Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder
Abstract
:1. Introduction
2. Evidence for rTMS in MDD
3. Evidence for rTMS in AUD
4. Developing rTMS to Treat MDD and AUD Comorbidity
5. Neurobiologically Based Transdiagnostic Clinical Outcomes
6. Future Directions to Optimize Efficacy of rTMS for MDD and AUD
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grant, B.F.; Stinson, F.S.; Dawson, D.A.; Chou, S.P.; Dufour, M.C.; Compton, W.; Pickering, R.P.; Kaplan, K. Prevalence and co-occurrence of substance use disorders and independent mood and anxiety disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry 2004, 61, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Hasin, D.S.; Goodwin, R.D.; Stinson, F.S.; Grant, B.F. Epidemiology of major depressive disorder: Results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch. Gen. Psychiatry 2005, 62, 1097–1106. [Google Scholar] [CrossRef]
- Kessler, R.C.; Borges, G.; Walters, E.E. Prevalence of and risk factors for lifetime suicide attempts in the National Comorbidity Survey. Arch. Gen. Psychiatry 1999, 56, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.L.; Wisniewski, S.R.; Howland, R.H.; Trivedi, M.H.; Husain, M.M.; Fava, M.; McGrath, P.J.; Balasubramani, G.K.; Warden, D.; Rush, A.J. Does comorbid substance use disorder impair recovery from major depression with SSRI treatment? An analysis of the STAR*D level one treatment outcomes. Drug Alcohol Depend. 2010, 107, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, K.; Walker, R.; Campbell, A.N.; Greer, T.L.; Hu, M.C.; Grannemann, B.D.; Nunes, E.V.; Trivedi, M.H. Depressive symptoms and associated clinical characteristics in outpatients seeking community-based treatment for alcohol and drug problems. Subst. Abus. 2015, 36, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Fortney, J.C.; Booth, B.M.; Curran, G.M. Do patients with alcohol dependence use more services? A comparative analysis with other chronic disorders. Alcohol Clin. Exp. Res. 1999, 23, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Agabio, R.; Trogu, E.; Pani, P.P. Antidepressants for the treatment of people with co-occurring depression and alcohol dependence. Cochrane Database Syst Rev. 2018, 4, CD008581. [Google Scholar] [CrossRef]
- Foulds, J.A.; Adamson, S.J.; Boden, J.M.; Williman, J.A.; Mulder, R.T. Depression in patients with alcohol use disorders: Systematic review and meta-analysis of outcomes for independent and substance-induced disorders. J. Affect. Disord. 2015, 185, 47–59. [Google Scholar] [CrossRef]
- Stokes, P.R.A.; Jokinen, T.; Amawi, S.; Qureshi, M.; Husain, M.I.; Yatham, L.N.; Strang, J.; Young, A.H. Pharmacological treatment of mood disorders and comorbid addictions: A systematic review and meta-analysis. Traitement pharmacologique des troubles de l’humeur et des dépendances comorbides: Une revue systématique et une méta-analyse. Can. J. Psychiatry 2020, 65, 749–769. [Google Scholar] [CrossRef]
- Adamson, S.J.; Sellman, J.D.; Foulds, J.A.; Frampton, C.M.; Deering, D.; Dunn, A.; Berks, J.; Nixon, L.; Cape, G. A randomized trial of combined citalopram and naltrexone for nonabstinent outpatients with co-occurring alcohol dependence and major depression. J. Clin. Psychopharmacol. 2015, 35, 143–149. [Google Scholar] [CrossRef]
- Oslin, D.W. Treatment of late-life depression complicated by alcohol dependence. Am. J. Geriatr. Psychiatry 2005, 13, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Pettinati, H.M.; Oslin, D.W.; Kampman, K.M.; Dundon, W.D.; Xie, H.; Gallis, T.L.; Dackis, C.A.; O’Brien, C.P. A double-blind, placebo-controlled trial combining sertraline and naltrexone for treating co-occurring depression and alcohol dependence. Am. J. Psychiatry 2010, 167, 668–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVido, J.J.; Weiss, R.D. Treatment of the depressed alcoholic patient. Curr. Psychiatry Rep. 2012, 14, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, S.; Vazirian, S.; Lee-Cheong, S.; Krausz, M.; Honer, W.G.; Schutz, C.G. Concurrent disorder management guidelines. Systematic review. J. Clin. Med. 2020, 9, 2406. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; di Lazzaro, V.; Filipovic, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Deng, Z.D.; Lisanby, S.H.; Peterchev, A.V. Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Blumberger, D.M.; Downar, J.; Daskalakis, Z.J. Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders. Clin. Neurophysiol. 2021, 132, 429–448. [Google Scholar] [CrossRef]
- Tik, M.; Hoffmann, A.; Sladky, R.; Tomova, L.; Hummer, A.; Navarro de Lara, L.; Bukowski, H.; Pripfl, J.; Biswal, B.; Lamm, C.; et al. Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity. Neuroimage 2017, 162, 289–296. [Google Scholar] [CrossRef]
- Borgomaneri, S.; Battaglia, S.; Garofalo, S.; Tortora, F.; Avenanti, A.; di Pellegrino, G. State-dependent TMS over prefrontal cortex disrupts fear-memory reconsolidation and prevents the return of fear. Curr. Biol. 2020, 30, 3672–3679.e4. [Google Scholar] [CrossRef]
- Borgomaneri, S.; Battaglia, S.; Avenanti, A.; Pellegrino, G.D. Don’t hurt me no more: State-dependent transcranial magnetic stimulation for the treatment of specific phobia. J. Affect. Disord. 2021, 286, 78–79. [Google Scholar] [CrossRef]
- Borgomaneri, S.; Battaglia, S.; Sciamanna, G.; Tortora, F.; Laricchiuta, D. Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci. Biobehav. Rev. 2021, 127, 334–352. [Google Scholar] [CrossRef]
- Carpenter, L.L.; Janicak, P.G.; Aaronson, S.T.; Boyadjis, T.; Brock, D.G.; Cook, I.A.; Dunner, D.L.; Lanocha, K.; Solvason, H.B.; Demitrack, M.A. Transcranial magnetic stimulation (TMS) for major depression: A multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depress. Anxiety 2012, 29, 587–596. [Google Scholar] [CrossRef]
- Somani, A.; Kar, S.K. Efficacy of repetitive transcranial magnetic stimulation in treatment-resistant depression: The evidence thus far. Gen. Psychiatr. 2019, 32, e100074. [Google Scholar] [CrossRef] [Green Version]
- Elias, G.J.B.; Boutet, A.; Parmar, R.; Wong, E.H.Y.; Germann, J.; Loh, A.; Paff, M.; Pancholi, A.; Gwun, D.; Chow, C.T.; et al. Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimul. 2021, 14, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Höflich, G.; Kasper, S.; Hufnagel, A.; Ruhrmann, S.; Möller, H.J. Application of transcranial magnetic stimulation in treatment of drug-resistant major depression—A report of two cases. Hum. Psychopharmacol. Clin. Experimental. 1993, 8, 361–365. [Google Scholar] [CrossRef]
- Belmaker, R.H.; Fleischmann, A. Transcranial magnetic stimulation: A potential new frontier in Psychiatry. Biol. Psychiatry 1995, 38, 419–421. [Google Scholar] [CrossRef]
- George, M.S.; Wassermann, E.M.; Williams, W.A.; Callahan, A.; Ketter, T.A.; Basser, P.; Hallet, M.; Post, R.M. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995, 6, 1853–1856. [Google Scholar] [CrossRef]
- George, M.S.; Lisanby, S.H.; Avery, D.; McDonald, W.M.; Durkalski, V.; Pavlicova, M.; Anderson, B.; Nahas, Z.; Bulow, P.; Zarkowski, P.; et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: A sham-controlled randomized trial. Arch. Gen. Psychiatry 2010, 67, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reardon, J.P.; Solvason, H.B.; Janicak, P.G.; Sampson, S.; Isenberg, K.E.; Nahas, Z.; McDonald, W.M.; Avery, D.; Fitzgerald, P.B.; Loo, C.; et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial. Biol. Psychiatry 2007, 62, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- McClintock, S.M.; Reti, I.M.; Carpenter, L.L.; McDonald, W.M.; Dubin, M.; Taylor, S.F.; Cook, I.A.; O’Reardon, J.; Husain, M.M.; Wall, C.; et al. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J. Clin. Psychiatry 2018, 79, 35–48. [Google Scholar] [CrossRef]
- Garcia-Toro, M.; Montes, J.M.; Talavera, J.A. Functional cerebral asymmetry in affective disorders: New facts contributed by transcranial magnetic stimulation. J. Affect. Disord. 2001, 66, 103–109. [Google Scholar] [CrossRef]
- Speer, A.M.; Benson, B.E.; Kimbrell, T.K.; Wassermann, E.M.; Willis, M.W.; Herscovitch, P.; Post, R.M. Opposite effects of high and low frequency rTMS on mood in depressed patients: Relationship to baseline cerebral activity on PET. J. Affect. Disord. 2009, 115, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Brunoni, A.R.; Chaimani, A.; Moffa, A.H.; Razza, L.B.; Gattaz, W.F.; Daskalakis, Z.J.; Carvalho, A.F. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: A systematic review with network meta-analysis. JAMA Psychiatry 2017, 74, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.B.; Brown, T.L.; Marston, N.A.; Daskalakis, Z.J.; de Castella, A.; Kulkarni, J. Transcranial magnetic stimulation in the treatment of depression: A double-blind, placebo-controlled trial. Arch. Gen. Psychiatry 2003, 60, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Berlim, M.T.; van den Eynde, F.; Daskalakis, Z.J. Efficacy and acceptability of high frequency repetitive transcranial magnetic stimulation (rTMS) versus electroconvulsive therapy (ECT) for major depression: A systematic review and meta-analysis of randomized trials. Depress. Anxiety 2013, 30, 614–623. [Google Scholar] [CrossRef]
- Roth, Y.; Amir, A.; Levkovitz, Y.; Zangen, A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J. Clin. Neurophysiol. 2007, 24, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, M.; Fiocchi, S.; Chiaramello, E.; Roth, Y.; Zangen, A.; Ravazzani, P. Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models. Med. Eng. Phys. 2017, 43, 30–38. [Google Scholar] [CrossRef]
- Gersner, R.; Toth, E.; Isserles, M.; Zangen, A. Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: Potential role of brain-derived neurotrophic factor. Biol. Psychiatry 2010, 67, 125–132. [Google Scholar] [CrossRef]
- Levkovitz, Y.; Isserles, M.; Padberg, F.; Lisanby, S.H.; Bystritsky, A.; Xia, G.; Tendler, A.; Daskalakis, Z.J.; Winston, J.L.; Dannon, P.; et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: A prospective multicenter randomized controlled trial. World Psychiatry 2015, 14, 64–73. [Google Scholar] [CrossRef]
- Milev, R.V.; Giacobbe, P.; Kennedy, S.H.; Blumberger, D.M.; Daskalakis, Z.J.; Downar, J.; Modirrousta, M.; Patry, S.; Vila-Rodriguez, F.; Lam, R.W.; et al. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 4. Neurostimulation treatments. Can. J. Psychiatry 2016, 61, 561–575. [Google Scholar] [CrossRef]
- Sehatzadeh, S.; Daskalakis, Z.J.; Yap, B.; Tu, H.A.; Palimaka, S.; Bowen, J.M.; O’Reilly, D.J. Unilateral and bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression: A meta-analysis of randomized controlled trials over 2 decades. J. Psychiatry Neurosci. 2019, 44, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Z.; Rothwell, J.C.; Chen, R.S.; Lu, C.S.; Chuang, W.L. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 2011, 122, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Blumberger, D.M.; Vila-Rodriguez, F.; Thorpe, K.E.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J.; et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef]
- Miron, J.P.; Jodoin, V.D.; Lespérance, P.; Blumberger, D.M. Repetitive transcranial magnetic stimulation for major depressive disorder: Basic principles and future directions. Ther Adv. Psychopharmacol. 2021, 11, 20451253211042696. [Google Scholar] [CrossRef]
- Bakker, N.; Shahab, S.; Giacobbe, P.; Blumberger, D.M.; Daskalakis, Z.J.; Kennedy, S.H.; Downar, J. rTMS of the dorsomedial prefrontal cortex for major depression: Safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 2015, 8, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, P.B.; Hoy, K.; McQueen, S.; Herring, S.; Segrave, R.; Been, G.; Kulkarni, J.; Daskalakis, Z.J. Priming stimulation enhances the effectiveness of low-frequency right prefrontal cortex transcranial magnetic stimulation in major depression. J. Clin. Psychopharmacol. 2008, 28, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.J.; Phillips, A.L.; Bentzley, B.S.; Stimpson, K.H.; Nejad, R.; Barmak, F.; Veerapal, C.; Khan, N.; Cherian, K.; Felber, E.; et al. Stanford Neuromodulation Therapy (SNT): A double-blind randomized controlled trial. Am. J. Psychiatry 2021, appiajp202120101429. [Google Scholar] [CrossRef]
- Eichhammer, P.; Johann, M.; Kharraz, A.; Binder, H.; Pittrow, D.; Wodarz, N.; Hajak, G. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J. Clin. Psychiatry 2003, 64, 951–953. [Google Scholar] [CrossRef]
- Camprodon, J.A.; Martínez-Raga, J.; Alonso-Alonso, M.; Shih, M.C.; Pascual-Leone, A. One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007, 86, 91–94. [Google Scholar] [CrossRef]
- Mishra, B.R.; Nizamie, S.H.; Das, B.; Praharaj, S.K. Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: A sham-controlled study. Addiction 2010, 105, 49–55. [Google Scholar] [CrossRef]
- Herremans, S.C.; Baeken, C.; Vanderbruggen, N.; Vanderhasselt, M.A.; Zeeuws, D.; Santermans, L.; De Raedt, R. No influence of one right-sided prefrontal HF-rTMS session on alcohol craving in recently detoxified alcohol-dependent patients: Results of a naturalistic study. Drug Alcohol Depend. 2012, 120, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Herremans, S.C.; Vanderhasselt, M.A.; de Raedt, R.; Baeken, C. Reduced intra-individual reaction time variability during a Go-NoGo task in detoxified alcohol-dependent patients after one right-sided dorsolateral prefrontal HF-rTMS session. Alcohol Alcohol. 2013, 48, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.M.; van Wingen, G.; van den Brink, W.; Goudriaan, A.E. Resting state connectivity in alcohol dependent patients and the effect of repetitive transcranial magnetic stimulation. Eur. Neuropsychopharmacol. 2015, 25, 2230–2239. [Google Scholar] [CrossRef]
- Jansen, J.M.; van den Heuvel, O.A.; van der Werf, Y.D.; de Wit, S.J.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E. The effect of high-frequency repetitive transcranial magnetic stimulation on emotion processing, reappraisal, and craving in alcohol use disorder patients and healthy controls: A functional magnetic resonance imaging study. Front. Psychiatry 2019, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Herremans, S.C.; Van Schuerbeek, P.; de Raedt, R.; Matthys, F.; Buyl, R.; de Mey, J.; Baeken, C. The Impact of accelerated right prefrontal high-frequency repetitive transcranial magnetic stimulation (rTMS) on cue-reactivity: An fMRI study on craving in recently detoxified alcohol-dependent patients. PLoS ONE 2015, 10, e0136182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herremans, S.C.; de Raedt, R.; van Schuerbeek, P.; Marinazzo, D.; Matthys, F.; de Mey, J.; Baeken, C. Accelerated HF-rTMS protocol has a rate-dependent effect on dacc activation in alcohol-dependent patients: An open-label feasibility study. Alcohol Clin. Exp. Res. 2016, 40, 196–205. [Google Scholar] [CrossRef] [PubMed]
- McNeill, A.; Monk, R.L.; Qureshi, A.W.; Makris, S.; Heim, D. Continuous Theta burst transcranial magnetic stimulation of the right dorsolateral prefrontal cortex impairs inhibitory control and increases alcohol consumption. Cogn. Affect. Behav. Neurosci. 2018, 18, 1198–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höppner, J.; Broese, T.; Wendler, L.; Berger, C.; Thome, J. Repetitive transcranial magnetic stimulation (rTMS) for treatment of alcohol dependence. World J. Biol. Psychiatry 2011, 12 (Suppl. S1), 57–62. [Google Scholar] [CrossRef]
- Del Felice, A.; Bellamoli, E.; Formaggio, E.; Manganotti, P.; Masiero, S.; Cuoghi, G.; Rimondo, C.; Genetti, B.; Sperotto, M.; Corso, F. Neurophysiological, psychological and behavioural correlates of rTMS treatment in alcohol dependence. Drug Alcohol Depend. 2016, 158, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.R.; Praharaj, S.K.; Katshu, M.Z.; Sarkar, S.; Nizamie, S.H. Comparison of anticraving efficacy of right and left repetitive transcranial magnetic stimulation in alcohol dependence: A randomized double-blind study. J. Neuropsychiatry Clin. Neurosci. 2015, 27, e54–e59. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, M.; Inghilleri, M.; Attilia, M.L.; Raccah, R.; Fiore, M.; Zangen, A. Deep TMS on alcoholics: Effects on cortisolemia and dopamine pathway modulation. A pilot study. Can. J. Physiol Pharmacol. 2015, 93, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girardi, P.; Rapinesi, C.; Chiarotti, F.; Kotzalidis, G.D.; Piacentino, D.; Serata, D.; Del Casale, A.; Scatena, P.; Mascioli, F.; Raccah, R.N.; et al. Add-on deep transcranial magnetic stimulation (dTMS) in patients with dysthymic disorder comorbid with alcohol use disorder: A comparison with standard treatment. World J. Biol. Psychiatry 2015, 16, 66–73. [Google Scholar] [CrossRef]
- Rapinesi, C.; Curto, M.; Kotzalidis, G.D.; del Casale, A.; Serata, D.; Ferri, V.R.; Di Pietro, S.; Scatena, P.; Bersani, F.S.; Raccah, R.N.; et al. Antidepressant effectiveness of deep Transcranial Magnetic Stimulation (dTMS) in patients with Major Depressive Disorder (MDD) with or without Alcohol Use Disorders (AUDs): A 6-month, open label, follow-up study. J. Affect. Disord. 2015, 174, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Addolorato, G.; Antonelli, M.; Cocciolillo, F.; Vassallo, G.A.; Tarli, C.; Sestito, L.; Mirijello, A.; Ferrulli, A.; Pizzuto, D.A.; Camardese, G.; et al. Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: Effects on dopamine transporter availability and alcohol intake. Eur. Neuropsychopharmacol. 2017, 27, 450–461. [Google Scholar] [CrossRef]
- Hanlon, C.A.; Dowdle, L.T.; Correia, B.; Mithoefer, O.; Kearney-Ramos, T.; Lench, D.; Griffin, M.; Anton, R.F.; George, M.S. Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users. Drug Alcohol Depend. 2017, 178, 310–317. [Google Scholar] [CrossRef]
- Kearney-Ramos, T.E.; Dowdle, L.T.; Lench, D.H.; Mithoefer, O.J.; Devries, W.H.; George, M.S.; Anton, R.F.; Hanlon, C.A. Transdiagnostic effects of ventromedial prefrontal cortex transcranial magnetic stimulation on cue reactivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 599–609. [Google Scholar] [CrossRef]
- Schluter, R.S.; van Holst, R.J.; Goudriaan, A.E. Effects of ten sessions of high frequency repetitive transcranial magnetic stimulation (HF-rTMS) add-on treatment on impulsivity in alcohol use disorder. Front. Neurosci. 2019, 13, 1257. [Google Scholar] [CrossRef]
- Perini, I.; Kämpe, R.; Arlestig, T.; Karlsson, H.; Löfberg, A.; Pietrzak, M.; Zangen, A.; Heilig, M. Repetitive transcranial magnetic stimulation targeting the insular cortex for reduction of heavy drinking in treatment-seeking alcohol-dependent subjects: A randomized controlled trial. Neuropsychopharmacology 2020, 45, 842–850. [Google Scholar] [CrossRef]
- Rapinesi, C.; Kotzalidis, G.D.; Ferracuti, S.; Girardi, N.; Zangen, A.; Sani, G.; Raccah, R.N.; Girardi, P.; Pompili, M.; Del Casale, A.; et al. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex in depressive episodes of patients with major depressive disorder, bipolar disorder I, and major depressive with alcohol use disorders. Neurosci Lett. 2018, 671, 128–132. [Google Scholar] [CrossRef]
- Ibrahim, C.; Rubin-Kahana, D.S.; Pushparaj, A.; Musiol, M.; Blumberger, D.M.; Daskalakis, Z.J.; Zangen, A.; Le Foll, B. The Insula: A brain stimulation target for the treatment of addiction. Front. Pharmacol. 2019, 10, 720. [Google Scholar] [CrossRef]
- Dinur-Klein, L.; Dannon, P.; Hadar, A.; Rosenberg, O.; Roth, Y.; Kotler, M.; Zangen, A. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: A prospective, randomized controlled trial. Biol. Psychiatry 2014, 76, 742–749. [Google Scholar] [CrossRef]
- Zangen, A.; Moshe, H.; Martinez, D.; Barnea-Ygael, N.; Vapnik, T.; Bystritsky, A.; Duffy, W.; Toder, D.; Casuto, L.; Grosz, M.L.; et al. Repetitive transcranial magnetic stimulation for smoking cessation: A pivotal multicenter double-blind randomized controlled trial. World Psychiatry 2021, 20, 397–404. [Google Scholar] [CrossRef]
- Zhang, J.J.Q.; Fong, K.N.K.; Ouyang, R.G.; Siu, A.M.H.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: A systematic review and meta-analysis. Addiction 2019, 114, 2137–2149. [Google Scholar] [CrossRef]
- Teng, S.; Guo, Z.; Peng, H.; Xing, G.; Chen, H.; He, B.; McClure, M.A.; Mu, Q. High-frequency repetitive transcranial magnetic stimulation over the left DLPFC for major depression: Session-dependent efficacy: A meta-analysis. Eur. Psychiatry 2017, 41, 75–84. [Google Scholar] [CrossRef]
- Shen, Y.; Cao, X.; Tan, T.; Shan, C.; Wang, Y.; Pan, J.; He, H.; Yuan, T.-F. 10-Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biol. Psychiatry 2016, 80, e13–e14. [Google Scholar] [CrossRef]
- Martin, D.M.; McClintock, S.M.; Forster, J.J.; Lo, T.Y.; Loo, C.K. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depress. Anxiety 2017, 34, 1029–1039. [Google Scholar] [CrossRef]
- Ilieva, I.P.; Alexopoulos, G.S.; Dubin, M.J.; Morimoto, S.S.; Victoria, L.W.; Gunning, F.M. Age-related repetitive transcranial magnetic stimulation effects on executive function in depression: A systematic review. Am. J. Geriatr. Psychiatry 2018, 26, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.B.; Hoy, K.; McQueen, S.; Maller, J.J.; Herring, S.; Segrave, R.; Bailey, M.; Been, G.; Kulkarni, J.; Daskalakis, Z.J. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology 2009, 34, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Liu, H.; Pascual-Leone, A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage 2013, 66, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigand, A.; Horn, A.; Caballero, R.; Cooke, D.; Stern, A.P.; Taylor, S.F.; Press, D.; Pascual-Leone, A.; Fox, M.D. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 2018, 84, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-R.; Baeken, C.; van Schuerbeek, P.; de Mey, J.; Bi, M.; Herremans, S.C. Accelerated repetitive transcranial magnetic stimulation does not influence grey matter volumes in regions related to alcohol relapse: An open-label exploratory study. Drug Alcohol Depend. 2018, 191, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Rubio, B.; Pallardó, F.; Catalá, M.D. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 1996, 348, 233–237. [Google Scholar] [CrossRef]
- Triggs, W.J.; Ricciuti, N.; Ward, H.E.; Cheng, J.; Bowers, D.; Goodman, W.K.; Kluger, B.M.; Nadeau, S.E. Right and left dorsolateral pre-frontal rTMS treatment of refractory depression: A randomized, sham-controlled trial. Psychiatry Res. 2010, 178, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, Z.J.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Stultz, D.J.; Osburn, S.; Burns, T.; Pawlowska-Wajswol, S.; Walton, R. Transcranial magnetic stimulation (TMS) safety with respect to seizures: A literature review. Neuropsychiatr. Dis. Treat. 2020, 16, 2989–3000. [Google Scholar] [CrossRef]
- Tendler, A.; Roth, Y.; Zangen, A. Rate of inadvertently induced seizures with deep repetitive transcranial magnetic stimulation. Brain Stimul. 2018, 11, 1410–1414. [Google Scholar] [CrossRef]
- Schuckit, M.A.; Tipp, J.E.; Bergman, M.; Reich, W.; Hesselbrock, V.M.; Smith, T.L. Comparison of induced and independent major depressive disorders in 2945 alcoholics. Am. J. Psychiatry 1997, 154, 948–957. [Google Scholar]
- Hassan, A.N. Patients with alcohol use disorder co-occurring with depression and anxiety symptoms: Diagnostic and treatment initiation recommendations. J. Clin. Psychiatry 2018, 79, 17ac11999. [Google Scholar] [CrossRef] [Green Version]
- Crum, R.M.; Mojtabai, R.; Lazareck, S.; Bolton, J.M.; Robinson, J.; Sareen, J.; Green, K.M.; Stuart, E.A.; La Flair, L.; Alvanzo, A.A.H.; et al. A prospective assessment of reports of drinking to self-medicate mood symptoms with the incidence and persistence of alcohol dependence. JAMA Psychiatry 2013, 70, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.A.; Inaba, R.K.; Gillin, J.C.; Schuckit, M.A.; Stewart, M.A.; Irwin, M.R. Alcoholism and affective disorder: Clinical course of depressive symptoms. Am. J. Psychiatry 1995, 152, 45–52. [Google Scholar]
- Ng, Q.X.; Lim, D.Y.; Chee, K.T. Reimagining the spectrum of affective disorders. Bipolar Disord. 2020, 22, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Solovieff, N.; Cotsapas, C.; Lee, P.H.; Purcell, S.M.; Smoller, J.W. Pleiotropy in complex traits: Challenges and strategies. Nat. Rev. Genet. 2013, 14, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodkind, M.; Eickhoff, S.B.; Oathes, D.J.; Jiang, Y.; Chang, A.; Jones-Hagata, L.B.; Ortega, B.N.; Zaiko, Y.V.; Roach, E.L.; Korgaonkar, M.S.; et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015, 72, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Peterson, R.E.; Ong, J.S.; MacGregor, S.; Edwards, A.C.; Clarke, T.K.; Frank, J.; Gerring, Z.; Gillespie, N.A.; Lind, P.A.; et al. Evidence of causal effect of major depression on alcohol dependence: Findings from the psychiatric genomics consortium. Psychol Med. 2019, 49, 1218–1226. [Google Scholar] [CrossRef]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry 2010, 167, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Nuño, L.; Gómez-Benito, J.; Carmona, V.R.; Pino, O. A systematic review of executive function and information processing speed in major depression disorder. Brain Sci. 2021, 11, 147. [Google Scholar] [CrossRef]
- Jurado, M.B.; Rosselli, M. The elusive nature of executive functions: A review of our current understanding. Neuropsychol. Rev. 2007, 17, 213–233. [Google Scholar] [CrossRef]
- Evers, S.; Böckermann, I.; Nyhuis, P.W. The impact of transcranial magnetic stimulation on cognitive processing: An event-related potential study. Neuroreport 2001, 12, 2915–2918. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; van den Wildenberg, W.P.; Segalowitz, S.J.; Carter, C.S. Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004, 56, 129–140. [Google Scholar] [CrossRef]
- Koenigs, M.; Grafman, J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 2009, 201, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, S.; Timmermann, C.; Battaglia, S.; Maier, M.E.; di Pellegrino, G. Mediofrontal Negativity signals unexpected timing of salient outcomes. J. Cogn Neurosci. 2017, 29, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Garofalo, S.; di Pellegrino, G.; Starita, F. Revaluing the role of vmPFC in the acquisition of pavlovian threat conditioning in humans. J. Neurosci. 2020, 40, 8491–8500. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Harrison, B.J.; Fullana, M.A. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, M.R.; Balderston, N.L.; Helmstetter, F.J. Prefrontal cortical regulation of fear learning. Trends Neurosci. 2014, 37, 455–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiser, J.; Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 2018, 83, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Borgomaneri, S.; Serio, G.; Battaglia, S. Please, don’t do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex 2020, 132, 404–422. [Google Scholar] [CrossRef]
- Battaglia, S.; Serio, G.; Scarpazza, C.; D’Ausilio, A.; Borgomaneri, S. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav Res. Ther. 2021, 146, 103963. [Google Scholar] [CrossRef]
- Borgomaneri, S.; Vitale, F.; Battaglia, S.; Avenanti, A. Early right motor cortex response to happy and fearful facial expressions: A TMS motor-evoked potential study. Brain Sci. 2021, 11, 1203. [Google Scholar] [CrossRef]
- Jaeger, J.; Berns, S.; Uzelac, S.; Davis-Conway, S. Neurocognitive deficits and disability in major depressive disorder. Psychiatry Res. 2006, 145, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Baba, H.; Maeshima, H.; Kitajima, A.; Sakai, Y.; Baba, K.; Suzuki, T.; Mimura, M.; Arai, H. Executive dysfunction in medicated, remitted state of major depression. J. Affect. Disord. 2008, 111, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kopera, M.; Wojnar, M.; Brower, K.; Glass, J.; Nowosad, I.; Gmaj, B.; Szelenberger, W. Cognitive functions in abstinent alcohol-dependent patients. Alcohol 2012, 46, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, D.; Pigoni, A.; Delvecchio, G.; Maggioni, E.; Schiena, G.; Brambilla, P. Role of rTMS in the treatment of cognitive impairments in bipolar disorder and schizophrenia: A review of randomized controlled trials. J. Affect. Disord. 2021, 280, 148–155. [Google Scholar] [CrossRef]
- Iimori, T.; Nakajima, S.; Miyazaki, T.; Tarumi, R.; Ogyu, K.; Wada, M.; Tsugawa, S.; Masuda, F.; Daskalakis, Z.J.; Blumberger, D.M.; et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 31–40. [Google Scholar] [CrossRef]
- Peterchev, A.V.; Wagner, T.A.; Miranda, P.C.; Nitsche, M.A.; Paulus, W.; Lisanby, S.H.; Pascual-Leone, A.; Bikson, M. Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimul. 2012, 5, 435–553. [Google Scholar] [CrossRef] [Green Version]
- Herwig, U.; Padberg, F.; Unger, J.; Spitzer, M.; Schönfeldt-Lecuona, C. Transcranial magnetic stimulation in therapy studies: Examination of the reliability of “standard” coil positioning by neuronavigation. Biol. Psychiatry 2001, 50, 58–61. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Maller, J.J.; Thomson, L.; Mulsant, B.H.; Rajji, T.K.; Maher, M.; Brown, P.E.; Downar, J.; Vila-Rodriguez, F.; Fitzgerald, P.B.; et al. Unilateral and bilateral MRI-targeted repetitive transcranial magnetic stimulation for treatment-resistant depression: A randomized controlled study. J. Psychiatry Neurosci. 2016, 41, E58–E66. [Google Scholar] [CrossRef] [Green Version]
- Herbsman, T.; Avery, D.; Ramsey, D.; Holtzheimer, P.; Wadjik, C.; Hardaway, F.; Haynor, D.; George, M.S.; Nahas, Z. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol. Psychiatry 2009, 66, 509–515. [Google Scholar] [CrossRef]
- Hebel, T.; Göllnitz, A.; Schoisswohl, S.; Weber, F.C.; Abdelnaim, M.; Wetter, T.C.; Rupprecht, R.; Langguth, B.; Schecklmann, M. A direct comparison of neuronavigated and non-neuronavigated intermittent theta burst stimulation in the treatment of depression. Brain Stimul. 2021, 14, 335–343. [Google Scholar] [CrossRef]
- Cash, R.F.H.; Cocchi, L.; Lv, J.; Fitzgerald, P.B.; Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 2021, 78, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Boyle, M. Neuroscience of addiction: Relevance to prevention and treatment. Am. J. Psychiatry 2018, 175, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Goldsworthy, M.R.; Pitcher, J.B.; Ridding, M.C. The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur. J. Neurosci. 2012, 35, 125–134. [Google Scholar] [CrossRef] [PubMed]
- McGirr, A.; van den Eynde, F.; Tovar-Perdomo, S.; Fleck, M.P.; Berlim, M.T. Effectiveness and acceptability of accelerated repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant major depressive disorder: An open label trial. J. Affect. Disord. 2015, 173, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Blumberger, D.M.; Vila-Rodriguez, F.; Wang, W.; Knyahnytska, Y.; Butterfield, M.; Noda, Y.; Yariv, S.; Isserles, M.; Voineskos, D.; Ainsworth, N.J.; et al. A randomized sham controlled comparison of once vs twice-daily intermittent theta burst stimulation in depression: A Canadian rTMS treatment and biomarker network in depression (CARTBIND) study. Brain Stimul. 2021, 14, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Donse, L.; Padberg, F.; Sack, A.T.; Rush, A.J.; Arns, M. Simultaneous rTMS and psychotherapy in major depressive disorder: Clinical outcomes and predictors from a large naturalistic study. Brain Stimul. 2018, 11, 337–345. [Google Scholar] [CrossRef] [Green Version]
Reference | N (Active, Control) | Frequency | # Sessions | Pulses/Session | Site | Coil | Clinical Outcome |
---|---|---|---|---|---|---|---|
Mishra (2010) [51] | 30, 15 | 10 Hz | 10 | 1000 | R DLPFC | Figure-of-8 | Decrease craving compared to sham |
Höppner (2011) [59] | 10, 9 | 20 Hz | 10 | 1000 | L DLPFC | Figure-of-8 | No difference in craving or depressive symptoms compared to sham |
Herremans (2012) [52] | 15, 16 | 20 Hz | 1 | 1560 | R DLPFC | Figure-of-8 | No difference in craving compared to sham |
Herremans (2013) [53] | 29, 29 | 20 Hz | 2 | 1560 | R DLPFC | Figure-of-8 | No difference on craving compared to sham |
Ceccanti (2015) [62] | 9, 9 | 20 Hz | 10 | 1000 | BL MPFC | H-Coil | Decrease in craving and consumption compared to sham |
Girardi (2015) [63] | 10, 10 | 20 Hz | 20 | 2200 | Medial and Lateral PFC L > R | H-coil | Craving scores and depressive symptoms reduced compared to control group |
Herremans (2015) [56] | 26 | 20 Hz | 15 | 1560 | R DLPFC | Figure-of-8 | General craving, but not cue induced craving, decreased |
Mishra (2015) [61] | 20 | 10 Hz | 10 | 1000 | R v. L DLPFC | Figure-of-8 | Reduction in craving, no difference between R and L DLPFC |
Rapinesi (2015) [64] | 13 | 18 Hz | 20 | 1980 | DLPFC L > R | H-coil | Reduction in craving and depressive symptoms |
Del Felice (2016) [60] | 8, 9 | 10 Hz | 4 | 1000 | L DLPFC | Figure-of-8 | No changes in craving and number of drinks |
Addolorato (2017) [65] | 5, 6 | 10 Hz | 12 | 1000 | L > R DLPFC | H-coil | Decreased number of drinking days compared to sham, no differences in cravings |
Hanlon (2017) [66] | 24, 24 | cTBS | 1 | 3600 | VMPFC | Figure-of-8 | No differences in craving compared to sham |
Kearney-Ramos (2018) [67] | 24, 24 | cTBS | 1 | 3600 | VMPFC | Figure-of-8 | No change in craving compared to sham |
McNeill (2018) [58] | 20 | cTBS | 1 | 600 | R DLPFC | Figure-of-8 | Ad libitum alcohol consumption in lab increased |
Jansen (2019) [55] | 39, 36 | 10 Hz | 1 | 3000 | R DLPFC | Figure-of-8 | No difference in craving compared to sham |
Schluter (2019) [68] | 41, 41 | 10 Hz | 10 | 3000 | R DLPFC | Figure-of-8 | No difference in impulsivity and inhibitory control compared to sham |
Perini (2020) [69] | 29, 27 | 10 Hz | 15 | 1500 | Insula | H-coil | No difference in craving and consumption compared to sham |
MDD | AUD | |
---|---|---|
rTMS Site/Frequency | HF Left DLPFC [15,30,40] LF Right DLPFC [15,30,40] HF Bilateral PFC 1 [15,30,40] | HF Right DLPFC [51,56,57] HF Bilateral PFC [62,63,64,65,70] |
rTMS Coil | Figure-of-8 [15,30,40] Deep TMS [15,30,40] | Figure-of-8 [51,56,57,61] Deep TMS [62,63,64,65,70] |
Adequate No. of Sessions | 20–30 [15,30,40] | ≥15 [56,63,64] |
Transdiagnostic Symptom Construct | Executive function [77,78] | Executive function [53,60] Craving [74] |
Optimization Protocols | Neuroimaging-guided targeting: anatomical (DLPFC) [79] and functional DLPFC to ACC [80,81] Accelerated rTMS [48] | Individualized effects on neuroimaging: ACC and reward circuit [57,66,67] Accelerated rTMS [56,57,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, V.M.; Le Foll, B.; Blumberger, D.M.; Voineskos, D. Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sci. 2022, 12, 48. https://doi.org/10.3390/brainsci12010048
Tang VM, Le Foll B, Blumberger DM, Voineskos D. Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sciences. 2022; 12(1):48. https://doi.org/10.3390/brainsci12010048
Chicago/Turabian StyleTang, Victor M., Bernard Le Foll, Daniel M. Blumberger, and Daphne Voineskos. 2022. "Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder" Brain Sciences 12, no. 1: 48. https://doi.org/10.3390/brainsci12010048
APA StyleTang, V. M., Le Foll, B., Blumberger, D. M., & Voineskos, D. (2022). Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sciences, 12(1), 48. https://doi.org/10.3390/brainsci12010048