef]
- Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.-E.S. Circadian rest-activity pattern changes in aging and preclinical alzheimer disease. JAMA Neurol. 2018, 75, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, S.-J.; Ma, M.-Y.; Bao, Y.-P.; Han, Y.; Wang, Y.-M.; Shi, J.; Vitiello, M.V.; Lu, L. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med. Rev. 2018, 40, 4–16. [Google Scholar] [CrossRef]
- Manousakis, J.; Scovelle, A.J.; Rajaratnam, S.M.; Naismith, S.; Anderson, C. Advanced circadian timing and sleep fragmentation differentially impact on memory complaint subtype in subjective cognitive decline. J. Alzheimer Dis. 2018, 66, 565–577. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taillard, J.; Gronfier, C.; Bioulac, S.; Philip, P.; Sagaspe, P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci. 2021, 11, 1003. https://doi.org/10.3390/brainsci11081003
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sciences. 2021; 11(8):1003. https://doi.org/10.3390/brainsci11081003
Chicago/Turabian StyleTaillard, Jacques, Claude Gronfier, Stéphanie Bioulac, Pierre Philip, and Patricia Sagaspe. 2021. "Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation" Brain Sciences 11, no. 8: 1003. https://doi.org/10.3390/brainsci11081003
APA StyleTaillard, J., Gronfier, C., Bioulac, S., Philip, P., & Sagaspe, P. (2021). Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sciences, 11(8), 1003. https://doi.org/10.3390/brainsci11081003