Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Der Cruyssen, K.; Vereeck, L.; Saeys, W.; Remmen, R. Prognostic factors for discharge destination after acute stroke: A comprehensive literature review. Disabil. Rehabil. 2014, 37, 1214–1227. [Google Scholar] [CrossRef] [PubMed]
- Meijer, R.; Ihnenfeldt, D.S.; De Groot, I.J.M.; Van Limbeek, J.; Vermeulen, M.; De Haan, R.J. Prognostic factors for ambulation and activities of daily living in the subacute phase after stroke. A systematic review of the literature. Clin. Rehabil. 2003, 17, 119–129. [Google Scholar] [CrossRef]
- Paolucci, S.; Bragoni, M.; Coiro, P.; De Angelis, D.; Fusco, F.R.; Morelli, D.; Venturiero, V.; Pratesi, L. Quantification of the Probability of Reaching Mobility Independence at Discharge from a Rehabilitation Hospital in Nonwalking Early Ischemic Stroke Patients: A Multivariate Study. Cerebrovasc. Dis. 2008, 26, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, S.; Iosa, M.; Coiro, P.; Venturiero, V.; Savo, A.; DE Angelis, D.; Morone, G. Post-stroke Depression Increases Disability More Than 15% in Ischemic Stroke Survivors: A Case-Control Study. Front. Neurol. 2019, 10, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolucci, S.; DI Vita, A.; Massicci, R.; Traballesi, M.; Bureca, I.; Matano, A.; Iosa, M.; Guariglia, C. Impact of participation on rehabilitation results: A multivariate study. Eur. J. Phys. Rehabil. Med. 2012, 48, 455–466. [Google Scholar]
- Iosa, M.; Galeoto, G.; De Bartolo, D.; Russo, V.; Ruotolo, I.; Spitoni, G.; Ciancarelli, I.; Tramontano, M.; Antonucci, G.; Paolucci, S.; et al. Italian Version of the Pittsburgh Rehabilitation Participation Scale: Psychometric Analysis of Validity and Reliability. Brain Sci. 2021, 11, 626. [Google Scholar] [CrossRef]
- Oczkowski, W.J.; Barreca, S. Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities. Arch. Phys. Med. Rehabil. 1997, 78, 340–345. [Google Scholar] [CrossRef]
- Sonoda, S.; Chino, N.; Domen, K.; Saitoh, E. Changes in Impairment and Disability from the Third to the Sixth Month after Stroke and Its Relationship Evaluated by an Artificial Neural Network. Am. J. Phys. Med. Rehabil. 1997, 76, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.; Jung, I.-Y.; Ku, Y.; Kim, Y. Machine-Learning-Based Rehabilitation Prognosis Prediction in Patients with Ischemic Stroke Using Brainstem Auditory Evoked Potential. Diagnostyics 2021, 11, 673. [Google Scholar] [CrossRef]
- Thakkar, H.K.; Liao, W.-W.; Wu, C.-Y.; Hsieh, Y.-W.; Lee, T.-H. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J. Neuroeng. Rehabil. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Iwamoto, Y.; Imura, T.; Tanaka, R.; Imada, N.; Inagawa, T.; Araki, H.; Araki, O. Development and Validation of Machine Learning-Based Prediction for Dependence in the Activities of Daily Living after Stroke Inpatient Rehabilitation: A Decision-Tree Analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105332. [Google Scholar] [CrossRef]
- Harari, Y.; O’Brien, M.K.; Lieber, R.L.; Jayaraman, A. Inpatient stroke rehabilitation: Prediction of clinical outcomes using a machine-learning approach. J. Neuroeng. Rehabil. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Imura, T.; Inoue, Y.; Tanaka, R.; Matsuba, J.; Umayahara, Y. Clinical Features for Identifying the Possibility of Toileting Independence after Convalescent Inpatient Rehabilitation in Severe Stroke Patients: A Decision Tree Analysis Based on a Nationwide Japan Rehabilitation Database. J. Stroke Cerebrovasc. Dis. 2021, 30, 105483. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients with Stroke Unable to Return to Work. Front. Neurol. 2021, 12, 650542. [Google Scholar] [CrossRef]
- Iosa, M.; Capodaglio, E.; Persechino, B.; Pelà, S.; Ghanbari Ghooshchy, S.; Tramontano, M.; Morone, G.; Paolucci, S.; De Angelis, D.; Panigazzi, M. Instrumented assessment of visuomotor coordination in patients with stroke after neurorehabilitation. G. Ital. Med. Lav. Erg. 2021, 43. in press. [Google Scholar]
- Winters, C.; Van Wegen, E.E.H.; Daffertshofer, A.; Kwakkel, G. Generalizability of the Proportional Recovery Model for the Upper Extremity after an Ischemic Stroke. Neurorehabilit. Neural Repair 2014, 29, 614–622. [Google Scholar] [CrossRef]
- Stinear, C.M.; Barber, P.A.; Petoe, M.; Anwar, S.; Byblow, W.D. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 2012, 135, 2527–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, S.W.-S.; Wong, S.K.-M.; Wong, C.M.-Y. Profiles of functional outcomes in stroke rehabilitation for Chinese population: A cluster analysis. Neurorehabilitation 2009, 25, 129–135. [Google Scholar] [CrossRef]
- Paolucci, S.; Antonucci, G.; Grasso, M.G.; Bragoni, M.; Coiro, P.; De Angelis, D.; Fusco, F.R.; Morelli, D.; Venturiero, V.; Troisi, E.; et al. Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation: A matched comparison. Stroke 2003, 34, 2861–2865. [Google Scholar] [CrossRef] [Green Version]
- Matano, A.; Iosa, M.; Guariglia, C.; Pizzamiglio, L.; Paolucci, S. Does outcome of neuropsychological treatment in patients with unilateral spatial neglect after stroke affect functional outcome? Eur. J. Phys. Rehabil. Med. 2015, 51, 737–743. [Google Scholar]
- Morone, G.; Masiero, S.; Coiro, P.; De Angelis, D.; Venturiero, V.; Paolucci, S.; Iosa, M. Clinical features of patients who might benefit more from walking robotic training. Restor. Neurol. Neurosci. 2018, 36, 293–299. [Google Scholar] [CrossRef]
- Paolucci, S.; Antonucci, G.; Gialloreti, E.; Traballesi, M.; Lubich, S.; Pratesi, L.; Palombi, L.; Giattoreti, E. Predicting Stroke Inpatient Rehabilitation Outcome: The Prominent Role of Neuropsychological Disorders. Eur. Neurol. 1996, 36, 385–390. [Google Scholar] [CrossRef]
- Paolucci, S.; Bragoni, M.; Coiro, P.; De Angelis, D.; Fusco, F.R.; Morelli, D.; Venturiero, V.; Pratesi, L. Is sex a prognostic factor in stroke rehabilitation? A matched comparison. Stroke 2006, 37, 2989–2994. [Google Scholar] [CrossRef]
- Gosman-Hedström, G.; Claesson, L.; Blomstrand, C. Consequences of severity at stroke onset for health-related quality of life (HRQL) and informal care: A 1-year follow-up in elderly stroke survivors. Arch. Gerontol. Geriatr. 2008, 47, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Bivona, U.; Villalobos, D.; De Luca, M.; Zilli, F.; Ferri, G.; Lucatello, S.; Iannetti, M.; Cellupica, L.; Mungiello, F.; Sterzo, P.L.; et al. Psychological status and role of caregivers in the neuro-rehabilitation of patients with severe Acquired Brain Injury (ABI). Brain Inj. 2020, 34, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N.; Okuhara, Y.; Iiyama, T.; Fujimoto, Y.; Takekawa, H.; Origasa, H.; Kawanishi, Y.; Yamaguchi, T. Effects of smoking on outcomes after acute atherothrombotic stroke in Japanese men. J. Neurol. Sci. 2013, 335, 164–168. [Google Scholar] [CrossRef]
- Ovbiagele, B.; Weir, C.J.; Saver, J.L.; Muir, K.W.; Lees, K.R. Effect of Smoking Status on Outcome after Acute Ischemic Stroke. Cerebrovasc. Dis. 2006, 21, 260–265. [Google Scholar] [CrossRef]
- Bang, O.Y.; Park, H.Y.; Lee, P.H.; Kim, G.M.; Chung, C.S.; Lee, K.H. Improved outcome after atherosclerotic stroke in male smoker. J. Neurol. Sci. 2007, 260, 43–48. [Google Scholar] [CrossRef]
- Ovbiagele, B.; Saver, J.L. The smoking-thrombolysis paradox and acute ischemic stroke. Neurology 2005, 65, 293–295. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.Y.; Ahn, S.H.; Jang, M.U.; Oh, M.S.; Kim, C.H.; Yu, K.H.; Lee, B.C. Smoking is Not a Good Prognostic Factor following First-Ever Acute Ischemic Stroke. J. Stroke 2015, 17, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Gerner, S.T.; Reichl, J.; Custal, C.; Brandner, S.; Eyüpoglu, I.Y.; Lücking, H.; Hoelter, P.; Kallmünzer, B.; Huttner, H.B. Long-Term Complications and Influence on Outcome in Patients Surviving Spontaneous Subarachnoid Hemorrhage. Cerebrovasc. Dis. 2020, 49, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Iosa, M.; Paolucci, T.; Muzzioli, L.; Paolucci, S. Relationship between Body Mass Index and Rehabilitation Outcomes in Subacute Stroke with Dysphagia. Am. J. Phys. Med. Rehabil. 2019, 98, 608–612. [Google Scholar] [CrossRef]
- Di Poggio, M.B.; Finocchi, C.; Brizzo, F.; Altomonte, F.; Bovis, F.; Mavilio, N.; Serrati, C.; Malfatto, L.; Mancardi, G.L.; Balestrino, M. Management of acute ischemic stroke, thrombolysis rate, and predictors of clinical outcome. Neurol. Sci. 2018, 40, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Hsiao, M.-Y.; Wang, T.-G. Prognostic factors of functional outcome in post-acute stroke in the rehabilitation unit. J. Formos. Med. Assoc. 2021. in Press. [Google Scholar] [CrossRef]
- Sale, P.; Ferriero, G.; Ciabattoni, L.; Cortese, A.M.; Ferracuti, F.; Romeo, L.; Piccione, F.; Masiero, S. Predicting Motor and Cognitive Improvement Through Machine Learning Algorithm in Human Subject that Underwent a Rehabilitation Treatment in the Early Stage of Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2962–2972. [Google Scholar] [CrossRef]
- Iosa, M.; Guariglia, C.; Matano, A.; Paolucci, S.; Pizzamiglio, L. Recovery of personal neglect. Eur. J. Phys. Rehabil. Med. 2015, 52, 791–798. [Google Scholar]
Variables | Total Sample | Analyzed Sample | Test Sample | |
---|---|---|---|---|
General Variables at Admission | N | 2522 | 1522 | 1000 |
Age (years) | 67.9 ± 13.7 | 68.0 ± 13.9 | 67.9 ± 13.4 | |
Time from stroke (days) | 31.7 ± 25.8 | 31.8 ± 26.5 | 31.4 ± 24.6 | |
BI-score | 30.1 ± 27.3 | 30.9 ± 27.3 | 28.9 ± 27.4 | |
Analyzed Dichotomous Factors | Gender (male) | 53.6% | 53.8% | 53.2% |
Age ≥ 65 years | 66.0% | 66.7% | 64.8% | |
Time from stroke ≤ 30 days | 63.4% | 63.5% | 63.2% | |
BI-score at admission < 20 | 45.5% | 43.9% | 48.0% | |
Side of stroke (Right) | 55.6% | 54.3% | 57.6% | |
Type of stroke (Ischemic) | 83.9% | 84.4% | 83.1% | |
Family support (≥3 visits/week) | 83.7% | 85.0% | 81.7% | |
Hypertension | 60.0% | 60.1% | 60.0% | |
Heart problems | 33.5% | 34.2% | 32.6% | |
Diabetes | 18.6% | 18.8% | 18.2% | |
Smoker | 16.3% | 16.8% | 15.5% | |
Other risk factors | 42.2% | 43.6% | 40.0% | |
Depression post-stroke | 33.7% | 34.0% | 33.4% | |
Depression pre-stroke | 1.5% | 1.7% | 1.1% | |
Epilepsy | 6.8% | 6.9% | 6.7% | |
Bamford classification PACI | 44.4% | 44.4% | 44.3% | |
Bamford classification TACI | 18.0% | 18.0% | 18.1% | |
Bamford classification LACI | 11.4% | 11.8% | 10.8% | |
Bamford classification POCI | 9.9% | 10.2% | 9.5% | |
Infarctions in MCA | 54.3% | 53.1% | 56.3% | |
Lacunar infarctions | 11.1% | 11.6% | 10.5% | |
Uncertain territories | 7.4% | 8.1% | 6.3% | |
Vertebrobasilar infarctions | 9.9% | 10.1% | 9.6% | |
Putaminal hemorrhages | 4.9% | 4.6% | 5.3% | |
Thalamic hemorrhages | 3.9% | 3.5% | 4.5% | |
Lobar hemorrhages | 7.3% | 7.4% | 7.1% | |
Broca’s aphasia | 14.9% | 15.6% | 13.8% | |
Wernicke’s aphasia | 3.6% | 3.1% | 4.3% | |
Global aphasia | 15.4% | 14.0% | 17.5% | |
Unilateral Spatial Neglect | 21.1% | 21.9% | 20.0% | |
Discharge Outcomes | Discharged at home | 87.7% | 88.8% | 86.0% |
Deaths | 2.5% | 2.7% | 2.1% | |
Transferred in emergency | 9.8% | 8.5% | 11.9% | |
BI-score at discharge | 63.6 ± 30.8 | 64.3 ± 30.5 | 62.5 ± 31.2 | |
Analyzed Outcome | BI-score > 75 | 37.7% | 39.1% | 35.6% |
Factors | Binary Logistic Regression | FFNN Importance | Cluster Level | ||||
---|---|---|---|---|---|---|---|
Beta | SE | p | OR | 95% CI | |||
Low BI-score | −2.225 | 0.159 | <0.001 | 0.108 | 0.079–0.148 | Instrumented assessment of visuomotor coordination in patients with stroke after neurorehabilitation | 1° |
Neglect | −1.599 | 0.196 | <0.001 | 0.202 | 0.138–0.297 | 75.4% | 2° |
Global aphasia | −1.422 | 0.289 | <0.001 | 0.241 | 0.137–0.425 | 100% | Excluded |
Older Age | −0.971 | 0.143 | <0.001 | 0.379 | 0.286–0.501 | 79.0% | 2° |
TACI | −0.545 | 0.270 | 0.043 | 0.580 | 0.342–0.984 | 52.3% | 3° |
Time from stroke | 0.812 | 0.148 | <0.001 | 2.251 | 1.685–3.007 | 32.0% | 3° |
Family support | 0.453 | 0.194 | 0.019 | 1.573 | 1.076–2.299 | 16.7% | Excluded |
Smoker | 0.394 | 0.184 | 0.032 | 1.484 | 1.034–2.128 | 35.6% | Excluded |
Sample | Parameters | Regression Analysis | Neural Network | Cluster Analysis |
---|---|---|---|---|
Analyzed sample (N = 1522) | Accuracy | 76.6% | 74.0% | 76.1% |
Sensitivity | 66.9% | 64.1% | 80.0% | |
Specificity | 82.9% | 80.0% | 73.7% | |
Test Sample (N = 1000) | Accuracy | 78.5% | 70.1% | 78.2% |
Sensitivity | 72.5% | 58.3% | 82.6% | |
Specificity | 81.8% | 77.6% | 75.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosa, M.; Morone, G.; Antonucci, G.; Paolucci, S. Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses. Brain Sci. 2021, 11, 1147. https://doi.org/10.3390/brainsci11091147
Iosa M, Morone G, Antonucci G, Paolucci S. Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses. Brain Sciences. 2021; 11(9):1147. https://doi.org/10.3390/brainsci11091147
Chicago/Turabian StyleIosa, Marco, Giovanni Morone, Gabriella Antonucci, and Stefano Paolucci. 2021. "Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses" Brain Sciences 11, no. 9: 1147. https://doi.org/10.3390/brainsci11091147
APA StyleIosa, M., Morone, G., Antonucci, G., & Paolucci, S. (2021). Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses. Brain Sciences, 11(9), 1147. https://doi.org/10.3390/brainsci11091147