Higher Handgrip Strength Is Linked to Better Cognitive Performance in Chinese Adults with Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Hypertension Diagnosis
2.3. Handgrip Strength
2.4. Cognitive Performance
2.5. Independent Variables
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leung, A.A.; Daskalopoulou, S.S.; Dasgupta, K.; McBrien, K.; Butalia, S.; Zarnke, K.B.; Nerenberg, K.; Harris, K.C.; Nakhla, M.; Cloutier, L.; et al. Hypertension Canada’s 2017 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults. Can. J. Cardiol. 2017, 33, 557–576. [Google Scholar] [CrossRef]
- Lloyd-Sherlock, P.; Beard, J.; Minicuci, N.; Ebrahim, S.; Chatterji, S. Hypertension among older adults in lowand middle-income countries: Prevalence, awareness and control. Int. J. Epidemiol. 2014, 43, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- Forte, G.; De Pascalis, V.; Favieri, F.; Casagrande, M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J. Clin. Med. 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Novak, V.; Hajjar, I. The relationship between blood pressure and cognitive function. Nat. Rev. Cardiol. 2010, 7, 686–698. [Google Scholar] [CrossRef] [Green Version]
- Beauchet, O.; Celle, S.; Roche, F.; Bartha, R.; Montero-Odasso, M.; Allali, G.; Annweiler, C. Blood pressure levels and brain volume reduction: A systematic review and meta-analysis. J. Hypertens. 2013, 31, 1502–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzourio, C.; Laurent, S.; Debette, S. Is hypertension associated with an accelerated aging of the brain? Hypertension 2014, 63, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.M.; Sink, K.M. Hypertension and Its Role in Cognitive Function: Current Evidence and Challenges for the Future. Am. J. Hypertens. 2016, 29, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005, 4, 487–499. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Mao, Z. Association between social activities and cognitive function among the elderly in china: A cross-sectional study. Int. J. Environ. Res. Public Health 2018, 15, 231. [Google Scholar] [CrossRef] [Green Version]
- Frith, E.; Loprinzi, P.D. Physical activity and cognitive function among older adults with hypertension. J. Hypertens. 2017, 35, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Rêgo, M.L.M.; Cabral, D.A.R.; Costa, E.C.; Fontes, E.B. Physical Exercise for Individuals with Hypertension: It Is Time to Emphasize its Benefits on the Brain and Cognition. Clin. Med. Insights Cardiol. 2019, 13. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; Peterson, M.D.; Lobelo, F.; Cavero-Redondo, I.; Correa-Bautista, J.E.; Martínez-Vizcaíno, V. Handgrip and knee extension strength as predictors of cancer mortality: A systematic review and meta-analysis. Scand. J. Med. Sci. Sport. 2018, 28, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, R.; Robinson-Lane, S.G.; Cook, S.; Clark, B.C.; Herrmann, S.; O’connor, M.L.; Hackney, K.J. Handgrip Strength Is Associated with Poorer Cognitive Functioning in Aging Americans. J. Alzheimer’s Dis. 2019, 70, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.; Vincent, B.M.; Hackney, K.J.; Robinson-Lane, S.G.; Downer, B.; Clark, B.C. The Longitudinal Associations of Handgrip Strength and Cognitive Function in Aging Americans. J. Am. Med. Dir. Assoc. 2020, 21, 634–639.e1. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Clark, B.C. Handgrip Strength Asymmetry and Weakness Are Associated with Lower Cognitive Function: A Panel Study. J. Am. Geriatr. Soc. 2020, 68, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Carson, R.G. Get a grip: Individual variations in grip strength are a marker of brain health. Neurobiol. Aging 2018, 71, 189–222. [Google Scholar] [CrossRef] [Green Version]
- Fritz, N.E.; McCarthy, C.J.; Adamo, D.E. Handgrip strength as a means of monitoring progression of cognitive decline—A scoping review. Ageing Res. Rev. 2017, 35, 112–123. [Google Scholar] [CrossRef]
- Sternäng, O.; Reynolds, C.A.; Finkel, D.; Ernsth-Bravell, M.; Pedersen, N.L.; Dahl Aslan, A.K. Grip strength and cognitive abilities: Associations in old age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2016, 71, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, A.K.; Jiwane, R.; Alam, T.; Kishanrao, S.S. Grip Strength and Impact on Cognitive Function in Healthy Kitchen Workers. Achiev. Life Sci. 2016, 10, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Adamo, D.E.; Anderson, T.; Koochaki, M.; Fritz, N.E. Declines in grip strength may indicate early changes in cognition in healthy middle-aged adults. PLoS ONE 2020, 15, e0232021. [Google Scholar] [CrossRef]
- Yang, L.; Koyanagi, A.; Smith, L.; Hu, L.; Colditz, G.A.; Toriola, A.T.; Felipe López Sánchez, G.; Vancampfort, D.; Hamer, M.; Stubbs, B.; et al. Hand grip strength and cognitive function among elderly cancer survivors. PLoS ONE 2018, 13, e0197909. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Smith, L.; Barbagallo, M.; Yang, L.; Zou, L.; Haro, J.M.; Koyanagi, A. Sarcopenia and fall-related injury among older adults in five low- and middle-income countries. Exp. Gerontol. 2021, 147, 111262. [Google Scholar] [CrossRef]
- Kim, G.R.; Sun, J.; Han, M.; Nam, C.M.; Park, S. Evaluation of the directional relationship between handgrip strength and cognitive function: The Korean Longitudinal Study of Ageing. Age Ageing 2019, 48, 426–432. [Google Scholar] [PubMed]
- Jeong, S.M.; Choi, S.; Kim, K.; Kim, S.M.; Kim, S.; Park, S.M. Association among handgrip strength, body mass index and decline in cognitive function among the elderly women. BMC Geriatr. 2018, 18, 1–9. [Google Scholar] [CrossRef]
- Barha, C.K.; Hsu, C.L.; ten Brinke, L.; Liu-Ambrose, T. Biological Sex: A Potential Moderator of Physical Activity Efficacy on Brain Health. Front. Aging Neurosci. 2019, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Barha, C.K.; Liu-Ambrose, T. Exercise and the Aging Brain: Considerations for Sex Differences. Brain Plast. 2018, 4, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, J.; Geng, R.; Wei, R.; Xu, P.; Chen, B.; Liu, K.; Yang, L. Sex- and age-specific mild cognitive impairment is associated with low hand grip strength in an older Chinese cohort. J. Int. Med. Res. 2020, 48, 1–11. [Google Scholar] [CrossRef]
- Barha, C.K.; Best, J.R.; Rosano, C.; Yaffe, K.; Catov, J.M.; Liu-Ambrose, T. Sex-specific relationship between long-term maintenance of physical activity and cognition in the health ABC Study: Potential role of hippocampal and dorsolateral prefrontal cortex volume. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 764–770. [Google Scholar] [CrossRef]
- Kowal, P.; Chatterji, S.; Naidoo, N.; Biritwum, R.; Fan, W.; Ridaura, R.L.; Maximova, T.; Arokiasamy, P.; Phaswana-Mafuya, N.; Williams, S.; et al. Data resource profile: The world health organization study on global ageing and adult health (SAGE). Int. J. Epidemiol. 2012, 41, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Ramlagan, S.; Peltzer, K.; Phaswana-Mafuya, N. Hand grip strength and associated factors in non-institutionalised men and women 50 years and older in South Africa. BMC Res. Notes 2014, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Kim, S.; Bae, J.; Kim, S.H.; Won, Y.J. Association between relative hand-grip strength and chronic cardiometabolic and musculoskeletal diseases in Koreans: A cross-sectional study. Arch. Gerontol. Geriatr. 2021, 92, 104181. [Google Scholar] [CrossRef]
- Wilke, J.; Stricker, V.; Usedly, S. Free-weight resistance exercise is more effective in enhancing inhibitory control than machine-based training: A randomized, controlled trial. Brain Sci. 2020, 10, 702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Guo, Q.; Hong, Z. Clustering and switching during a semantic verbal fluency test contribute to differential diagnosis of cognitive impairment. Neurosci. Bull. 2013, 29, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Gildner, T.E.; Liebert, M.A.; Kowal, P.; Chatterji, S.; Snodgrass, J.J. Associations between sleep duration, sleep quality, and cognitive test performance among older adults from six middle income countries: Results from the study on global ageing and adult health (SAGE). J. Clin. Sleep Med. 2014, 10, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Vancampfort, D.; Stubbs, B.; Lara, E.; Vandenbulcke, M.; Swinnen, N.; Koyanagi, A. Mild cognitive impairment and physical activity in the general population: Findings from six low- and middle-income countries. Exp. Gerontol. 2017, 100, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health (Bangkok) 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Heal. 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Keating, X.D.; Zhou, K.; Liu, X.; Hodges, M.; Liu, J.; Guan, J.; Phelps, A.; Castro-Piñero, J. Reliability and concurrent validity of global physical activity questionnaire (GPAQ): A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 4128. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Acha, A.; Al Snih, S.; Raji, M.A.; Kuo, Y.F.; Markides, K.S.; Ottenbacher, K.J. Handgrip strength and cognitive decline in older Mexican Americans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Praetorius Bjork, M.; Johansson, B.; Hassing, L.B. I forgot when I lost my grip-strong associations between cognition and grip strength in level of performance and change across time in relation to impending death. Neurobiol. Aging 2016, 38, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Zuo, M.; Gan, C.; Liu, T.; Tang, J.; Dai, J.; Hu, X. Physical Predictors of Cognitive Function in Individuals With Hypertension: Evidence from the CHARLS Basline Survey. West. J. Nurs. Res. 2019, 41, 592–614. [Google Scholar] [CrossRef] [PubMed]
- Barha, C.K.; Davis, J.C.; Falck, R.S.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocrinol. 2017, 46, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Falck, R.S.; Davis, J.C.; Best, J.R.; Crockett, R.A.; Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: A systematic review and meta-analysis. Neurobiol. Aging 2019, 79, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Törpel, A.; Schega, L.; Müller, N.G. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements—A systematic review. Eur. Rev. Aging Phys. Act. 2019, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Behrendt, T.; Törpel, A.; Hamacher, D.; Müller, N.G.; Schega, L. Cortical hemodynamics as a function of handgrip strength and cognitive performance: A cross-sectional fNIRS study in younger adults. BMC Neurosci. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Herold, F.; Müller, P.; Gronwald, T.; Müller, N.G. Dose–Response Matters!—A Perspective on the Exercise Prescription in Exercise–Cognition Research. Front. Psychol. 2019, 10, 2338. [Google Scholar] [CrossRef] [Green Version]
- Stillman, C.M.; Cohen, J.; Lehman, M.E.; Erickson, K.I. Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Front. Hum. Neurosci. 2016, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Stimpson, N.J.; Davison, G.; Javadi, A.H. Joggin’ the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits. Neurosci. Biobehav. Rev. 2018, 88, 177–186. [Google Scholar] [CrossRef]
- Walsh, E.I.; Smith, L.; Northey, J.; Rattray, B.; Cherbuin, N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res. Rev. 2020, 60, 101044. [Google Scholar] [CrossRef] [PubMed]
- Schmalhofer, M.L.; Markus, M.R.P.; Gras, J.C.; Kopp, J.; Janowitz, D.; Grabe, H.J.; Groß, S.; Ewert, R.; Gläser, S.; Albrecht, D.; et al. Sex-Specific associations of brain-derived neurotrophic factor and cardiorespiratory fitness in the general population. Biomolecules 2019, 9, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, J.; Ramsbottom, R.; Ludlow, H.; Nevill, A.; Gilder, M. Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women. Neurosci. Lett. 2009, 451, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Heo, S.; McLaren, M.; Pence, B.D.; Martin, S.A.; Vieira, V.J.; Woods, J.A.; et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci. 2010, 30, 5368–5375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leckie, R.L.; Oberlin, L.E.; Voss, M.W.; Prakash, R.S.; Szabo-Reed, A.; Chaddock-Heyman, L.; Phillips, S.M.; Gothe, N.P.; Mailey, E.; Vieira-Potter, V.J.; et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 2014, 8, 101044. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [Green Version]
- Firth, J.A.; Smith, L.; Sarris, J.; Vancampfort, D.; Schuch, F.; Carvalho, A.F.; Solmi, M.; Yung, A.R.; Stubbs, B.; Firth, J. Handgrip strength is associated with hippocampal volume and white matter hyperintensities in major depression and healthy controls: A UK biobank study. Psychosom. Med. 2020, 82, 39–46. [Google Scholar] [CrossRef]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Suo, C.; Singh, M.F.; Gates, N.; Wen, W.; Sachdev, P.; Brodaty, H.; Saigal, N.; Wilson, G.C.; Meiklejohn, J.; Singh, N.; et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol. Psychiatry 2016, 21, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Broadhouse, K.M.; Singh, M.F.; Suo, C.; Gates, N.; Wen, W.; Brodaty, H.; Jain, N.; Wilson, G.C.; Meiklejohn, J.; Singh, N.; et al. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin. 2020, 25, 102182. [Google Scholar] [CrossRef]
- Debette, S.; Seshadri, S.; Beiser, A.; Au, R.; Himali, J.J.; Palumbo, C.; Wolf, P.A.; DeCarli, C. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 2011, 77, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, C.; Srinivasan, D.; Erus, G.; Schmitt, J.E.; Agarwal, A.; Cho, M.E.; Lerner, A.J.; Haley, W.E.; Kurella Tamura, M.; Davatzikos, C.; et al. Changes in brain functional connectivity and cognition related to white matter lesion burden in hypertensive patients from SPRINT. Neuroradiology 2021, 63, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Sigurdsson, S.; Kjartansson, O.; Aspelund, T.; Lopez, O.L.; Jonnson, P.V.; Harris, T.B.; Van Buchem, M.; Gudnason, V.; Launer, L.J. Joint effect of mid- and late-life blood pressure on the brain: The AGES-Reykjavik Study. Neurology 2014, 82, 2187–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firbank, M.J.; Wiseman, R.M.; Burton, E.J.; Saxby, B.K.; O’Brien, J.T.; Ford, G.A. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure: Brain atrophy, WMH change and blood pressure. J. Neurol. 2007, 254, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Stillman, C.M.; Esteban-Cornejo, I.; Brown, B.; Bender, C.M.; Erickson, K.I. Effects of Exercise on Brain and Cognition Across Age Groups and Health States. Trends Neurosci. 2020, 43, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Selvamani, Y.; Arokiasamy, P.; Chaudhary, M. Himanshu Association of sleep problems and sleep duration with self-rated health and grip strength among older adults in India and China: Results from the study on global aging and adult health (SAGE). J. Public Health 2018, 26, 697–707. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wu, Y.; Wang, T.; Li, Y.; Zhang, D. A prospective study on the association of sleep duration with grip strength among middle-aged and older Chinese. Exp. Gerontol. 2018, 103, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, T.W.; Kwok, T.; Leung, J.; Lee, J.S.W.; Ohlsson, C.; Vandenput, L.; Wing, Y.K.; Woo, J. Sleep Duration and Disturbances Were Associated With Testosterone Level, Muscle Mass, and Muscle Strength-A Cross-Sectional Study in 1274 Older Men. J. Am. Med. Dir. Assoc. 2015, 16, 630.e1–630.e6. [Google Scholar] [CrossRef]
- Wilckens, K.A.; Erickson, K.I.; Wheeler, M.E. Physical Activity and Cognition: A Mediating Role of Efficient Sleep. Behav. Sleep Med. 2018, 16, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, Q.; Zhao, W.; Herold, F.; Cheval, B.; Kong, Z.; Li, J.; Mueller, N.; Kramer, A.F.; Cui, J.; et al. Physical Activity and Inhibitory Control: The Mediating Role of Sleep Quality and Sleep Efficiency. Brain Sci. 2021, 11, 664. [Google Scholar] [CrossRef]
- Basile, G.; Catalano, A.; Mandraffino, G.; Crucitti, A.; Ciancio, G.; Morabito, N.; Lasco, A. Cognitive impairment and slow gait speed in elderly outpatients with arterial hypertension: The effect of blood pressure values. J. Am. Geriatr. Soc. 2015, 63, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 2021, 1–18. [Google Scholar]
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol. 2021, 1–16. [Google Scholar]
Variables | Male (3620) | Female (866) | |
---|---|---|---|
Age (in years) | 59.68 ± 0.19 | 59.39 ± 0.40 | |
Education (in years) | 7.54 ± 0.07 | 6.59 ± 0.18 | |
Setting (in %) | Rural | 59.01 | 52.89 |
Urban | 40.99 | 47.11 | |
Alcohol consumption (in %) | Yes | 70.80 | 53.00 |
No | 29.20 | 47.00 | |
Smoking (in %) | Never | 20.75 | 86.14 |
Current | 64.71 | 10.00 | |
Past | 14.54 | 3.86 | |
Work physical activity (in %) | ≤150 min/week | 76.24 | 83.72 |
>150 min/week | 23.76 | 16.28 | |
Leisure physical activity (in %) | ≤150 min/week | 97.29 | 97.69 |
>150 min/week | 2.71 | 2.31 | |
Stroke (in %) | Yes | 3.15 | 2.08 |
No | 96.85 | 97.92 | |
Diabetes (in %) | Yes | 4.63 | 4.52 |
No | 95.37 | 95.48 | |
Handgrip strength (kg) | 33.74 ± 0.18 | 22.95 ± 0.28 | |
Digit span forward (score) | 7.33 ± 0.03 | 7.21 ± 0.05 | |
Digit span backward (score) | 3.67 ± 0.02 | 3.06 ± 0.05 | |
Verbal fluency (score) | 13.82 ± 0.08 | 12.77 ± 0.15 | |
Delay recall (score) | 5.19 ± 0.04 | 5.13 ± 0.08 |
Variables | Q3 (1.579–6.347) | Q2 (1.147–1.578) | Q1 (0.224–1.146) | p Value |
---|---|---|---|---|
Male | ||||
Age (n = 3421) (in years) | 55.46 ± 0.30 | 60.49 ± 0.29 | 65.21 ± 0.37 | p < 0.001 |
Handgrip strength (kg) | 42.46 ± 0.23 | 32.68 ± 0.14 | 21.30 ± 0.22 | p < 0.001 |
Digit span forward (n = 3414) (score) | 7.61 ± 0.04 | 7.37 ± 0.04 | 6.90 ± 0.05 | p < 0.001 |
Digit span backward (n = 3406) (score) | 3.81 ± 0.04 | 3.60 ± 0.04 | 3.50 ± 0.05 | p < 0.001 |
Verbal fluency (n = 3414) (score) | 14.53 ± 0.14 | 13.80 ± 0.14 | 12.84 ± 0.17 | p < 0.001 |
Delay recall (n = 3409) (score) | 5.58 ± 0.06 | 5.22 ± 0.06 | 4.67 ± 0.08 | p < 0.001 |
Female | ||||
Age (n = 829) (in years) | 53.98 ± 1.53 | 55.22 ± 0.76 | 61.20 ± 0.47 | p < 0.001 |
Handgrip strength (kg) | 37.23 ± 1.00 | 29.23 ± 0.28 | 19.29 ± 0.25 | p < 0.001 |
Digit span forward (n = 829) (score) | 7.41 ± 0.19 | 7.51 ± 0.09 | 7.13 ± 0.06 | p = 0.02 |
Digit span backward (n = 827) (score) | 3.57 ± 0.15 | 3.25 ± 0.09 | 2.96 ± 0.06 | p < 0.001 |
Verbal fluency (n = 829) (score) | 14.05 ± 0.55 | 13.19 ± 0.32 | 12.52 ± 0.19 | p = 0.014 |
Delay recall (n = 825) (score) | 6.07 ± 0.19 | 5.84 ± 0.15 | 4.86 ± 0.10 | p < 0.001 |
Variables | Q1 | Q2 B (95% Confidence Interval) | Q3 B (95% Confidence Interval) | R2 | |
---|---|---|---|---|---|
Digit span forward (n = 3534) | Total | Reference | 0.18 (0.07, 0.30) *** | 0.20 (0.09, 0.32) *** | 0.11 |
Male | Reference | 0.27 (0.14, 0.40) *** | 0.31 (0.18, 0.44) *** | 0.12 | |
Female | Reference | 0.11 (−0.14,0.37) | −0.12 (−0.51, 0.28) | 0.12 | |
Digit span backward (n = 3530) | Total | Reference | 0.01 (−0.09, 0.12) | −0.04 (−0.07, 0.15) | 0.16 |
Male | Reference | −0.05 (−0.17, 0.08) | −0.05 (−0.18, 0.07) | 0.15 | |
Female | Reference | −0.12 (−0.35, 0.12) | −0.07 (−0.43, 0.30) | 0.25 | |
Verbal fluency (n = 3534) | Total | Reference | 0.39 (−0.11, 0.79) | 0.63 (0.22, 1.05) ** | 0.09 |
Male | Reference | 0.46 (−0.01, 0.93) | 0.64 (0.16, 1.11) ** | 0.09 | |
Female | Reference | 0.14 (−0.94, 0.67) | 0.55 (−0.71, 1.84) | 0.13 | |
Delay recall (n = 3532) | Total | Reference | 0.19 (0.01, 0.37) * | 0.15 (−0.03, 0.33) | 0.13 |
Male | Reference | 0.22 (0.01, 0.42) * | 0.22 (0.01,0.42) * | 0.13 | |
Female | Reference | 0.27 (−0.14, 0.70) | 0.31 (−0.32,0.95) | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Herold, F.; Zhang, Y.; Lei, Y.; Kramer, A.F.; Jiao, C.; Yu, Q.; Doig, S.; Li, J.; Yan, Z.; et al. Higher Handgrip Strength Is Linked to Better Cognitive Performance in Chinese Adults with Hypertension. Brain Sci. 2021, 11, 985. https://doi.org/10.3390/brainsci11080985
Lu S, Herold F, Zhang Y, Lei Y, Kramer AF, Jiao C, Yu Q, Doig S, Li J, Yan Z, et al. Higher Handgrip Strength Is Linked to Better Cognitive Performance in Chinese Adults with Hypertension. Brain Sciences. 2021; 11(8):985. https://doi.org/10.3390/brainsci11080985
Chicago/Turabian StyleLu, Shenghua, Fabian Herold, Yanjie Zhang, Yuruo Lei, Arthur F. Kramer, Can Jiao, Qian Yu, Scott Doig, Jinming Li, Zhe Yan, and et al. 2021. "Higher Handgrip Strength Is Linked to Better Cognitive Performance in Chinese Adults with Hypertension" Brain Sciences 11, no. 8: 985. https://doi.org/10.3390/brainsci11080985
APA StyleLu, S., Herold, F., Zhang, Y., Lei, Y., Kramer, A. F., Jiao, C., Yu, Q., Doig, S., Li, J., Yan, Z., Kuang, J., Wang, T., & Zou, L. (2021). Higher Handgrip Strength Is Linked to Better Cognitive Performance in Chinese Adults with Hypertension. Brain Sciences, 11(8), 985. https://doi.org/10.3390/brainsci11080985