Functional Changes in Brain Activity Using Hypnosis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Design
- Population: Adults of all genders (>18 years)
- Intervention: Medical subject headings (MeSH) terms and keywords related to the topic studied were applied. The Study Quality-assessment tool (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools; last access: 12 January 2022) of the National Heart, Lung and Blood Institute was used to rate the quality of the included papers.
- Comparator: Different imaging techniques that show different functional changes in brain activity: computer tomography (CT), electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetic resonance imaging (MRI), positron emission tomography (PET), regional cerebral blood flow (rCBF) and single-photon emission computer tomography (SPECT).
- Outcome: The quality-control tool of the National Herat, Lung and Blood Institute included criteria about adequate randomization, participation rate, similarity of groups/population and adherence to the intervention protocols, as well as sources of bias (publication bias, eligible persons, exposure measures, blinding, validity, selection bias, information bias, etc.). For each part, yes/no/cannot determine was selected. In the end, each study/paper was scored as good if the study had the least risk for bias, fair if the study was predisposed to some bias and poor if it was possible that the study was biased.
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Information Sources and Search Strategy
2.5. Study Selection
2.6. Data Collection, Summary Measures and Synthesis of Results
2.7. Assessment of Bias across Studies
3. Results
4. Discussion
5. Conclusions
- Despite a broad heterogenicity of included studies, evidence of functional changes in brain activity using hypnosis could be determined.
- EMG startle amplitudes indicate higher activity over the frontal brain area; amplitudes using SERP showed similar results.
- EEG oscillations of θ activity are positively associated with response to hypnosis; EEG results showed greater amplitudes for highly hypnotizable subjects over the left hemisphere.
- Less ACC and insula activity was observed during hypnosis.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elkins, G.R.; Barabasz, A.F.; Council, J.R.; Spiegel, D. Advancing research and practice: The revised APA Division 30 definition of hypnosis. Am. J. Clin. Hypn. 2015, 57, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Revenstorf, D.; Peter, B. Hypnose in Psychotherapie, Psychosomatik und Medizin [Hypnosis in Psychotherapy, Psychosomatics and Medicine]; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2015. [Google Scholar]
- Revenstorf, D. Scientific advisory board on psychotherapy. Dtsch. Arztebl. Int. 2012, 109, 265. [Google Scholar] [CrossRef] [PubMed]
- Halsband, U.; Mueller, S.; Hinterberger, T.; Strickner, S. Plasticity changes in the brain in hypnosis and meditation. Contemp. Hypn. 2009, 26, 194–215. [Google Scholar] [CrossRef]
- Rainville, P.; Hofbauer, R.K.; Bushnell, M.C.; Duncan, G.H.; Price, D.D. Hypnosis modulates activity in brain structures involved in the regulation of consciousness. J. Cogn. Neurosci. 2002, 14, 887–901. [Google Scholar] [CrossRef]
- Halsband, U.; Wolf, T.G. Current neuroscientific research database findings of brain activity changes after hypnosis. Am. J. Clin. Hypn. 2021, 63, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Faymonville, M.E.; Boly, M.; Laureys, S. Functional neuroanatomy of the hypnotic state. J. Physiol. Paris 2006, 99, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Adachi, T.; Hakimian, S. Brain oscillations, hypnosis, and hypnotizability. Am. J. Clin. Hypn. 2015, 57, 230–253. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Deveraux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PloS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- The Guidelines Manual; NICE National Institute for Health and Care Excellence: London, UK, 2012; pp. 1–199.
- London, P.; Hart, J.; Leibovitz, M. EEG alpha rhythms and susceptibility to hypnosis. Nature 1968, 219, 71–72. [Google Scholar] [CrossRef]
- Hart, J.; Engstrom, D.; London, P. Hypnotic susceptibility increased by EEG alpha training. Nature 1970, 227, 1261–1262. [Google Scholar]
- Morgan, A.; Macdonald, H.; Hilgard, E. EEG alpha: Lateral asymmetry related to task, and hypnotizablitiy. Psychophysiology 1974, 11, 275–282. [Google Scholar] [CrossRef]
- Tebecis, A.K.; Provins, K.A.; Farnbach, R.W.; Pentony, P. Hypnosis and the EEG. J. Nerv. Ment. Dis. 1975, 161, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Graffin, N.F.; Ray, W.J.; Lundy, R. EEG concomitants of hypnosis and hypnotic susceptibility. J. Abnorm. Psychol. 1995, 104, 123–131. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Perrone, M. EEG asymmetry and heart rate during experience of hypnotic analgesia in high and low hypnotizables. Int. J. Psychophysiol. 1996, 21, 163–175. [Google Scholar] [CrossRef]
- De Pascalis, V.; Ray, W.J.; Tranquillo, I.; D’Amico, D. EEG activity and heart rate during recall of emotional events in hypnosis: Relationships with hypnotizability and suggestibility. Int. J. Psychophysiol. 1998, 29, 255–275. [Google Scholar] [CrossRef]
- Maquet, P.; Faymonville, M.; Degueldre, C.; Delfiore, G.; Franck, G.; Luxen, A.; Lamy, M. Functional neuroanatomy of hypnotic state. Biol. Psychiatry 1999, 45, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Rainville, P.; Hofbauer, R.; Paus, T.; Duncan, G.; Bushnell, M.; Price, D. Cerebral mechanisms of hypnotic induction and suggestion. J. Cogn. Neurosci. 1999, 11, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Faymonville, M.E.; Laureys, S.; Degueldre, C.; Del Fiore, G.; Luxen, A.; Franck, G.; Lamy, M.; Maquet, P. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 2000, 92, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.; Barabasz, A.; Barabasz, M.; Warner, D. Hypnosis and distraction differ in their effects on cold pressor pain. Am. J. Clin. Hypn. 2000, 43, 137–148. [Google Scholar] [CrossRef]
- De Pascalis, V.; Magurano, M.; Bellusci, A.; Chen, A. Somatosensory event-related potential and autonomic activity to varying pain reduction cognitive strategies in hypnosis. Clin. Neurophysiol. 2001, 112, 1475–1485. [Google Scholar] [CrossRef]
- Friedrich, M.; Trippe, R.; Özcan, M.; Weiss, T.; Hecht, H.; Miltner, W. Laser-evoked potentials to noxious stimulation during hypnotic analgesia and distraction of attention suggest different brain mechanisms of pain control. Psychophysiology 2001, 38, 768–776. [Google Scholar] [CrossRef]
- Isotani, T.; Lehmann, D.; Pascual-Marqui, R.; Kochi, K.; Wackermann, J.; Saito, N.; Yagyu, T.; Kinoshita, T.; Sasada, K. EEG source localization and global dimensional complexity in high- and low- hypnotizable subjects: A pilot study. Neuropsychobiology 2001, 44, 192–198. [Google Scholar] [CrossRef]
- De Pascalis, V.; Cacace, I.; Massicolle, F. Perception and modulation of pain in waking and hypnosis: Functional significance of phase-gamma oscillations. Pain 2004, 112, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Harandi, A.; Esfandani, A.; Shakibaei, F. The effect of hypnotherapy on procedural pain and state anxiety related to physiotherapy in women hospitalized in a burn out. Contemp. Hypn. 2004, 21, 28–34. [Google Scholar] [CrossRef]
- Wager, T.; Rilling, J.; Smith, E.; Sokolik, A.; Casey, K.; Davidson, R.; Kosslyn, S.; Rose, R.; Cohen, J. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 2004, 303, 1162–1167. [Google Scholar] [CrossRef]
- Egner, T.; Jamieson, G.; Gruzelier, J. Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage 2005, 27, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Bonnington, S.; Tang, B.K.; Hawken, M.; Gruzelier, J. Relaxation strategies and enhancement of hypnotic susceptibility: EEG neurofeedback, progressive muscle relaxation and self-hypnosis. Brain Res. Bull. 2006, 71, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Eitner, S.; Wichmann, M.; Schultze-Mosgau, S.; Schlegel, A.; Lehrer, A.; Heckmann, J.; Heckmann, S.; Holst, S. Neurophysiologic and long-term effects of clinical hypnosis in oral and maxillofacial treatment—A comparative interdisciplinary clinical study. Int. J. Clin Exp. Hypn. 2006, 54, 457–479. [Google Scholar]
- Saadat, H.; Drummond-Lewis, J.; Marantes, I.; Kaplan, D.; Saadat, A.; Wang, S.M.; Kain, Z. Hypnosis reduces preoperative anxiety in adult patients. Anesth. Analg. 2006, 102, 1394–1396. [Google Scholar] [CrossRef]
- Milling, L.; Shores, J.; Coursen, E.; Menario, D.; Farris, C. Response expectancies, treatment credibility, and hypnotic suggestibility: Mediator and moderator effects in hypnotic and cognitive-behavioral pain interventions. Ann. Behav. Med. 2007, 33, 167–178. [Google Scholar] [CrossRef]
- De Pascalis, V.; Cacace, I.; Massicolle, F. Focused analgesia in waking and hypnosis: Effects on pain, memory, and somatosensory event-related potentials. Pain 2008, 134, 197–208. [Google Scholar] [CrossRef]
- Marc, I.; Rainville, P.; Masse, B.; Dufresne, A.; Verreault, R.; Vaillancourt, L.; Dodin, S. Women’s views regarding hypnosis for the control of surgical pain in the context of a randomized clinical trial. J. Womens Health 2009, 18, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Vanhaudenhuyse, A.; Boly, M.; Baltea, E.; Schnakers, C.; Moonen, G.; Luxen, A.; Lamy, M.; Degueldre, C.; Brichant, J.F.; Maquet, P.; et al. Pain and non-pain processing during hypnosis: A thulium-YAG event-related fMRI study. NeuroImage 2009, 47, 1047–1054. [Google Scholar] [CrossRef]
- Krummenacher, P.; Candia, V.; Folkers, G. Prefrontal cortex modulates placebo analgesia. Pain 2010, 148, 368–374. [Google Scholar] [CrossRef]
- Miltner, W.; Trippe, R.; Hecht, H.; Weiss, T. Hypnotic analgesia as a consequence of abandoned cortical communication. Int. J. Psychophysiol. 2010, 77, 206–238. [Google Scholar] [CrossRef]
- Brockardt, J.; Reeves, S.; Frohman, H.; Madan, A.; Jensen, M.; Patterson, D.; Barth, K.; Smith, A.; Gracely, R.; George, M. Fast left prefrontal rTMS acutely suppresses analgesic effects of perceived controllability on the emotional component of pain experience. Pain 2011, 152, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Pyka, M.; Burgmer, M.; Lenzen, T.; Pioch, R.; Dannlowski, U.; Pfleiderer, B.; Ewert, A.W.; Heuft, G.; Arolt, V.; Konrad, C. Brain correlates of hypnotic paralysis—A resting state fMRI study. NeuroImage 2011, 56, 2173–2182. [Google Scholar] [CrossRef]
- Terhune, D.; Cardena, E.; Lindgren, M. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 2011, 48, 1444–1447. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, F.; Martucci, K.; Kraft, R.; Gordon, N.; McHaffie, J.; Coghill, R. Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 2011, 31, 5540–5548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, N.; Sprenger, C.; Scholz, J.; Wiech, K.; Bingel, U. White matter integrity of the descending pain modulatory system is associated with interindividual differences in placebo analgesia. Pain 2012, 153, 2210–2217. [Google Scholar] [CrossRef]
- Hilbert, K.; Evens, R.; Maslowski, N.I.; Wittchen, H.U.; Lueken, U. Fear processing in dental phobia during crossmodal symptom provocation: An fMRI study. Biomed. Res. Int. 2014, 2014, 196353. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D.; Gruzelier, J.H. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. Int. J. Clin. Exp. Hypn. 2013, 49, 185–206. [Google Scholar] [CrossRef]
- Dufresne, A.; Rainville, P.; Dodin, S.; Barré, P.; Masse, B.; Verreault, R.; Marc, I. Hypnotizability and opinions about hypnosis in a clinical trial for the hypnotic control of pain and anxiety during pregnancy termination. Int. J. Clin. Exp. Hypn. 2014, 58, 82–101. [Google Scholar] [CrossRef]
- Jensen, M.; Sherlin, L.; Fregni, F.; Gianas, A.; Howe, J.D.; Hakimian, S. Baseline brain activity predicts response to neuromodulatory pain treatment. Pain Med. 2014, 15, 2055–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsband, U.; Wolf, T.G. Functional changes in brain activity after hypnosis in patients with dental phobia. J. Physiol. Paris 2015, 109, 131–142. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Scacchia, P. Hypnotizability and placebo analgesia in waking and hypnosis as modulators of auditory ttartle responses in healthy women: An ERP study. PLoS ONE 2016, 11, e0159135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; White, M.P.; Greicius, M.D.; Waelde, L.C.; Spiegel, D. Brain activity and functional connectivity associated with hypnosis. Cereb. Cortex 2017, 27, 4083–4093. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.M.; Ehde, D.M.; Day, M.; Turner, A.P.; Hakimian, S.; Gertz, K.; Ciol, M.; McCall, A.; Kincaid, C.; Petter, M.W.; et al. The chronic pain skills study: Protocol for a randomized controlled trial comparing hypnosis, mindfulness meditation and pain education in Veterans. Contemp. Clin. Trials 2020, 90, 105935. [Google Scholar] [CrossRef]
- De Benedittis, G. Neural mechanisms of hypnosis and meditation-induced analgesia: A narrative review. Int. J. Clin. Exp. Hypn. 2021, 69, 363–382. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Carli, G. Individual traits and pain treatment: The case of hypnotizability. Front. Neurosci. 2021, 15, 683045. [Google Scholar] [CrossRef]
- DeSouza, D.D.; Stimpson, K.H.; Baltusis, L.; Sacchet, M.D.; Gu, M.; Hurd, R.; Wu, H.; Yeomans, D.C.; Williams, N.; Spiegel, D. Association between anterior cingulate neurochemical concentration and individual differences in hypnotizability. Cereb. Cortex 2020, 30, 3644–3654. [Google Scholar] [CrossRef] [PubMed]
No | Author | Type of Study | Method | Quality Assessment |
---|---|---|---|---|
1 | London et al. [11] | OS | EEG | Fair |
2 | Hart [12] | CCS | EEG | Good |
3 | Morgan et al. [13] | OS | EEG | Poor |
4 | Tebecis et al. [14] | CCS | EEG | Fair |
5 | Graffin et al. [15] | CS | EEG | Good |
6 | De Pascalis et al. [16] | CSS | EEG | Fair |
7 | De Pascalis et al. [17] | COS | EEG | Fair |
8 | Maquet et al. [18] | CCS | PET | Fair |
9 | Rainville et al. [19] | OS | EEG, PET | Fair |
10 | Faymonville et al. [20] | CSS | PET | Fair |
11 | Freeman et al. [21] | CSS | EEG | Good |
12 | De Pascalis et al. [22] | CCS | rCBF + EEG | Good |
13 | Friedrich et al. [23] | CSS | Thulium YAG Laser + EEG | Fair |
14 | Isotani et al. [24] | CSS | EEG | Fair |
15 | De Pascalis et al. [25] | OS | EEG | Good |
16 | Harandi et al. [26] | RCT | RIA | Poor |
17 | Wager et al. [27] | CCS | fMRI | Poor |
18 | Egner et al. [28] | OS | EEG, fMRI | Fair |
19 | Batty et al. [29] | RCT | EEG | Fair |
20 | Eitner et al. [30] | CICS | EEG | Good |
21 | Saadat et al. [31] | RCT | STAI | Good |
22 | Milling et al. [32] | RCT | CURSS | Fair |
23 | De Pascalis et al. [33] | CCS | EEG | Fair |
24 | Marc et al. [34] | RCT | SP | Good |
25 | Vanhaudenhuyse et al. [35] | CSS | fMRI | Good |
26 | Krummenacher, [36] | CCS | rTMS | Poor |
27 | Miltner et al. [37] | CSS | EEG | Poor |
28 | Brockardt et al. [38] | RCS | rTMS | Good |
29 | Pyka et al. [39] | CT | fMRI | Poor |
30 | Trehune et al. [40] | CCS | EEG | Poor |
31 | Zeidan et al. [41] | RCS | MRI | Good |
32 | Stein et al. [42] | PCS | MRI | Good |
33 | Hilbert et al. [43] | CCS | fMRI | Good |
34 | Williams et al. [44] | OS | EEG | Good |
35 | Dufresne et al. [45] | RCT | OAH, SHSS:A | Fair |
36 | Jensen et al. [46] | RCT | EEG | Fair |
37 | Halsband et al. [47] | CCS | fMRI | Good |
38 | De Pascalis et al. [48] | CCS | EEG, EMG | Good |
39 | Jiang et al. [49] | OS | fMRI | Good |
40 | Williams et al. [50] | RCT | EEG | Good |
No | Author | Neutral Hypnosis | Suggestion for Analgesia |
---|---|---|---|
1 | London et al. [11] | x | |
2 | Hart [12] | x | |
3 | Morgan et al. [13] | x | |
4 | Tebecis et al. [14] | x | |
5 | Graffin et al. [15] | x | |
6 | De Pascalis et al. [16] | x | |
7 | De Pascalis et al. [17] | x | |
8 | Maquet et al. [18] | x | |
9 | Rainville et al. [19] | x | x |
10 | Faymonville et al. [20] | x | |
11 | Freeman et al. [21] | x | |
12 | De Pascalis et al. [22] | x | |
13 | Friedrich et al. [23] | x | |
14 | Isotani et al. [24] | x | |
15 | De Pascalis et al. [25] | x | |
16 | Harandi et al. [26] | x | |
17 | Wager et al. [27] | x | |
18 | Egner et al. [28] | x | |
19 | Batty et al. [29] | x | |
20 | Eitner et al. [30] | x | |
21 | Saadat et al. [31] | x | |
22 | Milling et al. [32] | x | |
23 | De Pascalis et al. [33] | x | |
24 | Marc et al. [34] | x | |
25 | Vanhaudenhuyse et al. [35] | x | |
26 | Krummenacher, [36] | x | |
27 | Miltner et al. [37] | x | |
28 | Brockardt et al. [38] | x | |
29 | Pyka et al. [39] | x | |
30 | Terhune et al. [40] | x | |
31 | Zeidan et al. [41] | x | |
32 | Stein et al. [42] | x | |
33 | Hilbert et al. [43] | x | |
34 | Williams et al. [44] | x | |
35 | Dufresne et al. [45] | x | |
36 | Jensen et al. [46] | x | |
37 | Halsband & Wolf [47] | x | |
38 | De Pascalis et al. [48] | x | |
39 | Jiang et al. [49] | x | |
40 | Williams et al. [50] | x |
No | Author | Description of Data Obtained in Hypnotized Participants | Description of Data Obtained in Non-Hypnotized Participants |
---|---|---|---|
1 | London et al. [11] | High α duration | Lower α duration → problem in high susceptibility: they produce high α under waking condition; no change observed under hypnosis |
2 | Hart [12] | Rhythm and high susceptibility are positively related | |
3 | Morgan et al. [13] | More α activity in highly hypnotizable subjects | More α activity |
4 | Tebecis et al. [14] |
| No differences in mean power of the whole EEG spectrum |
5 | Graffin et al. [15] |
| |
6 | De Pascalis et al. [16] | High susceptibility:
| High susceptibility: less reduction in pain and distress |
7 | De Pascalis et al. [17] | High susceptibility:
|
|
8 | Maquet et al. [18] | Activation of widespread, mainly left-sided set of cortical areas involving occipital, parietal, precentral, premotor, ventrolateral and prefrontal cortices, as well as a few right-sided regions (occipital, anterior, cingulate cortices) | Activates the anterior part of both temporal lobes, basal forebrain structures and some left mesiotemporal areas (not hypnotized but listening to autobiographical material) |
9 | Rainville et al. [19] |
|
|
10 | Faymonville et al. [20] |
|
|
11 | Freeman et al. [21] | High hypnotizability:
| Significantly greater high θ activity for high hypnotizability as compared to low hypnotizability at parietal and occipital sites |
12 | De Pascalis et al. [22] | High susceptibility:
| P3 peaks were smaller during focused analgesia, deep relaxation and dissociated imagery conditions compared to placebo |
13 | Friedrich et al. [23] |
| N200 and P320 were higher |
14 | Isotani et al. [24] | High susceptibility:
| Before hypnosis, high and low hypnotizability were in different brain electric states, with more posterior brain activity gravity centers (excitatory right, routine or relaxation left) and higher dimensional complexity (higher arousal) in high than the low-hypnotizability group |
15 | De Pascalis et al. [25] |
| Phase-ordered γ scores over central scalp site predicted subjects’ pain ratingsPhase-ordered γ scores over frontal scalp site predicted pain ratings for high, medium and low hypnotizability |
16 | Harandi et al. [26] | Degree of pain and anxiety caused by physiotherapy decreased significantly | |
17 | Wager et al. [27] |
| |
18 | Egner et al. [28] | High susceptibility:
| Cognitive-control-related LFC activity did not differ |
19 | Batty et al. [29] |
| |
20 | Eitner et al. [30] |
| β waves indicating an awakened state |
21 | Saadat et al. [31] |
| Increase of 47% in anxiety |
22 | Milling et al. [32] | The extent of mediation increased as participants gained more experience with the interventions | |
23 | De Pascalis et al. [33] | High susceptibility:
|
|
24 | Marc et al. [34] |
| |
25 | Vanhaudenhuyse et al. [35] |
|
|
26 | Krummenacher, [36] | Significant increase in pain threshold and tolerance | The sensation of pain was not affected |
27 | Miltner et al. [37] |
| Slow oscillations within focused and extended brain areas broke down completely during hypnotic oscillations, as compared to the distraction condition |
28 | Brockardt et al. [38] |
| |
29 | Pyka et al. [39] |
| Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged compared to hypnotized participants |
30 | Terhune et al. [40] | High suggestibility:
| |
31 | Zeidan et al. [41] |
| |
32 | Stein et al. [42] |
| |
33 | Hilbert et al. [43] | Increased activation in the insula, anterior cingulate cortex, orbitofrontal cortex, and thalamus in dental-phobic subjects compared to healthy controls during auditory stimulation | Activation in orbitofrontal and prefrontal gyri in dental-phobic subjects related to processes of cognitive control |
34 | Williams et al. [44] | High susceptibility:
| High susceptibility:
|
35 | Dufresne et al. [45] | No significant difference | |
36 | Jensen et al. [46] |
| |
37 | Halsband & Wolf [47] |
|
|
38 | De Pascalis et al. [48] |
|
|
39 | Jiang et al. [49] | Reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN(executive control network)) and the insula in the SN (salience network), and reduced connectivity between the ECN (DLPFC) and the DMN (PCC(posterior cingulate cortex)) | |
40 | Williams et al. [50] | Protocol only |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, T.G.; Faerber, K.A.; Rummel, C.; Halsband, U.; Campus, G. Functional Changes in Brain Activity Using Hypnosis: A Systematic Review. Brain Sci. 2022, 12, 108. https://doi.org/10.3390/brainsci12010108
Wolf TG, Faerber KA, Rummel C, Halsband U, Campus G. Functional Changes in Brain Activity Using Hypnosis: A Systematic Review. Brain Sciences. 2022; 12(1):108. https://doi.org/10.3390/brainsci12010108
Chicago/Turabian StyleWolf, Thomas Gerhard, Karin Anna Faerber, Christian Rummel, Ulrike Halsband, and Guglielmo Campus. 2022. "Functional Changes in Brain Activity Using Hypnosis: A Systematic Review" Brain Sciences 12, no. 1: 108. https://doi.org/10.3390/brainsci12010108
APA StyleWolf, T. G., Faerber, K. A., Rummel, C., Halsband, U., & Campus, G. (2022). Functional Changes in Brain Activity Using Hypnosis: A Systematic Review. Brain Sciences, 12(1), 108. https://doi.org/10.3390/brainsci12010108