Heartbeat-Evoked Cortical Potential during Sleep and Interoceptive Sensitivity: A Matter of Hypnotizability
Abstract
:1. Introduction
1.1. Heartbeat-Evoked Cortical Potential
1.2. Interoception and Hypnotizability
1.3. Aim of the Study
2. Methods
2.1. Subjects
2.2. Experimental Procedure
2.2.1. Signals Acquisition and Analysis
2.2.2. MAIA Questionnaire
2.2.3. Stanford Hypnotic Susceptibility Scale, form A (SHSS, A)
2.3. Statistical Analysis
3. Results
3.1. Preliminary Assessment
3.2. RR and HRV
3.3. HEP, IS, and Hypnotizability
4. Discussion
4.1. Autonomic and HEP Changes across Sleep Stages
4.2. HEP Amplitude Changes across Sleep Stages
4.3. Association between IS, HEP Amplitude, and Hypnotizability
4.4. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quadt, L.; Critchley, H.D.; Garfinkel, S.N. The neurobiology of interoception in health and disease. Ann. N. Y. Acad. Sci. 2018, 1428, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Aertsen, A.; Schulze-Bonhage, A.; Ball, T. Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG. NeuroImage 2013, 81, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Harrison, N.A. Visceral influences on brain and behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calì, G.; Ambrosini, E.; Picconi, L.; Mehling, W.E.; Committeri, G. Investigating the relationship between interoceptive accuracy, interoceptive awareness, and emotional susceptibility. Front. Psychol. 2015, 24, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, H.-D.; Garfinkel, S.N. Interoception and emotion. Curr. Opin. Psychol. 2017, 17, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Strigo, A.I.; Craig, A.D. Interoception, homeostatic emotions and sympathovagal balance. Phil. Trans. R. Soc. Biol. Sci. 2016, 371, 20160010. [Google Scholar] [CrossRef] [Green Version]
- Park, H.D.; Bernasconi, F.; Salomon, R.; Tallon-Baudry, C.; Spinelli, L.; Seeck, M.; Schaller, K.; Blanke, O. Neural sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: An intracranial EEG study. Cereb. Cortex 2018, 28, 2351–2364. [Google Scholar] [CrossRef]
- Critchley, H.D.; Mathias, C.; Josephs, O.; O’Doherty, J.; Zanini, S.; Dewar, B.; Cipolotti, L.; Shallice, T.; Dolan, R.J. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain 2003, 126 Pt 10, 2139–2152. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D.; Rothstein, P.; Nagai, Y.; O’Doherty, J.; Mathias, C.J.; Dolan, R.J. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 2004, 24, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D.; Tang, J.; Glaser, D.; Butterworth, B.; Dolan, R.J. Anterior cingulate activity during error and autonomic response. Neuroimage 2005, 27, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.E.; Schulz, A.; Andermann, M.; Gäbel, A.; Gescher, D.M.; Spohn, A.; Herpertz, S.C.; Bertsch, K. Cortical representation of afferent bodily signals in borderline personality disorder. Neural correlates and relationship to emotional dysregulation. JAMA Psychiatry 2015, 72, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, E.R.; Grimaldi, S.J.; Muratore, A.; Murrough, J.; Leibu, E.; Fleysher, L.; Goodman, W.K.; Burdick, K.E. Neural correlates of interoception: Effects of interoceptive focus and relationship to dimensional measures of body awareness. Hum. Brain Mapp. 2017, 38, 6068–6082. [Google Scholar] [CrossRef] [Green Version]
- Winkelman, J.W.; Plante, D.T.; Schoerning, L.; Benson, K.; Buxton, O.M.; O’Connor, S.P.; Jensen, J.E.; Renshaw, P.F.; Gonenc, A. Increased rostral anterior cingulate cortex volume in chronic primary insomnia. Sleep 2013, 36, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.S.P.; Fleischman, D.A.; Dawe, R.J.; Yu, L.; Arfanakis, K.; Buchman, A.S.; Bennett, D.A. Regional neocortical gray matter structure and sleep fragmentation in older adults. Sleep 2015, 39, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Graeff, F.G.; Del-Ben, C.M. Neurobiology of panic disorder: From animal models to brain neuroimaging. Neurosci. Biobehav. Rev. 2008, 32, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Salamone, P.C.; Esteves, S.; Sinay, V.J.; García-Cordero, I.; Abertay, S.; Couto, B.; Adolfi, F.; Martorell, M.; Petroni, A.; Yoris, A.; et al. Altered neural signatures of interoception in multiple sclerosis. Hum. Brain Mapp. 2018, 39, 4743–4754. [Google Scholar] [CrossRef]
- Brener, J.; Ring, C. Towards a psychophysics of interoceptive processes: The measurement of heartbeat detection. Phil. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160015. [Google Scholar] [CrossRef] [Green Version]
- Zamariola, G.; Maurage, P.; Luminet, O.; Corneille, O. Interoceptive accuracy scores from the heartbeat counting task are problematic: Evidence from simple bivariate correlations. Biol. Psychol. 2018, 13, 12–21. [Google Scholar] [CrossRef]
- Mehling, W.E.; Price, C.; Daubenmier, J.J.; Cree, A.M.; Bartmess, E.; Stewart, A. The Multidimensional Assessment of Interoceptive Awareness (MAIA). PLoS ONE 2012, 7, e48230. [Google Scholar] [CrossRef] [Green Version]
- Paulhus, D.L.; Vazire, S. The self-report method. In Handbook of Research Methods in Personality Psychology; Robins, R.W., Fraley, R.C., Krueger, R.F., Eds.; Guilford Press: New York, NY, USA, 2007; pp. 224–239. [Google Scholar]
- Longarzo, M.; D’Olimpio, F.; Chiavazzo, A.; Santangelo, G.; Trojano, L.; Grossi, D. The relationships between interoception and alexithymic trait. The Self-Awareness Questionnaire in healthy subjects. Front. Psychol. 2015, 6, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallorquí-Bagué, N.; Bulbena, A.; Pailhez, G.; Garfinkel, S.N.; Critchley, H.D. Mind-Body Interactions in Anxiety and Somatic Symptoms. Harv. Rev. Psychia. 2016, 24, 53–60. [Google Scholar] [CrossRef]
- Koreki, A.; Garfkinel, S.N.; Mula, M.; Agrawal, N.; Cope, S.; Eilon, T.; van Praag, C.G.; Critchley, H.D.; Edwards, M.; Yogarajah, M. Trait and state interoceptive abnormalities are associated with dissociation and seizure frequency in patients with functional seizures. Epilepsia 2020, 61, 1156–1165. [Google Scholar] [CrossRef]
- Lutz, A.P.C.; Schulz, A.; Vodeρlzer, U.; Koch, S.; van Dyck, Z.; Vögele, C. Enhanced cortical processing of cardio-afferent signals in anorexia nervosa. Clin. Neurophysiol. 2019, 130, 1620–1627. [Google Scholar] [CrossRef]
- Herman, A.M.; Critchley, H.D.; Duka, T. Risk-Taking and Impulsivity: The Role of Mood States and Interoception. Front. Psychol. 2018, 9, 1625. [Google Scholar] [CrossRef]
- Montoya, P.; Schandry, R.P. Event-related brain potentials and the processing of cardiac activity. Biol. Psychol. 1996, 42, 75–85. [Google Scholar] [CrossRef]
- Pollatos, O.; Schandry, R. Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology 2004, 41, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, O.; Luminet, O.; Corneille, O. The heartbeat counting task largely involves non-interoceptive processes: Evidence fromboth the original and an adapted counting task. Biol. Psychol. 2018, 138, 185–188. [Google Scholar] [CrossRef]
- Wei, Y.; Ramautar, J.R.; Colombo, M.A.; Stoffers, D.; Gómez-Herrero, G.; van der Meijden, W.P.; Lindert, B.H.W.T.; van der Werf, Y.D.; van Someren, E.J.W. I Keep a Close Watch on This Heart of Mine. Sleep 2016, 39, 2113–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flasbeck, V.; Popkirov, S.; Ebertm, A.; Brüne, M. Altered interoception in patients with borderline personality disorder: A study using heartbeat-evoked potentials. Bord. Personal. Disord. Emot. Dysregulation 2020, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Perogamvrosa, L.; Park, H.; Dong Bayera, L.; Perrault, A.; Blanke, O.; Schwartz, S. Increased heartbeat-evoked potential during REM sleep in nightmare. NeuroImage 2019, 22, 101701. [Google Scholar] [CrossRef]
- Baranauskas, M.; Grabauskaitė, A.; Griškova-Bulanova, I. Brain responses and self-reported indices of interoception: Heartbeat evoked potentials are inversely associated with worrying about body sensations. Physiol. Behav. 2017, 180, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Llinás, R.R.; Paré, D. Of dreaming and wakefulness. Neuroscience 1991, 44, 521–535. [Google Scholar] [CrossRef]
- Andrillon, T.; Poulsen, A.T.; Hansen, L.K.; Léger, D.; Kouider, S. Neural Markers of Responsiveness to the Environment in Human Sleep. J. Neurosci. 2016, 36, 6583–6596. [Google Scholar] [CrossRef] [Green Version]
- Blume, C.; Del Giudice, R.; Wislowska, M.; Heib, D.P.J.; Schabus, M. Standing sentinel during human sleep: Continued evaluation of environmental stimuli in the absence of consciousness. Neuroimage 2018, 178, 638–648. [Google Scholar] [CrossRef]
- Lechinger, J.; Heib, D.P.J.; Gruber, W.; Schabus, M.; Klimesch, W. Heartbeat related EEG amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations. Psychophysiology 2015, 52, 1441–1450. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Scattina, E. Complementing the Latest APA Definition of Hypnosis: Sensory-Motor and Vascular Peculiarities Involved in Hypnotizability. Int. J. Clin. Exp. Hypn. 2016, 64, 318–330. [Google Scholar] [CrossRef]
- Piccione, C.; Hilgard, E.R.; Zimbardo, P. On the Degree of Stability of Measured Hypnotizability Over a 25-Year Period. J. Pers. Soc. Psychol. 1989, 56, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Fassler, O.; Lynn, S.J.; Knox, J. Is hypnotic suggestibility a stable trait? Consc. Cogn. 2008, 17, 240–253. [Google Scholar] [CrossRef]
- Elkins, G.R.; Barabasz, A.F.; Council, J.R.; Spiegel, D. Advancing research and practice: The revised APA Division 30 definition of hypnosis. Int. J. Clin. Exp. Hypn. 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Sebastiani, L.; D’Alessandro, L.; Menicucci, D.; Ghelarducci, B.; Santarcangelo, E.-L. Role of relaxation and specific suggestions in hypnotic emotional numbing. Int. J. Psychophysiol. 2007, 63, 125–132. [Google Scholar] [CrossRef]
- Evans, F.J. Hypnosis and Sleep. In Hypnosis: Research Developments and Perspectives; Fromm, E., Shor, R.E., Eds.; Aldine-Atherton: Chicago, IL, USA, 1972. [Google Scholar]
- Dittborn, J.M.; O’Connell, D.N. Behavioral sleep, physiological sleep, and hypnotizability. Int. J. Clin. Exp. Hypn. 1967, 15, 181–188. [Google Scholar] [CrossRef]
- Móró, L.; Noreika, V.; Revonsuo, A.; Kallio, S. Hypnotizability, sleepiness, and subjective experience. Int. J. Clin. Exp. Hypn. 2011, 59, 211–224. [Google Scholar] [CrossRef] [PubMed]
- DeBenedittis, G.; Cigada, M.; Bianchi, A.; Signorini, M.G.; Cerutti, S. Autonomic changes during hypnosis: A heart rate variability power spectrum analysis as a marker of sympatho-vagal balance. Int. J. Clin. Exp. Hypn. 1994, 42, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, E.L.; Paoletti, G.; Balocchi, R.; Carli, G.; Morizzo, C.; Palombo, C.; Varanini, M. Hypnotizability modulates the cardiovascular correlates of subjective relaxation. Int. J. Clin. Exp. Hypn. 2012, 60, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, E.L.; Busse, K.; Carli, G. Changes in electromyographically recorded human monosynaptic reflex in relation to hypnotic susceptibility and hypnosis. Neurosci. Lett. 1989, 104, 157–160. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Busse, K.; Carli, G. Frequency of occurrence of the F wave in distal flexor muscles as a function of hypnotic susceptibility and hypnosis. Brain Res. Cogn. Brain Res. 2003, 16, 99–103. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Balocchi, R.; Scattina, E.; Manzoni, D.; Bruschini, L.; Ghelarducci, B.; Varanini, M. Hypnotizability-dependent modulation of the changes in heart rate control induced by upright stance. Brain Res. Bull. 2008, 5, 692–697. [Google Scholar] [CrossRef]
- Jambrik, Z.; Santarcangelo, E.L.; Ghelarducci, B.; Picano, E.; Sebastiani, L. Does hypnotizability modulate the stress-related endothelial function? Brain Res. Bull. 2004, 63, 213–216. [Google Scholar] [CrossRef]
- Jambrik, Z.; Santarcangelo, E.L.; Rudisch, T.; Varga, A.; Forster, T.; Carli, G. Modulation of pain-induced endothelial dysfunction by hypnotisability. Pain 2005, 16, 181–186. [Google Scholar] [CrossRef]
- Landry, M.; Lifshitz, M.; Raz, A. Brain correlates of hypnosis: A systematic review and meta-analytic exploration. Neurosci. Biobehav. Rev. 2017, 81 Pt A, 75–98. [Google Scholar] [CrossRef]
- Picerni, E.; Santarcangelo, E.L.; Laricchiuta, D.; Cutuli, D.; Petrosini, L.; Spalletta, G.; Piras, F. Cerebellar Structural Variations iSubjects with Different Hypnotizability. Cerebellum 2019, 18, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Belcari, I.; Santarcangelo, E.L.; Sebastiani, L. Interoceptive accuracy as a function of hypnotizability. Int. J. Clin. Exp. Hypn. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Diolaiuti, F.; Huber, A.; Ciaramella, A.; Santarcangelo, E.L.; Sebastiani, L. Hypnotizability-related interoceptive awareness and inhibitory/activating emotional traits. Arch. Ital. Biol. 2019, 157, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Tramonti Fantozzi, M.P.; Artoni, F.; Faraguna, U. Heart rate variability at bedtime predicts subsequent sleep features. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar] [CrossRef]
- Weitzenhoffer, A.M.; Hilgard, E.R. Scala Stanford di Suscettibilità Ipnotica, Forme A,B. Versione italiana; Organizzazioni Speciali Firenze: Florence, Italy, 1959. [Google Scholar]
- Ferentzi, E.; Drew, R.; Tihanyi, B.T.; Köteles, F. Interoceptive accuracy and body awareness—Temporal and longitudinal associations in a non-clinical sample. Physiol. Behav. 2018, 84, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Diolaiuti, F.; Fantozzi, M.P.T.; Di Galante, M.; D’Ascanio, P.; Faragun, A.U.; Sebastiani, L.; Santarcangelo, E.L. Association of hypnotizability and deep sleep: Any role for interoceptive sensibility? Exp. Brain Res. 2020, 238, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Hammad, M.A.; Barsky, A.J.; Regestein, Q.R. Correlation between somatic sensation inventory scores and hyperarousal scale scores. Psychosomatics 2001, 42, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol. Meas. 2014, 5, 1607–1619. [Google Scholar] [CrossRef]
- Billeci, L.; Marino, D.; Insana, L.; Vatti, G.; Varanini, M. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PLoS ONE 2018, 13, e0204339. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four-hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Eckberg, D.L.; Kuusela, T.A. Human vagal baroreflex sensitivity fluctuates widely and rhythmically at very low frequencies. J. Physiol. 2005, 567, 1011–1019. [Google Scholar] [CrossRef]
- Taylor, J.A.; Carr, D.L.; Myers, C.W.; Eckberg, D.L. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation 1998, 98, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.M.; Huang, S.C. SDNN/RMSSD as a Surrogate for LF/HF: A Revised Investigation. Modeling Simul. Eng. 2012, 2012, 931943. [Google Scholar] [CrossRef] [Green Version]
- Mehling, W. Differentiating attention styles and regulatory aspects of self-reported interoceptive sensibility. Phil. Trans. R. Soc. Lond. B 2016, 371, 1708. [Google Scholar] [CrossRef]
- Blunden, S.; Galland, B. The complexities of defining optimal sleep: Empirical and theoretical considerations with a special emphasis on children. Sleep Med. Rev. 2014, 118, 371–378. [Google Scholar] [CrossRef]
- De Pascalis, V.; Bellusci, A.; Russo, P.M. Italian norms for the Stanford Hypnotic Susceptibility Scale, Form C. Int. J. Clin. Exp. Hypn. 2000, 48, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Vanoli, E.; Adamson, P.B.; Ba-Lin; Pinna, G.D.; Lazzara, R.; Orr, W.C. Heart Rate Variability During Specific Sleep Stages. A Comparison of Healthy Subjects with Patients After Myocardial Infarction. Circulation 1995, 91, 1918–1922. [Google Scholar] [CrossRef]
- Boudreau, P.; Wei-Hsien, Y.; Dumont, G.A.; Diane, B.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919–1928. [Google Scholar] [CrossRef] [Green Version]
- Massin, M.M.; Maeyns, K.; Withofs, N.; Ravet, F.; Gérard, P. Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 2000, 83, 179–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrave, J.; Phillips, J.; Haines, R.; Foster, R.G.; Steinsaltz, D.; Wulff, K. Revisiting nocturnal heart rate and heart rate variability in insomnia: A polysomnography-based comparison of young self-reported good and poor sleepers. J. Sleep Res. 2021, 23, e13278. [Google Scholar] [CrossRef]
- Mai, S.; Wong, C.K.; Georgiou, E.; Pollatos, O. Interoception is associated with heartbeat-evokd brain potentials (HEPs) in adolescents. Biol. Psychol. 2018, 37, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Billeci, L.; Faraguna, U.; Sebastiani, L.; d’Ascanio, P.; Bachi, L.; Santarcangelo, E.L.; Varanini, M. Subjects with different hypnotizability scores exhibit different heartbeat-evoked potentials during sleep. In Proceedings of the 11th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Pisa, Italy, 15 July 2020; pp. 1–2. [Google Scholar]
- Fittipaldi, S.; Abrevaya, A.; de la Fuente, G.; Hesse, E.; Birba, A.; Salamone, P.; Hildebrandt, M.; Martí, S.A.; Pautassi, R.M.; Huepe, D.; et al. A multidimensional and multi-feature framework for cardiac interoception. NeuroImage 2020, 212, 116677. [Google Scholar] [CrossRef] [PubMed]
- Coll, M.P.; Hobson, H.; Bird, G.; Murphy, J. Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception. Neurosci. Biobehav. Rev. 2021, 122, 190–200. [Google Scholar] [CrossRef]
- Zaki, J.; Davis, J.I.; Ochsner, K.N. Overlapping activity in anterior insula during interoception and emotional experience. NeuroImage 2012, 62, 493–499. [Google Scholar] [CrossRef]
- Massimini, M.; Ferrarelli, F.; Murphy, M.; Huber, R.; Riedner, B.; Casarotto, S.; Tononi, G. Cortical reactivity and effective connectivity during REM sleep in humans. Cognitive Neurosci. 2010, 1, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Leopold, C.; Schandry, R. The heartbeat-evoked brain potential inpatients suffering from diabetic neuropathy and in healthy control persons. Clin. Neurophysiol. 2001, 112, 674–682. [Google Scholar] [CrossRef]
- Pollatos, O.; Kirsch, W.; Schandry, R. Brain structures involved ininteroceptive awareness and cardio-afferent signal processing: A dipole source localization study. Hum. Brain Mapp. 2005, 26, 54–64. [Google Scholar] [CrossRef]
- Portella, C.; Machado, S.; Arias-Carrion, O.; Sack, A.T.; Silva, J.G.; Orsini, M.; Leite, M.A.A.; Silva, A.C.; Nardi, A.E.; Cagy, M.; et al. Relationship between early and late stages of information processing: An event-related potential study. Neurol. Int. 2012, 4, e16. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez-Marcelo, E.; Campioni, L.; Phinyomark, A.; Petri, G.; Santarcangelo, E.L. Topology highlights mesoscopic functional equivalence between imagery and perception: The case of hypnotizability. Neuroimage 2019, 200, 437–449. [Google Scholar] [CrossRef]
- Manetti, R.; Manzoni, D.; Orsini, P.; Sebastiani, L.; Santarcangelo, E.L. Postural effects of interoceptive imagery as a function of hypnotizability. Physiol. Behav. 2020, 229, 113222. [Google Scholar] [CrossRef]
Scale | Mean (SD) | Cronbach’s α |
---|---|---|
noticing | 3.05 (0.99) | 0.787 |
not distracting | 2.49 (1.19) | 0.645 |
not worrying | 2.56 (0.94) | 0.814 |
attentional regulation | 2.66 (0.85) | 0.981 |
emotional awarenss | 0.90 (0.99) | 0.783 |
self regulation | 2.15 (1.16) | 0.655 |
body listening | 2.11 (1.29) | 0.825 |
trusting | 2.95 (1.00) | 0.834 |
Effect | F | df | p | η2 | ||||
---|---|---|---|---|---|---|---|---|
Early HEP | ||||||||
Stage | 3.78 | 2,76 | 0.042 | 0.090 | ||||
N2 < N3 | F (1,38) = 17.61 | p = 0.0001 | ||||||
N2 = REM | ||||||||
N3 = REM | ||||||||
Side | 3.91 | 1,38 | 0.055 | 0.093 | left < right | |||
Area | 9.99 | 1,38 | 0.0001 | 0.723 | F > C | |||
Stage × Area | 21.96 | 2,38 | 0.0001 | 0.366 | ||||
N2, F > C | t = 8.81 | p = 0.0001 | ||||||
N3, F > C | t = 9.97 | p = 0.0001 | ||||||
REM. F > C | t = 7.43 | p = 0.0001 | ||||||
Frontal | N2 < N3 | t = 5.24 | p = 0.0001 | |||||
N3 > REM | t = 2.79 | p = 0.008 | ||||||
N2 = REM | ||||||||
Central | ns | |||||||
Late HEP | ||||||||
Area | 13.87 | 1,38 | 0.001 | 0.267 | F > C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billeci, L.; Faraguna, U.; Santarcangelo, E.L.; d’Ascanio, P.; Varanini, M.; Sebastiani, L. Heartbeat-Evoked Cortical Potential during Sleep and Interoceptive Sensitivity: A Matter of Hypnotizability. Brain Sci. 2021, 11, 1089. https://doi.org/10.3390/brainsci11081089
Billeci L, Faraguna U, Santarcangelo EL, d’Ascanio P, Varanini M, Sebastiani L. Heartbeat-Evoked Cortical Potential during Sleep and Interoceptive Sensitivity: A Matter of Hypnotizability. Brain Sciences. 2021; 11(8):1089. https://doi.org/10.3390/brainsci11081089
Chicago/Turabian StyleBilleci, Lucia, Ugo Faraguna, Enrica L. Santarcangelo, Paola d’Ascanio, Maurizio Varanini, and Laura Sebastiani. 2021. "Heartbeat-Evoked Cortical Potential during Sleep and Interoceptive Sensitivity: A Matter of Hypnotizability" Brain Sciences 11, no. 8: 1089. https://doi.org/10.3390/brainsci11081089
APA StyleBilleci, L., Faraguna, U., Santarcangelo, E. L., d’Ascanio, P., Varanini, M., & Sebastiani, L. (2021). Heartbeat-Evoked Cortical Potential during Sleep and Interoceptive Sensitivity: A Matter of Hypnotizability. Brain Sciences, 11(8), 1089. https://doi.org/10.3390/brainsci11081089