Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design, Procedure, and Tasks
2.3. Signal Acquisition and Processing
2.4. Data Analysis
3. Results
3.1. Spatial Patterns
3.2. ERD Strength
4. Discussion
4.1. Feasibility of Instrumental Assessment
4.2. Alternative to Feedback Need Not Be Nothing
4.3. Open-Loop Versus Closed-Loop Imagery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guillot, A.; Collet, C. Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. Int. Rev. Sport Exerc. Psychol. 2008, 1, 31–44. [Google Scholar] [CrossRef]
- López, N.D.; Monge Pereira, E.; Centeno, E.J.; Miangolarra Page, J.C. Motor imagery as a complementary technique for functional recovery after stroke: A systematic review. Top. Stroke Rehabil. 2019, 26, 576–587. [Google Scholar] [CrossRef]
- Carrasco, D.G.; Cantalapiedra, J.A. Effectiveness of motor imagery or mental practice in functional recovery after stroke: A systematic review. Neurol. Engl. Ed. 2016, 31, 43–52. [Google Scholar] [CrossRef]
- Machado, T.C.; Carregosa, A.A.; Santos, M.S.; Ribeiro, N.M.d.S.; Melo, A. Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: A systematic review. Top. Stroke Rehabil. 2019, 26, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Guerra, Z.F.; Lucchetti, A.L.; Lucchetti, G. Motor imagery training after stroke: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- Shih, J.J.; Krusienski, D.J.; Wolpaw, J.R. Brain-computer interfaces in medicine. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2012; pp. 268–279. [Google Scholar]
- Neuper, C.; Scherer, R.; Reiner, M.; Pfurtscheller, G. Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn. Brain Res. 2005, 25, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.Z.; Neuper, C. Could anyone use a BCI? In Brain-Computer Interfaces; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–54. [Google Scholar]
- Vasilyev, A.; Liburkina, S.; Yakovlev, L.; Perepelkina, O.; Kaplan, A. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Neuropsychologia 2017, 97, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Pearce, A.J.; Loporto, M.; Morris, T.; Holmes, P.S. The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behav. Brain Res. 2012, 226, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.S.; Collins, D.J. The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. J. Appl. Sport Psychol. 2001, 13, 60–83. [Google Scholar] [CrossRef]
- McFarland, D.J.; Sarnacki, W.A.; Wolpaw, J.R. Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 2010, 7, 036007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuper, C.; Schlögl, A.; Pfurtscheller, G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. J. Clin. Neurophysiol. 1999, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Sollfrank, T.; Ramsay, A.; Perdikis, S.; Williamson, J.; Murray-Smith, R.; Leeb, R.; Millán, J.; Kübler, A. The effect of multimodal and enriched feedback on SMR-BCI performance. Clin. Neurophysiol. 2016, 127, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M. Closing the sensorimotor loop: Haptic feedback facilitates decoding of motor imagery. J. Neural Eng. 2011, 8, 036005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vourvopoulos, A.; Ferreira, A.; i Badia, S.B. NeuRow: An immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback. In International Conference on Physiological Computing Systems; SciTePress: Setúbal, Portugal, 2016; pp. 43–53. [Google Scholar]
- Frolov, A.A.; Huúsek, D.A.; Biryukova, E.V.; Bobrov, P.D.; Mokienko, O.A.; Alexandrov, A. Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Netw. World 2017, 27, 107. [Google Scholar] [CrossRef] [Green Version]
- Sherlin, L.H.; Arns, M.; Lubar, J.; Heinrich, H.; Kerson, C.; Strehl, U.; Sterman, M.B. Neurofeedback and basic learning theory: Implications for research and practice. J. Neurother. 2011, 15, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 2017, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Guillot, A.; Collet, C.; Nguyen, V.A.; Malouin, F.; Richards, C.; Doyon, J. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 2008, 41, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Mokienko, O.; Chervyakov, A.; Kulikova, S.; Bobrov, P.; Chernikova, L.; Frolov, A.; Piradov, M. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects. Front. Comput. Neurosci. 2013, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Wondrusch, C.; Schuster, C. A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: Development and evaluation. Front. Hum. Neurosci. 2013, 7, 477. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.X. Comparison of linear spatial filters for identifying oscillatory activity in multichannel data. J. Neurosci. Methods 2017, 278, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.; Rogers, C. Symbolic description of factorial models for analysis of variance. J. R. Stat. Soc. Ser. C Appl. Stat. 1973, 22, 392–399. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Mellerio, C.; Lapointe, M.-N.; Roca, P.; Charron, S.; Legrand, L.; Meder, J.-F.; Oppenheim, C.; Cachia, A. Identification of reliable sulcal patterns of the human Rolandic region. Front. Hum. Neurosci. 2016, 10, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichiorri, F.; Morone, G.; Petti, M.; Toppi, J.; Pisotta, I.; Molinari, M.; Paolucci, S.; Inghilleri, M.; Astolfi, L.; Cincotti, F. Brain–computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 2015, 77, 851–865. [Google Scholar] [CrossRef]
- Jackson, P.L.; Lafleur, M.F.; Malouin, F.; Richards, C.; Doyon, J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. Med. Rehabil. 2001, 82, 1133–1141. [Google Scholar] [CrossRef]
- Hashimoto, R.; Rothwell, J.C. Dynamic changes in corticospinal excitability during motor imagery. Exp. Brain Res. 1999, 125, 75–81. [Google Scholar] [CrossRef]
- Schmidt, S.; Bathe-Peters, R.; Fleischmann, R.; Rönnefarth, M.; Scholz, M.; Brandt, S.A. Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum. Brain Mapp. 2015, 36, 40–49. [Google Scholar] [CrossRef]
- Schuster, C.; Hilfiker, R.; Amft, O.; Scheidhauer, A.; Andrews, B.; Butler, J.; Kischka, U.; Ettlin, T. Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, T.; Kimura, A.; Ushiba, J. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin. Neurophysiol. 2013, 124, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Lotze, M.; Cohen, L.G. Volition and imagery in neurorehabilitation. Cogn. Behav. Neurol. 2006, 19, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Witte, M.; Ninaus, M.; Neuper, C.; Wood, G. Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Front. Hum. Neurosci. 2013, 7, 695. [Google Scholar] [CrossRef] [Green Version]
- Rimbert, S.; Gayraud, N.; Bougrain, L.; Clerc, M.; Fleck, S. Can a subjective questionnaire be used as brain-computer interface performance predictor? Front. Hum. Neurosci. 2019, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.; Cho, H.; Ahn, S.; Jun, S.C. User’s self-prediction of performance in motor imagery brain–computer interface. Front. Hum. Neurosci. 2018, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm. 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, S.; Di Rienzo, F.; Collet, C.; Collins, A.; Guillot, A. Multiple roles of motor imagery during action observation. Front. Hum. Neurosci. 2013, 7, 807. [Google Scholar] [CrossRef] [Green Version]
- Meers, R.; Nuttall, H.E.; Vogt, S. Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery. Cortex 2020, 126, 322–333. [Google Scholar] [CrossRef]
- Cumming, J.; Hall, C.; Harwood, C.; Gammage, K. Motivational orientations and imagery use: A goal profiling analysis. J. Sports Sci. 2002, 20, 127–136. [Google Scholar] [CrossRef]
- Dunsky, A.; Dickstein, R.; Marcovitz, E.; Levy, S.; Deutsch, J. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch. Phys. Med. Rehabil. 2008, 89, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M.R.; Bray, S.R.; Albinson, J.G. Pre-competition imagery, self-efficacy and performance in collegiate golfers. J. Sports Sci. 2002, 20, 697–705. [Google Scholar] [CrossRef] [PubMed]
Estimate (BLUE) | SEpred | CI 95% | tStat | DF | p-Value | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
s01 | 13.39 | 2.00 | 9.46 | 17.32 | 6.6879 | 631 | 5 × 10−11 |
s02 | −3.61 | 2.06 | −7.66 | 0.45 | −1.7466 | 631 | 0.08119 |
s03 | −1.53 | 2.09 | −5.63 | 2.57 | −0.7309 | 631 | 0.46510 |
s04 | 0.80 | 2.15 | −3.41 | 5.02 | 0.3744 | 631 | 0.70825 |
s05 | 3.81 | 2.29 | −0.69 | 8.30 | 1.6626 | 631 | 0.09689 |
s06 | −0.59 | 2.06 | −4.63 | 3.44 | −0.2880 | 631 | 0.77342 |
s07 | −2.61 | 2.17 | −6.88 | 1.66 | −1.2001 | 631 | 0.23055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilyev, A.N.; Nuzhdin, Y.O.; Kaplan, A.Y. Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sci. 2021, 11, 1234. https://doi.org/10.3390/brainsci11091234
Vasilyev AN, Nuzhdin YO, Kaplan AY. Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sciences. 2021; 11(9):1234. https://doi.org/10.3390/brainsci11091234
Chicago/Turabian StyleVasilyev, Anatoly N., Yury O. Nuzhdin, and Alexander Y. Kaplan. 2021. "Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice?" Brain Sciences 11, no. 9: 1234. https://doi.org/10.3390/brainsci11091234
APA StyleVasilyev, A. N., Nuzhdin, Y. O., & Kaplan, A. Y. (2021). Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sciences, 11(9), 1234. https://doi.org/10.3390/brainsci11091234