Myasthenia Gravis—An Analysis of Multimodal Evoked Potentials
Abstract
:1. Introduction
2. Materials
3. Methods
4. Statistical Analysis
5. Results
5.1. Evoked Potentials Parameters
5.2. Correlation of Evoked Potentials Parameters with the Clinical Course of Myasthenia Gravis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChRAb | anti-acetylcholine receptor antibodies |
AQP4 | aquaporin 4 |
BAEP | brainstem auditory evoked potentials |
CIDP | chronic inflammatory demyelinating polyneuropathy |
CNS | central nervous system |
EP | evoked potentials |
IFCN | International Federation of Clinical Neurophysiology |
MG | myasthenia gravis |
MRI | magnetic resonance imaging |
MuSK | muscle-specific tyrosine kinase |
NMDAR | anti-N-methyl-d-aspartate receptor |
NMOSD | neuromyelitis optica spectrum disorders |
SEP | somatosensory evoked potentials |
VEP | visual evoked potentials |
References
- Juel, V.C.; Massey, J.M. Myasthenia gravis. Orphanet. J. Rare Dis. 2007, 2, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statland, J.M.; Ciafaloni, E. Myasthenia gravis: Five new things. Neurol. Clin. Pract. 2013, 3, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamori, M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front. Mol. Neurosci. 2020, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Villarraga, A.; Amaya-Amaya, J.; Rodriguez-Rodriguez, A.; Mantilla, R.D.; Anaya, J.-M. Introducing Polyautoimmunity: Secondary Autoimmune Diseases No Longer Exist. Autoimmune Dis. 2012, 2012, 254319. [Google Scholar] [CrossRef] [Green Version]
- Baltz, T.; Voigt, T. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission. Front. Cell. Neurosci. 2015, 9, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keesey, J.C. Does myasthenia gravis affect the brain?—Review article. J. Neurol. Sci. 1999, 170, 77–89. [Google Scholar] [CrossRef]
- Sitek, E.; Sławek, J.; Wieczorek, D. Funkcjonowanie poznawcze w miastenii. Postępy Psychiatr. Neurol. 2009, 18, 387–391. [Google Scholar]
- Fotiou, F.; Fountoulakis, K.N. Evidence for a Central Cholinergic Deficit in Myasthenia Gravis. J. Neuropsychiatry Clin. Neurosci. 2000, 12, 514–515. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Yin, J.; Lu, Z.; Hu, X. Association between myasthenia gravis and cognitive function: A systematic review and meta-analysis. Ann. Indian Acad. Neurol. 2015, 18, 131–137. [Google Scholar]
- Zhang, H.; Xu, X.H.; Guo, H. systemic manifestation of myasthenia gravis and its putative pathogenesis. Chin. J. Intern. Med. 1997, 36, 368–371. [Google Scholar]
- Vernino, S.; Cheshire, W.P.; Lennon, V.A. Myasthenia gravis with autoimmune autonomic neuropathy. Auton. Neurosci. 2001, 88, 187–192. [Google Scholar] [CrossRef]
- Tong, O.; Delfiner, L.; Herskovitz, S. Pain, Headache, and Other Non-motor Symptoms in Myasthenia Gravis. Curr. Pain Headache Rep. 2018, 22, 39. [Google Scholar] [CrossRef]
- Leon-Sarmiento, F.E.; Bayona, E.A.; Bayona-Prieto, J.; Osman, A.; Doty, R.L. Profoud olfactory dysfunction in myasthenia gravis. PLoS ONE 2012, 7, e45544. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, A.; Zaffaroni Caputo, D.; Zibetti, A.; Mariani, G. A case of myasthenia gravis associated with optic neuritis. J. Neurol. 1984, 231, 94–95. [Google Scholar] [CrossRef]
- Weng, Y.; Min, Y.; Sheng, Z.; Li, J.; Huang, D. Myasthenia Gravis with Reversible Pyramidal Tract Damage and Pseudo Internuclear Ophthalmoplegia. A Case Report and Literature Review. Front. Neurol. 2019, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Kaltsatou, A.; Fotiou, D.; Tsiptsios, D.; Orologas, A. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis. BBA Clin. 2015, 3, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Bieszczad, M.; Ejma, M.; Martynów, R.; Sasiadek, M.; Nowakowska, B. Multiple sclerosis coexisting with myasthenia. Neurol. Neurochir. Pol. 1995, 29, 77–83. [Google Scholar]
- Kimura, K.; Okada, Y.; Fujii, C.; Komatsu, K.; Takahashi, R.; Matsumoto, S.; Kondo, T. Clinical characteristics of autoimmune disorders in the central nervous system associated with myasthenia gravis. J. Neurol. 2019, 266, 2743–2751. [Google Scholar] [CrossRef]
- Roh, H.S.; Lee, S.Y.; Yoon, J.S. Comparison of Clinical Manifestations between Patients with Ocular Myasthenia Gravis and Generalized Myasthenia Gravis. Korean J. Ophthalmol. 2011, 25, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tanovska, N.; Novotni, G.; Sazdova-Burneska, S.; Kuzmanovski, I.; Boshkovski, B.; Kondov, G.; Jovanovski-Srceva, M.; Kokareva, A.; Isjanovska, R. Myasthenia Gravis and Associated Disease. Open Access Maced. J. Med. Sci. 2018, 15, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Anagnostouli, M.; Vakrakou, A.G.; Zambelis, T.; Boufidou, F.; Nikolaou, C.; Karandreas, N.; Kilidireas, C. Myasthenia gravis, atypical polyneuropathy and multiple autoimmune phenomena in the same patient, with HLA-immunogenetic profile expectable for Greek chronic inflammatory demyelinating polyneuropathy: A case report. Int. J. Neurosci. 2020, 1–8. [Google Scholar] [CrossRef]
- Leite, M.I.; Coutinho, E.; Lana-Peixoto, M.; Apostolos, S.; Waters, P.; Sato, D.; Melamud, L.; Marta, M.; Graham, A.; Spillane, J.; et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: A multicenter study of 16 patients. Neurology 2012, 78, 1601–1607. [Google Scholar] [CrossRef]
- Vaknin-Dembinsky, A.; Abramsky, O.; Petrou, P.; Ben-Hur, T.; Gotkine, M.; Brill, L.; Brenner, T.; Argov, Z.; Karussis, D. Myasthenia Gravis–Associated Neuromyelitis Optica–Like Disease an Immunological Link Between the Central Nervous System and Muscle? Arch. Neurol. 2011, 68, 1557–1561. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, G.; De Palma, P.; Franco, F.; Fini, M. Myasthenia Gravis and Recurrent Retrobulbar Optic Neuritis: An Unusual Combination of Diseases. Ophthalmologica 1986, 192, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, M.L.; Jiang, R.; Bourke, A.; Nowak, R.J.; O’Connor, K.C. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front. Immunol. 2020, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Huijbers, M.G.; Zhang, W.; Klooster, R.; Niks, E.H.; Friese, M.B.; Straasheijm, K.R.; Thijssen, P.E.; Vrolijk, H.; Plomp, J.J.; Vogels, P.; et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc. Natl. Acad. Sci. USA 2013, 110, 20783–20788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, J.K.; Malotka, J.; Kawakami, N.; Derfuss, T.; Khademi, M.; Olsson, T.; Linington, C.; Odaka, M.; Tackenberg, B.; Prüss, H.; et al. Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 2012, 79, 2241–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavra, M.; Apostolski, S.; Nikolic, J.; Thompson, E.J. Oligoclonal immunoglobulin G in cerebrospinal fluid of myasthenia gravis patients. Acta Neurol. Scand. 1990, 81, 250–252. [Google Scholar] [CrossRef]
- Wirth, M.A.; Valko, Y.; Rosengren, S.M.; Schmückle-Meier, T.; Bockisch, C.J.; Straumann, D.; Landau, K.; Weber, K.P. Repetitive ocular vestibular evoked myogenic potential stimulation for the diagnosis of myasthenia gravis: Optimization of stimulation parameters. Clin. Neurophysiol. 2019, 130, 1125–1134. [Google Scholar] [CrossRef]
- Fotiou, F.; Papakostopoulos, D.; Hamlatzis, P. Changes in the pattern reversal visual evoked potentials in myasthenia gravis. Electromyogr. Clin. Neurophysiol. 1994, 34, 171–175. [Google Scholar]
- Anziska, B.J.; Cracco, R.Q. Short-latency somatosensory evoked potentials to median nerve stimulation in patients with diffuse neurologic disease. Neurology 1983, 33, 989. [Google Scholar] [CrossRef] [PubMed]
- Jech, R.; RŮžička, E. Brain stem auditory evoked potentials reflect central nervous system involvement in myasthenia gravis. J. Neurol. 1996, 243, 547–550. [Google Scholar] [CrossRef]
- Quan, W.; Xia, J.; Tong, Q.; Lin, J.; Zheng, X.; Yang, X.; Xie, D.; Weng, Y.; Zhang, X. Myasthenia gravis and chronic inflammatory demyelinating polyneuropathy in the same patient—A case report. Int. J. Neurosci. 2018, 128, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Tam, D.A.; Chalmers, A. Chronic inflammatory demyelinating polyneuropathy and myasthenia gravis. J. Child Neurol. 1999, 14, 478–479. [Google Scholar] [CrossRef]
- Senda, Y.; Sugimura, K.; Koike, Y.; Matsuoka, Y.; Takahashi, A. Concurrence of acute autonomic and sensory neuropathy and myasthenia gravis-a case report and pathogenetic considerations. Rinsho Shinkeigaku 1989, 29, 332–335. [Google Scholar]
- Martinelli, P.; Patuelli, A.; Minardi, C.; Cau, A.; Riviera, A.M.; Dal Pozzo, F. Neuromyotonia, peripheral neuropathy and myasthenia gravis. Muscle Nerve 1996, 19, 505–510. [Google Scholar] [CrossRef]
- Asanuma, K.; Saida, K.; Ohta, M.; Konishi, T. Subacute motor neuronopathy associated with myasthenia gravis and thymoma. Rinsho Shinkeigaku 1999, 39, 739–744. [Google Scholar]
VEP | Study Group (n = 42) Mean ± SD | Control Group (n = 50) Mean ± SD | p-Value * | |
---|---|---|---|---|
Latency (ms) | N75 | 79.1 ± 16.1 | 69.8 ± 5.2 | 0.0007 |
P100 | 113.9 ± 13.9 | 99.7 ± 3.8 | <0.0001 | |
N145 | 156.0 ± 18.6 | 142.0 ± 10.2 | 0.0004 | |
Amplitude (μV) | P100/N145 | 9.45 ± 4.8 | 10.1 ± 3.6 | 0.2417 |
BAEP | Study Group (n = 24) Mean ± SD | Control Group (n = 50) Mean ± SD | p-Value * | |
---|---|---|---|---|
Latency (ms) | I | 1.72 ± 0.15 | 1.65 ± 0.12 | 0.056 |
III | 3.92 ± 0.29 | 3.81 ± 0.17 | 0.015 | |
V | 5.93 ± 0.32 | 5.64 ± 0.16 | <0.0001 | |
Amplitude (µV) | I | 0.18 ± 0.08 | 0.31 ± 0.10 | <0.00001 |
V | 0.35 ± 0.12 | 0.42 ± 0.11 | <0.003 | |
Interlatency (ms) | I–III | 2.20 ± 0.25 | 2.12 ± 0.12 | 0.919 |
III–V | 2.00 ± 0.12 | 1.85 ± 0.14 | <0.0001 | |
I–V | 4.20 ± 0.28 | 4.01 ± 0.15 | <0.001 |
SEP | Study Group (n = 42) Mean ± SD | Control Group (n = 50) Mean ± SD | p-Value * | |
---|---|---|---|---|
Latency (ms) | N9 | 10.66 ± 1.59 | 9.77 ± 0.90 | 0.007 |
P10 | 12.47 ± 2.48 | 11.32 ± 1.01 | 0.001 | |
N13 | 14.36 ± 2.44 | 13.14 ± 1.12 | 0.015 | |
P16 | 17.47 ± 2.48 | 16.22 ± 1.11 | 0.007 | |
N20 | 20.98 ± 2.85 | 19.27 ± 1.08 | 0.003 | |
P22 | 24.10 ± 3.48 | 22.25 ± 1.63 | 0.006 | |
Interlatency (ms) | TT (N20–N13) | 6.62 ± 1.25 | 6.13 ± 0.84 | 0.103 |
N13-N9 | 3.70 ± 1.11 | 3.41 ± 0.79 | 0.294 | |
Amplitude (μV) | N9/P10 | 2.09 ± 1.85 | 2.85 ± 1.91 | 0.045 |
N13/P16 | 1.24 ± 0.96 | 1.08 ± 0.32 | 0.684 | |
N20/P22 | 1.15 ± 0.97 | 0.96 ± 0.50 | 0.760 |
BAEP | Absence of Ischemic Lesions n = 29 | Presence of Ischemic Lesions n = 13 | p-Value | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Latency (ms) | I | 1.75 ± 0.19 | 1.70 ± 0.16 | 0.369 |
III | 3.90 ± 0.22 | 3.92 ± 0.26 | 0.925 | |
V | 5.99 ± 0.28 | 5.87 ± 0.25 | 0.310 | |
Amplitude (µV) | I | 0.14 ± 0.08 | 0.18 ± 0.07 | 0.337 |
V | 0.28 ± 0.11 | 0.37 ± 0.11 | 0.086 | |
Interlatency (ms) | I–III | 2.15 ± 0.16 | 2.21 ± 0.24 | 0.532 |
III–V | 2.09 ± 0.10 | 1.95 ± 0.16 | 0.041 | |
I–V | 4.24 ± 0.21 | 4.16 ± 0.23 | 0.459 |
SEP | Absence of Ischemic Lesions n = 29 | Presence of Ischemic Lesions n = 13 | p-Value | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Latency (ms) | N9 | 11.93 ± 2.69 | 10.11 ± 1.23 | 0.022 |
P10 | 13.21 ± 1.31 | 12.00 ± 2.16 | 0.025 | |
N13 | 16.60 ± 4.23 | 13.51 ± 1.49 | 0.022 | |
P16 | 19.73 ± 4.15 | 16.70 ± 1.50 | 0.022 | |
N20 | 23.27 ± 4.83 | 20.23 ± 2.02 | 0.079 | |
P22 | 26.39 ± 5.72 | 23.77 ± 2.93 | 0.270 | |
Interlatency (ms) | N20-N13 (TT) | 6.67 ± 1.25 | 6.72 ± 1.58 | 0.903 |
N13-N9 | 4.67 ± 1.80 | 3.40 ± 0.80 | 0.025 | |
Amplitude (μV) | N9/P10 | 1.98 ± 1.57 | 1.77 ± 1.94 | 0.713 |
N13/P16 | 1.39 ± 0.93 | 1.22 ± 1.32 | 0.206 | |
N20/P22 | 0.90 ± 0.48 | 1.37 ± 0.91 | 0.186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziadkowiak, E.; Waliszewska-Prosół, M.; Wieczorek, M.; Bladowska, J.; Budrewicz, S.; Ejma, M. Myasthenia Gravis—An Analysis of Multimodal Evoked Potentials. Brain Sci. 2021, 11, 1057. https://doi.org/10.3390/brainsci11081057
Dziadkowiak E, Waliszewska-Prosół M, Wieczorek M, Bladowska J, Budrewicz S, Ejma M. Myasthenia Gravis—An Analysis of Multimodal Evoked Potentials. Brain Sciences. 2021; 11(8):1057. https://doi.org/10.3390/brainsci11081057
Chicago/Turabian StyleDziadkowiak, Edyta, Marta Waliszewska-Prosół, Małgorzata Wieczorek, Joanna Bladowska, Sławomir Budrewicz, and Maria Ejma. 2021. "Myasthenia Gravis—An Analysis of Multimodal Evoked Potentials" Brain Sciences 11, no. 8: 1057. https://doi.org/10.3390/brainsci11081057
APA StyleDziadkowiak, E., Waliszewska-Prosół, M., Wieczorek, M., Bladowska, J., Budrewicz, S., & Ejma, M. (2021). Myasthenia Gravis—An Analysis of Multimodal Evoked Potentials. Brain Sciences, 11(8), 1057. https://doi.org/10.3390/brainsci11081057