Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder
Abstract
:1. Introduction
2. Specialization vs. Valence
2.1. Lesion Studies
2.2. Interoperative Brain Stimulation
2.3. Perceptual/Split-Brain Studies
2.4. Electroencephalography Studies
2.5. Volumetric Studies
2.6. Molecular and Nuclear Imaging Studies
2.7. White Matter Studies
2.8. Task-Related fMRI
2.9. Functional Connectivity fMRI Studies
3. Implications for rTMS for MDD
Author Contributions
Funding
Conflicts of Interest
References
- McGilchrist, I. The Master and His Emissary; Yale University Press: London, UK, 2019; ISBN 978-030-024-745-9. [Google Scholar]
- Gotts, S.J.; Jo, H.J.; Wallace, G.L.; Saad, Z.S.; Cox, R.W.; Martin, A. Two Distinct Forms of Functional Lateralization in the Human Brain. Proc. Natl. Acad. Sci. USA 2013, 110, E3435–E3444. [Google Scholar] [CrossRef] [Green Version]
- Hirnstein, M.; Hugdahl, K.; Hausmann, M. Cognitive Sex Differences and Hemispheric Asymmetry: A Critical Review of 40 Years of Research. Laterality 2019, 24, 204–252. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.W.; Kragel, J.E.; Madden, D.J.; Cabeza, R. The Architecture of Cross-Hemispheric Communication in the Aging Brain: Linking Behavior to Functional and Structural Connectivity. Cereb. Cortex 2012, 22, 232–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gainotti, G. A Historical Review of Investigations on Laterality of Emotions in the Human Brain. J. Hist. Neurosci. 2019, 28, 23–41. [Google Scholar] [CrossRef]
- Miller, G.A.; Crocker, L.D.; Spielberg, J.M.; Infantolino, Z.P.; Heller, W. Issues in Localization of Brain Function: The Case of Lateralized Frontal Cortex in Cognition, Emotion, and Psychopathology. Front. Integr. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shobe, E.R. Independent and Collaborative Contributions of the Cerebral Hemispheres to Emotional Processing. Front. Hum. Neurosci. 2014, 8, 230. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Rubio, B.; Pallardó, F.; Catalá, M.D. Rapid-Rate Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex in Drug-Resistant Depression. Lancet 1996, 348, 233–237. [Google Scholar] [CrossRef]
- Feinsod, M.; Kreinin, B.; Chistyakov, A.; Klein, E. Preliminary Evidence for a Beneficial Effect of Low-Frequency, Repetitive Transcranial Magnetic Stimulation in Patients with Major Depression and Schizophrenia. Depress. Anxiety 1998, 7, 65–68. [Google Scholar] [CrossRef]
- Couturier, J.L. Efficacy of Rapid-Rate Repetitive Transcranial Magnetic Stimulation in the Treatment of Depression: A Systematic Review and Meta-Analysis. J. Psychiatry Neurosci. 2005, 30, 83–90. [Google Scholar]
- Berlim, M.; Eynde, F.; Tovar-Perdomo, S.; Daskalakis, Z. Response, Remission and Drop-out Rates Following High-Frequency Repetitive Transcranial Magnetic Stimulation (RTMS) for Treating Major Depression: A Systematic Review and Meta-Analysis of Randomized, Double-Blind and Sham-Controlled Trials. Psychol. Med. 2013, 44, 225–239. [Google Scholar] [CrossRef]
- Cao, X.; Deng, C.; Su, X.; Guo, Y. Response and Remission Rates Following High-Frequency vs. Low-Frequency Repetitive Transcranial Magnetic Stimulation (RTMS) Over Right DLPFC for Treating Major Depressive Disorder (MDD): A Meta-Analysis of Randomized, Double-Blind Trials. Front. Psychiatry 2018, 9, 413. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wu, B.; Wang, Y.; Li, Q.; Wei, Y.; Yang, D.; Mu, J.; Zhu, D.; Zou, D.; et al. Left versus Right Repetitive Transcranial Magnetic Stimulation in Treating Major Depression: A Meta-Analysis of Randomised Controlled Trials. Psychiatry Res. 2013, 210, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Fairchild, J.K.; Mi, Z.; Biswas, K.; Davis-Karim, A.; Phibbs, C.S.; Forman, S.D.; Thase, M.; Williams, L.M.; Etkin, A.; et al. Effect of Repetitive Transcranial Magnetic Stimulation on Treatment-Resistant Major Depression in US Veterans: A Randomized Clinical Trial. JAMA Psychiatry 2018, 75, 884–893. [Google Scholar] [CrossRef]
- Cocchi, L.; Zalesky, A. Personalized Transcranial Magnetic Stimulation in Psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 731–741. [Google Scholar] [CrossRef]
- Ahdab, R.; Ayache, S.S.; Brugières, P.; Goujon, C.; Lefaucheur, J.-P. Comparison of “Standard” and “Navigated” Procedures of TMS Coil Positioning over Motor, Premotor and Prefrontal Targets in Patients with Chronic Pain and Depression. Neurophysiol. Clin./Clin. Neurophysiol. 2010, 40, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Baeken, C.; Duprat, R.; Wu, G.-R.; De Raedt, R.; van Heeringen, K. Subgenual Anterior Cingulate–Medial Orbitofrontal Functional Connectivity in Medication-Resistant Major Depression: A Neurobiological Marker for Accelerated Intermittent Theta Burst Stimulation Treatment? Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Blumberger, D.M.; Vila-Rodriguez, F.; Thorpe, K.E.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J.; et al. Effectiveness of Theta Burst versus High-Frequency Repetitive Transcranial Magnetic Stimulation in Patients with Depression (THREE-D): A Randomised Non-Inferiority Trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef]
- Cash, R.F.H.; Weigand, A.; Zalesky, A.; Siddiqi, S.H.; Downar, J.; Fitzgerald, P.B.; Fox, M.D. Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biol. Psychiatry 2020, 90, 689–700. [Google Scholar] [CrossRef]
- Boes, A.D.; Kelly, M.S.; Trapp, N.T.; Stern, A.P.; Press, D.Z.; Pascual-Leone, A. Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty. J. Neuropsychiatry Clin. Neurosci. 2018, 30, 173–179. [Google Scholar] [CrossRef]
- Hecht, D. Depression and the Hyperactive Right-Hemisphere. Neurosci. Res. 2010, 68, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Stewart, J.W.; Hellerstein, D.; Alvarenga, J.E.; Alschuler, D.; McGrath, P.J. Right Brain, Left Brain in Depressive Disorders. Psychiatry Res. 2012, 196, 250–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aftanas, L.I.; Varlamov, A.A. Effects of Alexithymia on the Activity of the Anterior and Posterior Areas of the Cortex of the Right Hemisphere in Positive and Negative Emotional Activation. Neurosci. Behav. Physiol. 2007, 37, 67–73. [Google Scholar] [CrossRef]
- Gainotti, G.; Caltagirone, C.; Zoccolotti, P. Left/Right and Cortical/Subcortical Dichotomies in the Neuropsychological Study of Human Emotions. Cogn. Emot. 1993, 7, 71–93. [Google Scholar] [CrossRef]
- Heller, W.; Nitschke, J.B.; Miller, G.A. Lateralization in Emotion and Emotional Disorders. Curr. Dir. Psychol. Sci. 1998, 7, 26–32. [Google Scholar] [CrossRef]
- Davidson, R.J. Anterior Cerebral Asymmetry and the Nature of Emotion. Brain Cogn. 1992, 20, 125–151. [Google Scholar] [CrossRef]
- Davidson, R.J.; Irwin, W. The Functional Neuroanatomy of Emotion and Affective Style. Trends Cogn. Sci. 1999, 3, 11–21. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A.; Peterson, C.K. The Role of Asymmetric Frontal Cortical Activity in Emotion-Related Phenomena: A Review and Update. Biol. Psychol. 2010, 84, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Stewart, J.W.; McGrath, P.J. Right Brain, Left Brain in Depressive Disorders: Clinical and Theoretical Implications of Behavioral, Electrophysiological and Neuroimaging Findings. Neurosci. Biobehav. Rev. 2017, 78, 178–191. [Google Scholar] [CrossRef]
- Pizzagalli, D.A.; Nitschke, J.B.; Oakes, T.R.; Hendrick, A.M.; Horras, K.A.; Larson, C.L.; Abercrombie, H.C.; Schaefer, S.M.; Koger, J.V.; Benca, R.M.; et al. Brain Electrical Tomography in Depression: The Importance of Symptom Severity, Anxiety, and Melancholic Features. Biol. Psychiatry 2002, 52, 73–85. [Google Scholar] [CrossRef]
- Engels, A.S.; Heller, W.; Mohanty, A.; Herrington, J.D.; Banich, M.T.; Webb, A.G.; Miller, G.A. Specificity of Regional Brain Activity in Anxiety Types during Emotion Processing. Psychophysiology 2007, 44, 352–363. [Google Scholar] [CrossRef]
- Stewart, J.L.; Levin-Silton, R.; Sass, S.M.; Heller, W.; Miller, G.A. Anger Style, Psychopathology, and Regional Brain Activity. Emotion 2008, 8, 701–713. [Google Scholar] [CrossRef] [Green Version]
- Loo, C.K.; Sachdev, P.S.; Haindl, W.; Wen, W.; Mitchell, P.B.; Croker, V.M.; Malhi, G.S. High (15 Hz) and Low (1 Hz) Frequency Transcranial Magnetic Stimulation Have Different Acute Effects on Regional Cerebral Blood Flow in Depressed Patients. Psychol. Med. 2003, 33, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Speer, A.M.; Kimbrell, T.A.; Wassermann, E.M.; Repella, J.D.; Willis, M.W.; Herscovitch, P.; Post, R.M. Opposite Effects of High and Low Frequency RTMS on Regional Brain Activity in Depressed Patients. Biol. Psychiatry 2000, 48, 1133–1141. [Google Scholar] [CrossRef]
- Wassermann, E.M.; Wedegaertner, F.R.; Ziemann, U.; George, M.S.; Chen, R. Crossed Reduction of Human Motor Cortex Excitability by 1-Hz Transcranial Magnetic Stimulation. Neurosci. Lett. 1998, 250, 141–144. [Google Scholar] [CrossRef]
- Kennedy, S.H.; Evans, K.R.; Krüger, S.; Mayberg, H.S.; Meyer, J.H.; McCann, S.; Arifuzzman, A.I.; Houle, S.; Vaccarino, F.J. Changes in Regional Brain Glucose Metabolism Measured with Positron Emission Tomography after Paroxetine Treatment of Major Depression. Am. J. Psychiatry 2001, 158, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Limbic-Cortical Dysregulation: A Proposed Model of Depression. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 471–481. [Google Scholar] [CrossRef]
- George, M.S.; Wassermann, E.M.; Williams, W.A.; Callahan, A.; Ketter, T.A.; Basser, P.; Hallett, M.; Post, R.M. Daily Repetitive Transcranial Magnetic Stimulation (RTMS) Improves Mood in Depression. Neuroreport Int. J. Rapid Commun. Res. Neurosci. 1995, 6, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.; Mitchell, P.; Sachdev, P.; McDarmont, B.; Parker, G.; Gandevia, S. Double-Blind Controlled Investigation of Transcranial Magnetic Stimulation for the Treatment of Resistant Major Depression. Am. J. Psychiatry 1999, 156, 946–948. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, P.B.; Brown, T.L.; Marston, N.A.U.; Daskalakis, Z.J.; de Castella, A.; Kulkarni, J. Transcranial Magnetic Stimulation in the Treatment of Depression: A Double-Blind, Placebo-Controlled Trial. Arch. Gen. Psychiatry 2003, 60, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.; Kreinin, I.; Chistyakov, A.; Koren, D.; Mecz, L.; Marmur, S.; Ben-Shachar, D.; Feinsod, M. Therapeutic Efficacy of Right Prefrontal Slow Repetitive Transcranial Magnetic Stimulation in Major Depression: A Double-Blind Controlled Study. Arch. Gen. Psychiatry 1999, 56, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Mutz, J.; Edgcumbe, D.R.; Brunoni, A.R.; Fu, C.H.Y. Efficacy and Acceptability of Non-Invasive Brain Stimulation for the Treatment of Adult Unipolar and Bipolar Depression: A Systematic Review and Meta-Analysis of Randomised Sham-Controlled Trials. Neurosci. Biobehav. Rev. 2018, 92, 291–303. [Google Scholar] [CrossRef] [Green Version]
- George, M.S.; Ketter, T.A.; Post, R.M. Prefrontal Cortex Dysfunction in Clinical Depression. Depression 1994, 2, 59–72. [Google Scholar] [CrossRef]
- George, M.S.; Wassermann, E.M. Rapid-Rate Transcranial Magnetic Stimulation and ECT. Convuls. Ther. 1994, 10, 251–254. [Google Scholar] [PubMed]
- Baxendale, S. The Wada Test. Curr. Opin. Neurol. 2009, 22, 185–189. [Google Scholar] [CrossRef]
- Ahern, G.L.; Herring, A.M.; Tackenberg, J.N.; Schwartz, G.E.; Seeger, J.F.; Labiner, D.M.; Weinand, M.E.; Oommen, K.J. Affective Self-Report during the Intracarotid Sodium Amobarbital Test. J. Clin. Exp. Neuropsychol. 1994, 16, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.P.; Loring, D.W.; Meader, K.J.; Brooks, B.B. Hemispheric Specialization for Emotional Expression: A Reexamination of Results from Lntracarotid Administration of Sodium Amobarbital. Brain Cogn. 1990, 12, 14. [Google Scholar] [CrossRef]
- Perria, L.; Rosadini, F.; Rossi, G. Determination of Side of Cerebral Dominance with Amobarbital. Arch. Neurol. 1961, 4, 173–181. [Google Scholar] [CrossRef]
- Gainotti, G. Emotional Behavior and Hemispheric Side of the Lesion. Cortex 1972, 8, 41–55. [Google Scholar] [CrossRef]
- Robinson, R.G.; Kubos, K.L.; Starr, L.B.; Rao, K.; Price, T.R. Mood Disorder in Stroke Patients: Importance of Location of Lesion. Brain 1984, 107, 81–93. [Google Scholar] [CrossRef]
- Sackeim, H.A.; Greenberg, M.S.; Weiman, A.L.; Gur, R.C.; Hungerbuhler, J.P.; Geschwind, N. Hemispheric Asymmetry in the Expression of Positive and Negative Emotions: Neurologic Evidence. Arch. Neurol. 1982, 39, 210–218. [Google Scholar] [CrossRef] [PubMed]
- George, M.S.; Kellner, C.H.; Bernstein, H.; Goust, J.M. A Magnetic Resonance Imaging Investigation into Mood Disorders in Multiple Sclerosis: A Pilot Study. J. Nerv. Ment. Dis. 1994, 182, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.L.; Cooke, D.; Joutsa, J.; Siddiqi, S.H.; Ferguson, M.; Darby, R.R.; Soussand, L.; Horn, A.; Kim, N.Y.; Voss, J.L.; et al. A Human Depression Circuit Derived From Focal Brain Lesions. Biol. Psychiatry 2019, 86, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kendrick, K.M.; Lu, G.; Feng, J. The Fault Lies on the Other Side: Altered Brain Functional Connectivity in Psychiatric Disorders Is Mainly Caused by Counterpart Regions in the Opposite Hemisphere. Cereb. Cortex 2015, 25, 3475–3486. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, N.; Treat-Jacobson, D.J.; Lindquist, R. Poststroke Depression and Functional Outcome: A Critical Review of Literature. Heart Lung 2009, 38, 151–162. [Google Scholar] [CrossRef]
- Yu, L.; Liu, C.-K.; Chen, J.-W.; Wang, S.-Y.; Wu, Y.-H.; Yu, S.-H. Relationship Between Post-Stroke Depression and Lesion Location: A Meta-Analysis. Kaohsiung J. Med. Sci. 2004, 20, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Wei, N.; Yong, W.; Li, X.; Zhou, Y.; Deng, M.; Zhu, H.; Jin, H. Post-Stroke Depression and Lesion Location: A Systematic Review. J. Neurol. 2015, 262, 81–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Fang, Y.; Wang, S.; Zhou, H. The Association between Lesion Location, Sex and Poststroke Depression: Meta-Analysis. Brain Behav. 2017, 7, e00788. [Google Scholar] [CrossRef]
- Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A.; et al. Resting-State Connectivity Biomarkers Define Neurophysiological Subtypes of Depression. Nat. Med. 2017, 23, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Liston, C.; Chen, A.C.; Zebley, B.D.; Drysdale, A.T.; Gordon, R.; Leuchter, B.; Voss, H.U.; Casey, B.J.; Etkin, A.; Dubin, M.J. Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression. Biol. Psychiatry 2014, 76, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Menon, V. Large-Scale Brain Networks and Psychopathology: A Unifying Triple Network Model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Siddiqi, S.H.; Schaper, F.L.W.V.J.; Horn, A.; Hsu, J.; Padmanabhan, J.L.; Brodtmann, A.; Cash, R.F.H.; Corbetta, M.; Choi, K.S.; Dougherty, D.D.; et al. Brain Stimulation and Brain Lesions Converge on Common Causal Circuits in Neuropsychiatric Disease. Nat. Hum. Behav. 2021, 5, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. New Philosophy, Clinical Pearls, and Methods for Intraoperative Cognition Mapping and Monitoring “à La Carte” in Brain Tumor Patients. Neurosurgery 2021, 88, 919–930. [Google Scholar] [CrossRef]
- Fox, K.C.R.; Shi, L.; Baek, S.; Raccah, O.; Foster, B.L.; Saha, S.; Margulies, D.S.; Kucyi, A.; Parvizi, J. Intrinsic Network Architecture Predicts the Effects Elicited by Intracranial Electrical Stimulation of the Human Brain. Nat. Hum. Behav. 2020, 4, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Herbet, G.; Lafargue, G.; Bonnetblanc, F.; Moritz-Gasser, S.; Duffau, H. Is the Right Frontal Cortex Really Crucial in the Mentalizing Network? A Longitudinal Study in Patients with a Slow-Growing Lesion. Cortex 2013, 49, 2711–2727. [Google Scholar] [CrossRef]
- Herbet, G.; Lafargue, G.; Bonnetblanc, F.; Moritz-Gasser, S.; Menjot de Champfleur, N.; Duffau, H. Inferring a Dual-Stream Model of Mentalizing from Associative White Matter Fibres Disconnection. Brain 2014, 137, 944–959. [Google Scholar] [CrossRef]
- Giussani, C.; Pirillo, D.; Roux, F.-E. Mirror of the Soul: A Cortical Stimulation Study on Recognition of Facial Emotions: Clinical Article. J. Neurosurg. 2010, 112, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Kinoshita, M.; Okita, H.; Liu, Z.; Nakada, M. Preserving Right Pre-Motor and Posterior Prefrontal Cortices Contribute to Maintaining Overall Basic Emotion. Front. Hum. Neurosci. 2021, 15, 64. [Google Scholar] [CrossRef]
- Giussani, C.; Roux, F.-E.; Bello, L.; Lauwers-Cances, V.; Papagno, C.; Gaini, S.M.; Puel, M.; Démonet, J.-F. Who Is Who: Areas of the Brain Associated with Recognizing and Naming Famous Faces: Clinical Article. J. Neurosurg. 2009, 110, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Santos, C.; Gómez, E.; Velásquez, C.; Martino, J. Eliciting Smiles and Laughter During Intraoperative Electric Stimulation of the Cingulum: Surgical Scenario. World Neurosurg. 2020, 133, 55. [Google Scholar] [CrossRef]
- Bijanki, K.R.; Manns, J.R.; Inman, C.S.; Choi, K.S.; Harati, S.; Pedersen, N.P.; Drane, D.L.; Waters, A.C.; Fasano, R.E.; Mayberg, H.S.; et al. Cingulum Stimulation Enhances Positive Affect and Anxiolysis to Facilitate Awake Craniotomy. J. Clin. Investig. 2019, 129, 1152–1166. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.A. Probing the Happy Place. J. Clin. Investig. 2019, 129, 952–954. [Google Scholar] [CrossRef] [Green Version]
- Elias, G.J.B.; Germann, J.; Boutet, A.; Pancholi, A.; Beyn, M.E.; Bhatia, K.; Neudorfer, C.; Loh, A.; Rizvi, S.J.; Bhat, V.; et al. Structuro-Functional Surrogates of Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Brain 2021, awab284. [Google Scholar] [CrossRef]
- Cash, R.F.H.; Zalesky, A.; Thomson, R.H.; Tian, Y.; Cocchi, L.; Fitzgerald, P.B. Subgenual Functional Connectivity Predicts Antidepressant Treatment Response to Transcranial Magnetic Stimulation: Independent Validation and Evaluation of Personalization. Biol. Psychiatry 2019, 86, e5–e7. [Google Scholar] [CrossRef]
- Bryden, M. Laterality Functional Asymmetry in the Intact Brain; Elsevier: Amsterdam, The Netherlands, 1982; ISBN 978-032-315-542-7. [Google Scholar]
- Bruder, G.E.; Quitkin, F.M.; Stewart, J.W.; Martin, C.; Voglmaier, M.M.; Harrison, W.M. Cerebral Laterality and Depression: Differences in Perceptual Asymmetry among Diagnostic Subtypes. J. Abnorm. Psychol. 1989, 98, 177–186. [Google Scholar] [CrossRef]
- Bruder, G.E.; Wexler, B.E.; Stewart, J.W.; Price, L.H.; Quitkin, F.M. Perceptual Asymmetry Differences between Major Depression with or without a Comorbid Anxiety Disorder: A Dichotic Listening Study. J. Abnorm. Psychol. 1999, 108, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Schneier, F.R.; Stewart, J.W.; McGrath, P.J.; Quitkin, F. Left Hemisphere Dysfunction During Verbal Dichotic Listening Tests in Patients Who Have Social Phobia With or Without Comorbid Depressive Disorder. Am. J. Psychiatry 2004, 161, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Heller, W.; Etienne, M.A.; Miller, G.A. Patterns of Perceptual Asymmetry in Depression and Anxiety: Implications for Neuropsychological Models of Emotion and Psychopathology. J. Abnorm. Psychol. 1995, 104, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Stewart, J.W.; McGrath, P.J.; Ma, G.J.; Wexler, B.E.; Quitkin, F.M. Atypical Depression: Enhanced Right Hemispheric Dominance for Perceiving Emotional Chimeric Faces. J. Abnorm. Psychol. 2002, 111, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.S.; LeDoux, J.E. The Integrated Mind; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1978; ISBN 978-148-992-206-9. [Google Scholar]
- Benowitz, L.I.; Bear, D.M.; Rosenthal, R.; Mesulam, M.M.; Zaidel, E.; Sperry, R.W. Hemispheric Specialization in Nonverbal Communication. Cortex 1983, 19, 5–11. [Google Scholar] [CrossRef]
- Schmalhofer, F.; Perfetti, C.A. Higher Level Language Processes in the Brain: Inference and Comprehension Processes; Psychology Press: Hove, UK, 2007; ISBN 978-113-560-566-7. [Google Scholar]
- Paul, L.K.; Van Lancker-Sidtis, D.; Schieffer, B.; Dietrich, R.; Brown, W.S. Communicative Deficits in Agenesis of the Corpus Callosum: Nonliteral Language and Affective Prosody. Brain Lang. 2003, 85, 313–324. [Google Scholar] [CrossRef]
- Turk, A.A.; Brown, W.S.; Symington, M.; Paul, L.K. Social Narratives in Agenesis of the Corpus Callosum: Linguistic Analysis of the Thematic Apperception Test. Neuropsychologia 2010, 48, 43–50. [Google Scholar] [CrossRef]
- Baynes, K.; Gazzaniga, M.S. Consciousness, Introspection, and the Split-Brain: The Two Minds/One Body Problem. In The New Cognitive Neurosciences, 2nd ed.; Gazzaniga, M.S., Ed.; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Gainotti, G. The Role of the Right Hemisphere in Emotional and Behavioral Disorders of Patients With Frontotemporal Lobar Degeneration: An Updated Review. Front. Aging Neurosci. 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, I.A.; O’Hara, R.; Uijtdehaage, S.H.J.; Mandelkern, M.; Leuchter, A.F. Assessing the Accuracy of Topographic EEG Mapping for Determining Local Brain Function. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 408–414. [Google Scholar] [CrossRef]
- Nusslock, R.; Walden, K.; Harmon-Jones, E. Asymmetrical Frontal Cortical Activity Associated with Differential Risk for Mood and Anxiety Disorder Symptoms: An RDoC Perspective. Int. J. Psychophysiol. 2015, 98, 249–261. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Allen, J.J.B. Behavioral Activation Sensitivity and Resting Frontal EEG Asymmetry: Covariation of Putative Indicators Related to Risk for Mood Disorders. J. Abnorm. Psychol. 1997, 106, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Van der Vinne, N.; Vollebregt, M.A.; van Putten, M.J.A.M.; Arns, M. Frontal Alpha Asymmetry as a Diagnostic Marker in Depression: Fact or Fiction? A Meta-Analysis. NeuroImage Clin. 2017, 16, 79–87. [Google Scholar] [CrossRef]
- Grimshaw, G.M.; Carmel, D. An Asymmetric Inhibition Model of Hemispheric Differences in Emotional Processing. Front. Psychol. 2014, 5, 498. [Google Scholar] [CrossRef]
- Arns, M.; Bruder, G.; Hegerl, U.; Spooner, C.; Palmer, D.M.; Etkin, A.; Fallahpour, K.; Gatt, J.M.; Hirshberg, L.; Gordon, E. EEG Alpha Asymmetry as a Gender-Specific Predictor of Outcome to Acute Treatment with Different Antidepressant Medications in the Randomized ISPOT-D Study. Clin. Neurophysiol. 2016, 127, 509–519. [Google Scholar] [CrossRef]
- Kołodziej, A.; Magnuski, M.; Ruban, A.; Brzezicka, A. No Relationship between Frontal Alpha Asymmetry and Depressive Disorders in a Multiverse Analysis of Five Studies. eLife 2021, 10, e60595. [Google Scholar] [CrossRef]
- Van Tol, M.-J.; van der Wee, N.J.A.; van den Heuvel, O.A.; Nielen, M.M.A.; Demenescu, L.R.; Aleman, A.; Renken, R.; van Buchem, M.A.; Zitman, F.G.; Veltman, D.J. Regional Brain Volume in Depression and Anxiety Disorders. Arch. Gen. Psychiatry 2010, 67, 1002–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, E.; Fornito, A.; Pantelis, C.; Yücel, M. Gray Matter Abnormalities in Major Depressive Disorder: A Meta-Analysis of Voxel Based Morphometry Studies. J. Affect. Disord. 2012, 138, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Jia, Z.; Huang, X.; Lui, S.; Kuang, W.; Sweeney, J.A.; Gong, Q. Brain Structural Abnormalities in Emotional Regulation and Sensory Processing Regions Associated with Anxious Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 94, 109676. [Google Scholar] [CrossRef] [PubMed]
- Canu, E.; Kostić, M.; Agosta, F.; Munjiza, A.; Ferraro, P.M.; Pesic, D.; Copetti, M.; Peljto, A.; Tosevski, D.L.; Filippi, M. Brain Structural Abnormalities in Patients with Major Depression with or without Generalized Anxiety Disorder Comorbidity. J. Neurol. 2015, 262, 1255–1265. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Luo, Q.; Luo, Y.; Chen, Y.; Lui, S.; Wu, M.; Zhu, H.; Kemp, G.J.; Gong, Q. Brain Grey Matter Volume Alterations Associated with Antidepressant Response in Major Depressive Disorder. Sci. Rep. 2017, 7, 10464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boes, A.D.; Uitermarkt, B.D.; Albazron, F.M.; Lan, M.J.; Liston, C.; Pascual-Leone, A.; Dubin, M.J.; Fox, M.D. Rostral Anterior Cingulate Cortex Is a Structural Correlate of Repetitive TMS Treatment Response in Depression. Brain Stimul. 2018, 11, 575–581. [Google Scholar] [CrossRef]
- Lan, M.J.; Chhetry, B.T.; Liston, C.; Mann, J.J.; Dubin, M. Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex Induces Brain Morphological Changes in Regions Associated with a Treatment Resistant Major Depressive Episode: An Exploratory Analysis. Brain Stimul. 2016, 9, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holroyd, C.B.; Umemoto, A. The Research Domain Criteria Framework: The Case for Anterior Cingulate Cortex. Neurosci. Biobehav. Rev. 2016, 71, 418–443. [Google Scholar] [CrossRef]
- Dalhuisen, I.; Ackermans, E.; Martens, L.; Mulders, P.; Bartholomeus, J.; de Bruijn, A.; Spijker, J.; van Eijndhoven, P.; Tendolkar, I. Longitudinal Effects of RTMS on Neuroplasticity in Chronic Treatment-Resistant Depression. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R. Adult Neuroplasticity: A New “Cure” for Major Depression? J. Psychiatry Neurosci. 2019, 44, 147–150. [Google Scholar] [CrossRef]
- Bench, C.J.; Friston, K.J.; Brown, R.G.; Scott, L.C.; Frackowiak, R.S.J.; Dolan, R.J. The Anatomy of Melancholia—Focal Abnormalities of Cerebral Blood Flow in Major Depression. Psychol. Med. 1992, 22, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.R., Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M. Cerebral Metabolic Rates for Glucose in Mood Disorders: Studies With Positron Emission Tomography and Fluorodeoxyglucose F 18. Arch. Gen. Psychiatry 1985, 42, 441–447. [Google Scholar] [CrossRef]
- Martinot, J.-L.; Hardy, P.; Feline, A.; Huret, J.-D.; Mazoyer, B.; Attar-Levy, D.; Pappata, S.; Syrota, A. Left Prefrontal Glucose Hypometabolism in the Depressed State: A Confirmation. Am. J. Psychiatry 1990, 147, 1313–1317. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Oxley, T.J.; Laird, A.R.; Kulkarni, J.; Egan, G.F.; Daskalakis, Z.J. An Analysis of Functional Neuroimaging Studies of Dorsolateral Prefrontal Cortical Activity in Depression. Psychiatry Res. Neuroimaging 2006, 148, 33–45. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Etkin, A.; Furman, D.J.; Lemus, M.G.; Johnson, R.F.; Gotlib, I.H. Functional Neuroimaging of Major Depressive Disorder: A Meta-Analysis and New Integration of Baseline Activation and Neural Response Data. Am. J. Psychiatry 2012, 169, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herwig, U.; Lampe, Y.; Juengling, F.D.; Wunderlich, A.; Walter, H.; Spitzer, M.; Schönfeldt-Lecuona, C. Add-on RTMS for Treatment of Depression: A Pilot Study Using Stereotaxic Coil-Navigation According to PET Data. J. Psychiatr. Res. 2003, 37, 267–275. [Google Scholar] [CrossRef]
- Padberg, F.; George, M.S. Repetitive Transcranial Magnetic Stimulation of the Prefrontal Cortex in Depression. Exp. Neurol. 2009, 219, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Paillère Martinot, M.-L.; Galinowski, A.; Ringuenet, D.; Gallarda, T.; Lefaucheur, J.-P.; Bellivier, F.; Picq, C.; Bruguière, P.; Mangin, J.-F.; Rivière, D.; et al. Influence of Prefrontal Target Region on the Efficacy of Repetitive Transcranial Magnetic Stimulation in Patients with Medication-Resistant Depression: A [18F]-Fluorodeoxyglucose PET and MRI Study. Int. J. Neuropsychopharmacol. 2010, 13, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, K.N.; Iacovides, A.; Gerasimou, G.; Fotiou, F.; Ioannidou, C.; Bascialla, F.; Grammaticos, P.; Kaprinis, G. The Relationship of Regional Cerebral Blood Flow with Subtypes of Major Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 537–546. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, X.; Wu, Q.; Yang, C.; Kuang, W.; Du, M.; Lui, S.; Yue, Q.; Chan, R.C.K.; Kemp, G.J.; et al. Is Depression a Disconnection Syndrome? Meta-Analysis of Diffusion Tensor Imaging Studies in Patients with MDD. J. Psychiatry Neurosci. 2013, 38, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnyer, D.M.; Clasen, P.C.; Gonzalez, C.; Beevers, C.G. Evaluating the Diagnostic Utility of Applying a Machine Learning Algorithm to Diffusion Tensor MRI Measures in Individuals with Major Depressive Disorder. Psychiatry Res. Neuroimaging 2017, 264, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hu, X.; Li, L.; Huang, X.; Lui, S.; Kuang, W.; Ai, H.; Bi, F.; Gu, Z.; Gong, Q. Disorganization of White Matter Architecture in Major Depressive Disorder: A Meta-Analysis of Diffusion Tensor Imaging with Tract-Based Spatial Statistics. Sci. Rep. 2016, 6, 21825. [Google Scholar] [CrossRef] [PubMed]
- Hermesdorf, M.; Sundermann, B.; Feder, S.; Schwindt, W.; Minnerup, J.; Arolt, V.; Berger, K.; Pfleiderer, B.; Wersching, H. Major Depressive Disorder: Findings of Reduced Homotopic Connectivity and Investigation of Underlying Structural Mechanisms. Hum. Brain Mapp. 2016, 37, 1209–1217. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, Y.-J.; Hu, X.-Y.; Du, M.-Y.; Chen, Z.-Q.; Wu, M.; Li, K.-M.; Zhu, H.-Y.; Kumar, P.; Gong, Q.-Y. Microstructural Brain Abnormalities in Medication-Free Patients with Major Depressive Disorder: A Systematic Review and Meta-Analysis of Diffusion Tensor Imaging. J. Psychiatry Neurosci. 2017, 42, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Shen, Y.; Yao, J.; Zhang, L.; Xu, L.; Feng, R.; Cai, L.; Liu, J.; Chen, W.; Wang, J. Connectome Analysis of Functional and Structural Hemispheric Brain Networks in Major Depressive Disorder. Transl. Psychiatry 2019, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Kozel, F.A.; Johnson, K.A.; Nahas, Z.; Nakonezny, P.A.; Morgan, P.S.; Anderson, B.S.; Kose, S.; Li, X.; Lim, K.O.; Trivedi, M.H.; et al. Fractional Anisotropy Changes After Several Weeks of Daily Left High-Frequency Repetitive Transcranial Magnetic Stimulation of the Prefrontal Cortex to Treat Major Depression. J. ECT 2011, 27, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Zheng, H.; Li, L.; Liu, J.; Zhang, Y.; Shan, B.; Zhang, L.; Yin, Y.; Liu, J.; Li, W.; et al. High-Frequency RTMS Treatment Increases White Matter FA in the Left Middle Frontal Gyrus in Young Patients with Treatment-Resistant Depression. J. Affect. Disord. 2012, 136, 249–257. [Google Scholar] [CrossRef]
- Barredo, J.; Bellone, J.A.; Edwards, M.; Carpenter, L.L.; Correia, S.; Philip, N.S. White Matter Integrity and Functional Predictors of Response to Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Major Depression. Depress. Anxiety 2019, 36, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Raij, T.; Nummenmaa, A.; Marin, M.-F.; Porter, D.; Furtak, S.; Setsompop, K.; Milad, M.R. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biol. Psychiatry 2018, 84, 129–137. [Google Scholar] [CrossRef]
- Tao, Q.; Yang, Y.; Yu, H.; Fan, L.; Luan, S.; Zhang, L.; Zhao, H.; Lv, L.; Jiang, T.; Song, X. Anatomical Connectivity-Based Strategy for Targeting Transcranial Magnetic Stimulation as Antidepressant Therapy. Front. Psychiatry 2020, 11, 236. [Google Scholar] [CrossRef]
- Alexopoulos, G.S. Frontostriatal and Limbic Dysfunction in Late-Life Depression. Am. J. Geriatr. Psychiatry 2002, 10, 687–695. [Google Scholar] [CrossRef]
- Diener, C.; Kuehner, C.; Brusniak, W.; Ubl, B.; Wessa, M.; Flor, H. A Meta-Analysis of Neurofunctional Imaging Studies of Emotion and Cognition in Major Depression. NeuroImage 2012, 61, 677–685. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Williams, A.M.; Surguladze, S.; Giampietro, V.; Brammer, M.J.; Andrew, C.; Frangou, S.; Ecker, C.; Phillips, M.L. Subcortical and Ventral Prefrontal Cortical Neural Responses to Facial Expressions Distinguish Patients with Bipolar Disorder and Major Depression. Biol. Psychiatry 2004, 55, 578–587. [Google Scholar] [CrossRef]
- Siegle, G.J.; Steinhauer, S.R.; Thase, M.E.; Stenger, V.A.; Carter, C.S. Can’t Shake That Feeling: Event-Related FMRI Assessment of Sustained Amygdala Activity in Response to Emotional Information in Depressed Individuals. Biol. Psychiatry 2002, 51, 693–707. [Google Scholar] [CrossRef]
- Elliott, R.; Rubinsztein, J.S.; Sahakian, B.J.; Dolan, R.J. The Neural Basis of Mood-Congruent Processing Biases in Depression. Arch. Gen. Psychiatry 2002, 59, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, V.; Mitterschiffthaler, M.T.; Teasdale, J.D.; Malhi, G.S.; Brown, R.G.; Giampietro, V.; Brammer, M.J.; Poon, L.; Simmons, A.; Williams, S.C.R.; et al. Neural Abnormalities during Cognitive Generation of Affect in Treatment-Resistant Depression. Biol. Psychiatry 2003, 54, 777–791. [Google Scholar] [CrossRef]
- Müller, V.I.; Cieslik, E.C.; Serbanescu, I.; Laird, A.R.; Fox, P.T.; Eickhoff, S.B. Altered Brain Activity in Unipolar Depression Revisited: Meta-Analyses of Neuroimaging Studies. JAMA Psychiatry 2017, 74, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engels, A.S.; Heller, W.; Spielberg, J.M.; Warren, S.L.; Sutton, B.P.; Banich, M.T.; Miller, G.A. Co-Occurring Anxiety Influences Patterns of Brain Activity in Depression. Cogn. Affect. Behav. Neurosci. 2010, 10, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Drevets, W.C.; Savitz, J.; Trimble, M. The Subgenual Anterior Cingulate Cortex in Mood Disorders. CNS Spectr. 2008, 13, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Defining the Neural Circuitry of Depression: Toward a New Nosology With Therapeutic Implications. Biol. Psychiatry 2007, 61, 729–730. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; White, M.P.; Greicius, M.D.; Pascual-Leone, A. Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate. Biol. Psychiatry 2012, 72, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, E.J.; Phillips, A.L.; Bentzley, B.S.; Stimpson, K.H.; Nejad, R.; Barmak, F.; Veerapal, C.; Khan, N.; Cherian, K.; Felber, E.; et al. Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am. J. Psychiatry 2021. (Online ahead of print). [Google Scholar] [CrossRef]
- Cole, E.J.; Stimpson, K.H.; Bentzley, B.S.; Gulser, M.; Cherian, K.; Tischler, C.; Nejad, R.; Pankow, H.; Choi, E.; Aaron, H.; et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am. J. Psychiatry 2020, 177, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Trapp, N.T.; Hacker, C.D.; Laumann, T.O.; Kandala, S.; Hong, X.; Trillo, L.; Shahim, P.; Leuthardt, E.C.; Carter, A.R.; et al. Repetitive Transcranial Magnetic Stimulation with Resting-State Network Targeting for Treatment-Resistant Depression in Traumatic Brain Injury: A Randomized, Controlled, Double-Blinded Pilot Study. J. Neurotrauma 2018, 36, 1361–1374. [Google Scholar] [CrossRef]
- Williams, N.R.; Sudheimer, K.D.; Bentzley, B.S.; Pannu, J.; Stimpson, K.H.; Duvio, D.; Cherian, K.; Hawkins, J.; Scherrer, K.H.; Vyssoki, B.; et al. High-Dose Spaced Theta-Burst TMS as a Rapid-Acting Antidepressant in Highly Refractory Depression. Brain 2018, 141, e18. [Google Scholar] [CrossRef]
- Fried, E.I.; Nesse, R.M. Depression Is Not a Consistent Syndrome: An Investigation of Unique Symptom Patterns in the STAR*D Study. J. Affect. Disord. 2015, 172, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Quinn, D.K.; Jones, T.R.; Upston, J.; Huff, M.; Ryman, S.G.; Vakhtin, A.A.; Abbott, C.C. Right Prefrontal Intermittent Theta-Burst Stimulation for Major Depressive Disorder: A Case Series. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2021, 14, 97–99. [Google Scholar] [CrossRef]
- Pannekoek, J.N.; van der Werff, S.J.A.; van Tol, M.J.; Veltman, D.J.; Aleman, A.; Zitman, F.G.; Rombouts, S.A.R.B.; van der Wee, N.J.A. Investigating Distinct and Common Abnormalities of Resting-State Functional Connectivity in Depression, Anxiety, and Their Comorbid States. Eur. Neuropsychopharmacol. 2015, 25, 1933–1942. [Google Scholar] [CrossRef]
- Price, R.B.; Gates, K.; Kraynak, T.E.; Thase, M.E.; Siegle, G.J. Data-Driven Subgroups in Depression Derived from Directed Functional Connectivity Paths at Rest. Neuropsychopharmacology 2017, 42, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Taylor, S.F.; Cooke, D.; Pascual-Leone, A.; George, M.S.; Fox, M.D. Distinct Symptom-Specific Treatment Targets for Circuit-Based Neuromodulation. Am. J. Psychiatry 2020, 177, 435–446. [Google Scholar] [CrossRef]
- Baeken, C.; De Raedt, R.; Van Schuerbeek, P.; Vanderhasselt, M.A.; De Mey, J.; Bossuyt, A.; Luypaert, R. Right Prefrontal HF-RTMS Attenuates Right Amygdala Processing of Negatively Valenced Emotional Stimuli in Healthy Females. Behav. Brain Res. 2010, 214, 450–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.C.; Oathes, D.J.; Chang, C.; Bradley, T.; Zhou, Z.-W.; Williams, L.M.; Glover, G.H.; Deisseroth, K.; Etkin, A. Causal Interactions between Fronto-Parietal Central Executive and Default-Mode Networks in Humans. Proc. Natl. Acad. Sci. USA 2013, 110, 19944–19949. [Google Scholar] [CrossRef] [Green Version]
- Shao, R.; Lau, W.K.W.; Leung, M.-K.; Lee, T.M.C. Subgenual Anterior Cingulate-Insula Resting-State Connectivity as a Neural Correlate to Trait and State Stress Resilience. Brain Cogn. 2018, 124, 73–81. [Google Scholar] [CrossRef]
- Uddin, L.Q. Salience Processing and Insular Cortical Function and Dysfunction. Nat. Rev. Neurosci. 2015, 16, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Beynel, L.; Powers, J.P.; Appelbaum, L.G. Effects of Repetitive Transcranial Magnetic Stimulation on Resting-State Connectivity: A Systematic Review. NeuroImage 2020, 211, 116596. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.S.; Barredo, J.; Aiken, E.; Carpenter, L.L. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 211–222. [Google Scholar] [CrossRef]
- Kozel, F.A.; Van Trees, K.; Larson, V.; Phillips, S.; Hashimie, J.; Gadbois, B.; Johnson, S.; Gallinati, J.; Barrett, B.; Toyinbo, P.; et al. One Hertz versus Ten Hertz Repetitive TMS Treatment of PTSD: A Randomized Clinical Trial. Psychiatry Res. 2019, 273, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.S.; Barredo, J.; Aiken, E.; Larson, V.; Jones, R.N.; Shea, M.T.; Greenberg, B.D.; van ’t Wout-Frank, M. Theta-Burst Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder. Am. J. Psychiatry 2019, 176, 939–948. [Google Scholar] [CrossRef]
- Sarkhel, S.; Sinha, V.K.; Praharaj, S.K. Adjunctive High-Frequency Right Prefrontal Repetitive Transcranial Magnetic Stimulation (RTMS) Was Not Effective in Obsessive–Compulsive Disorder but Improved Secondary Depression. J. Anxiety Disord. 2010, 24, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, P.; Gold, A.K.; Nardi, A.E.; Ornelas, A.C.; Nierenberg, A.A.; Camprodon, J.; Kinrys, G. Transcranial Magnetic Stimulation in Anxiety and Trauma-Related Disorders: A Systematic Review and Meta-Analysis. Brain Behav. 2019, 9, e01284. [Google Scholar] [CrossRef] [PubMed]
- Kozel, F.A. Clinical Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder, Generalized Anxiety Disorder, and Bipolar Disorder. Psychiatr. Clin. North Am. 2018, 41, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Lisanby, S.H.; Pieraccini, F.; Ulivelli, M.; Castrogiovanni, P.; Rossi, S. Repetitive Transcranial Magnetic Stimulation (RTMS) in the Treatment of Panic Disorder (PD) with Comorbid Major Depression. J. Affect. Disord. 2007, 102, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, R.; Dennis, N.A. Frontal Lobes and Aging. In Principles of Frontal Lobe Function; Stuss, D.T., Knight, R.T., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 628–652. ISBN 978-019-983-775-5. [Google Scholar]
Paradigm | Difference | Effect |
---|---|---|
Sodium amobarbital injection | Injection into the left versus right carotid artery | Inactivation of the left hemisphere led to temporary depression, while inactivation of the right hemisphere led to temporary euphoria [47,48,49] |
Lesion Studies | Lesions occurring in the anterior right versus left hemisphere | A higher likelihood of depression observed following damage to the left hemisphere in contrast to an elevated mood following damage to the right hemisphere [50,51,52] |
Lesion Studies | Time following stroke | Lesioning of the right hemisphere only associated with depression in the months following stroke [57,58] |
Lesion Studies | Individual moderating factors | Whether or not a lesion location is associated with depression dependent upon moderating factors like sex [59] |
Lesion Studies | Functional connectivity of lesion location | Functional connectivity changes that accompany lesions are more important for depression than lesion location in either hemisphere [54] |
Interoperative Brain Stimulation | Emotional processing versus affective experience | Right hemisphere strongly associated with identification of emotions in others [69,70] |
Dichotic Listening | Advantages in processing auditory stimuli associated with the right or left hemisphere | Those with depression have worse performance processing non-verbal stimuli, while those with anxiety have worse performance processing verbal stimuli [77,78,79] |
Perceptual Asymmetry | Hemi-spatial bias to visual stimuli presented to the right or left hemisphere | A right hemisphere bias is seen in those with depression and dysthymia but not in those with depression and melancholia [81] |
Split Brain Patients | Presentation to the right or left hemisphere visual field only | Attributions for emotional changes brought on by viewing emotionally salient images only correct when seen through right hemisphere visual field [82] |
Frontal Alpha Asymmetry | EEG activity in right and left frontal lobes | Reduced activity in the left PFC seen in those diagnosed with MDD, compared to reduced activity in the right PFC in those with anxious apprehension [30,89,90] |
Frontal Alpha Asymmetry | EEG activity in right and left frontal lobes in older adults diagnosed with MDD | In females over the age of 53 diagnosed with MDD, hyperactivity of the left PFC was associated with depression, compared to hyperactivity of the right PFC in men over 53 [92] |
Volumetric Studies | PFC brain volume in those with MDD with or without comorbid anxiety | Those with MDD only had reduced brain volume in the right PFC; but the opposite finding has also been observed [96,97,99] |
Volumetric Studies | Brain volume changes following antidepressant medication treatment | Responders to treatment had increases in grey matter compared to controls while non responders had decreases [100] |
Volumetric Studies | Brain volume changes following rTMS treatment | Increases in anterior cingulate cortex volume following rTMS associated with symptom improvement, though increases in volume also observed in the absence of clinical benefit [101,102,104] |
Positron Emission Tomography | Differences in metabolism in the left PFC | Impaired metabolism observed in the left PFC in those with MDD and improvements in metabolism associated with positive treatment outcomes [106,107,108] |
Positron Emission Tomography | Differences in metabolism in the right PFC | Both hypo and hyper activity seen in those with MDD [109,110] |
Positron Emission Tomography | Differences in PFC metabolism guiding rTMS placement | While the right PFC was more often selected for treatment based on hypometabolism, this method did not lead to improved outcomes [111,113] |
White Matter Studies | Differences in white matter integrity between left and right hemispheres in those with MDD | Those with MDD have more widespread white matter disruptions in right hemisphere compared to left, right hemisphere differences alone successful in correctly identifying those with MDD with 80% accuracy [115,116] |
White matter studies | Differences in white matter integrity in the corpus callosum in those with MDD versus controls | Those with MDD may have impaired interhemispheric communication [116,117] |
Task Based fMRI | Differences in BOLD in the right and left PFC in those with MDD | Some studies have identified a pattern of hypoactivity in the left PFC and hyperactivity in the right in those with MDD during an emotion induction task, while others have identified a hypoactive right PFC in those with MDD in the same task [127,128,129,130,131] |
Functional Connectivity | Individual moderating factors | Factors such as comorbid anxiety and sex may change connectivity patterns to bias right hemisphere treatment targets in rTMS [60,143,144] |
Functional Connectivity | A matter of networks rather than hemispheres | Differences in cross hemispheric networks are more important in MDD than hemispheric location [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, B.C.; Vakhtin, A.; Clark, V.P.; Abbott, C.C.; Quinn, D.K. Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sci. 2022, 12, 112. https://doi.org/10.3390/brainsci12010112
Gibson BC, Vakhtin A, Clark VP, Abbott CC, Quinn DK. Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sciences. 2022; 12(1):112. https://doi.org/10.3390/brainsci12010112
Chicago/Turabian StyleGibson, Benjamin C., Andrei Vakhtin, Vincent P. Clark, Christopher C. Abbott, and Davin K. Quinn. 2022. "Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder" Brain Sciences 12, no. 1: 112. https://doi.org/10.3390/brainsci12010112
APA StyleGibson, B. C., Vakhtin, A., Clark, V. P., Abbott, C. C., & Quinn, D. K. (2022). Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sciences, 12(1), 112. https://doi.org/10.3390/brainsci12010112