Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals
Abstract
:1. General Introduction
2. Multisensory Integration in C. elegans
2.1. Sensory Processing in C. elegans
2.2. C. elegans Performs Multisensory Integration
2.3. Integration at the Level of Sensory Neurons
2.4. Integration at the Level of Interneurons
2.5. Neuromodulators in Multisensory Integration
2.6. Top-Down Mechanisms in the Multisensory Integration
3. Multisensory Integration in Development
4. Comparison of Multisensory Integration Studies between C. elegans and Mammals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stein, B.E.; Stanford, T.R. Multisensory Integration: Current Issues from the Perspective of the Single Neuron. Nat. Rev. Neurosci. 2008, 9, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Stanford, T.R.; Rowland, B.A. Multisensory Integration and the Society for Neuroscience: Then and Now. J. Neurosci. 2020, 40, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulos, E.; Herholz, S. Multisensory Integration and Neuroplasticity in the Human Cerebral Cortex. Transl. Neurosci. 2013, 4, 337–348. [Google Scholar] [CrossRef]
- Driver, J.; Noesselt, T. Multisensory Interplay Reveals Crossmodal Influences on “sensory-Specific” Brain Regions, Neural Responses, and Judgments. Neuron 2008, 57, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfar, A.A.; Schroeder, C.E. Is Neocortex Essentially Multisensory? Trends Cogn. Sci. 2006, 10, 278–285. [Google Scholar] [CrossRef]
- Yau, J.M.; DeAngelis, G.C.; Angelaki, D.E. Dissecting Neural Circuits for Multisensory Integration and Crossmodal Processing. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140203. [Google Scholar] [CrossRef]
- Buchholz, V.N.; Goonetilleke, S.C.; Medendorp, W.P.; Corneil, B.D. Greater Benefits of Multisensory Integration during Complex Sensorimotor Transformations. J. Neurophysiol. 2012, 107, 3135–3143. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.A.; Stein, B.E. Spatial Factors Determine the Activity of Multisensory Neurons in Cat Superior Colliculus. Brain Res. 1986, 365, 350–354. [Google Scholar] [CrossRef]
- Meredith, M.A.; Stein, B.E. Visual, Auditory, and Somatosensory Convergence on Cells in Superior Colliculus Results in Multisensory Integration. J. Neurophysiol. 1986, 56, 640–662. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.A.; Stein, B.E. Interactions among Converging Sensory Inputs in the Superior Colliculus. Science 1983, 221, 389–391. [Google Scholar] [CrossRef]
- Holmes, N.P. The Principle of Inverse Effectiveness in Multisensory Integration: Some Statistical Considerations. Brain Topogr. 2009, 21, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Stanford, T.R.; Rowland, B.A. Development of Multisensory Integration from the Perspective of the Individual Neuron. Nat. Rev. Neurosci. 2014, 15, 520–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornix, B.E.; Havekes, R.; Kas, M.J.H. Multisensory Cortical Processing and Dysfunction across the Neuropsychiatric Spectrum. Neurosci. Biobehav. Rev. 2019, 97, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.J.; Hinkley, L.B.N.; Hill, S.S.; Nagarajan, S.S. Sensory Processing in Autism: A Review of Neurophysiologic Findings. Pediatr. Res. 2011, 69, 48R–54R. [Google Scholar] [CrossRef]
- Stevenson, R.A.; Park, S.; Cochran, C.; McIntosh, L.G.; Noel, J.-P.; Barense, M.D.; Ferber, S.; Wallace, M.T. The Associations between Multisensory Temporal Processing and Symptoms of Schizophrenia. Schizophr. Res. 2017, 179, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; Segers, M.; Ferber, S.; Barense, M.D.; Wallace, M.T. The Impact of Multisensory Integration Deficits on Speech Perception in Children with Autism Spectrum Disorders. Front Psychol. 2014, 5, 379. [Google Scholar] [CrossRef]
- Panagiotidi, M.; Overton, P.G.; Stafford, T. Multisensory Integration and ADHD-like Traits: Evidence for an Abnormal Temporal Integration Window in ADHD. Acta Psychol. 2017, 181, 10–17. [Google Scholar] [CrossRef]
- Zvyagintsev, M.; Parisi, C.; Mathiak, K. Temporal Processing Deficit Leads to Impaired Multisensory Binding in Schizophrenia. Cogn. Neuropsychiatry 2017, 22, 361–372. [Google Scholar] [CrossRef]
- Beker, S.; Foxe, J.J.; Molholm, S. Ripe for Solution: Delayed Development of Multisensory Processing in Autism and Its Remediation. Neurosci. Biobehav. Rev. 2018, 84, 182–192. [Google Scholar] [CrossRef]
- Cheung, P.P.P.; Lau, B.W.M. Chapter Six—Neurobiology of Sensory Processing in Autism Spectrum Disorder. In Progress in Molecular Biology and Translational Science; Ilieva, M., Lau, W.K.-W., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 173, pp. 161–181. [Google Scholar]
- Ghosh, D.D.; Nitabach, M.N.; Zhang, Y.; Harris, G. Multisensory Integration in C. elegans. Curr. Opin. Neurobiol. 2017, 43, 110–118. [Google Scholar] [CrossRef]
- Metaxakis, A.; Petratou, D.; Tavernarakis, N. Multimodal Sensory Processing in Caenorhabditis elegans. Open Biol. 2018, 8, 180049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.Q.; Tang, L.T.-H.; Bayer, E.A.; Duerr, J.S.; et al. Whole-Animal Connectomes of Both Caenorhabditis elegans Sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Witvliet, D.; Mulcahy, B.; Mitchell, J.K.; Meirovitch, Y.; Berger, D.R.; Wu, Y.; Liu, Y.; Koh, W.X.; Parvathala, R.; Holmyard, D.; et al. Connectomes across Development Reveal Principles of Brain Maturation. Nature 2021, 596, 257–261. [Google Scholar] [CrossRef]
- Moyle, M.W.; Barnes, K.M.; Kuchroo, M.; Gonopolskiy, A.; Duncan, L.H.; Sengupta, T.; Shao, L.; Guo, M.; Santella, A.; Christensen, R.; et al. Structural and Developmental Principles of Neuropil Assembly in C. elegans. Nature 2021, 591, 99–104. [Google Scholar] [CrossRef]
- Brittin, C.A.; Cook, S.J.; Hall, D.H.; Emmons, S.W.; Cohen, N. A Multi-Scale Brain Map Derived from Whole-Brain Volumetric Reconstructions. Nature 2021, 591, 105–110. [Google Scholar] [CrossRef]
- Hammarlund, M.; Hobert, O.; Miller, D.M.; Sestan, N. The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System. Neuron 2018, 99, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; Santpere, G.; Weinreb, A.; Barrett, A.; Reilly, M.B.; Xu, C.; Varol, E.; Oikonomou, P.; Glenwinkel, L.; McWhirter, R.; et al. Molecular Topography of an Entire Nervous System. Cell 2021, 184, 4329–4347.e23. [Google Scholar] [CrossRef]
- Bargmann, C.I.; Avery, L. Laser Killing of Cells in Caenorhabditis elegans. Methods Cell Biol. 1995, 48, 225–250. [Google Scholar]
- Chelur, D.S.; Chalfie, M. Targeted Cell Killing by Reconstituted Caspases. Proc. Natl. Acad. Sci. USA 2007, 104, 2283–2288. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.B.; Garren, E.J.; Shu, X.; Tsien, R.Y.; Jin, Y. Photo-Inducible Cell Ablation in Caenorhabditis elegans Using the Genetically Encoded Singlet Oxygen Generating Protein MiniSOG. Proc. Natl. Acad. Sci. USA 2012, 109, 7499–7504. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chisholm, A.D. Highly Efficient Optogenetic Cell Ablation in C. elegans Using Membrane-Targeted MiniSOG. Sci. Rep. 2016, 6, 21271. [Google Scholar] [CrossRef] [PubMed]
- Bergs, A.; Schultheis, C.; Fischer, E.; Tsunoda, S.P.; Erbguth, K.; Husson, S.J.; Govorunova, E.; Spudich, J.L.; Nagel, G.; Gottschalk, A.; et al. Rhodopsin Optogenetic Toolbox v2.0 for Light-Sensitive Excitation and Inhibition in Caenorhabditis elegans. PLoS ONE 2018, 13, e0191802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokala, N.; Liu, Q.; Gordus, A.; Bargmann, C.I. Inducible and Titratable Silencing of Caenorhabditis elegans Neurons in Vivo with Histamine-Gated Chloride Channels. Proc. Natl. Acad. Sci. USA 2014, 111, 2770–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.; Vidal-Gadea, A.G.; Makay, A.; Lanam, C.; Pierce-Shimomura, J.T. Humidity Sensation Requires Both Mechanosensory and Thermosensory Pathways in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2014, 111, 8269–8274. [Google Scholar] [CrossRef] [Green Version]
- Bargmann, C.I. Chemosensation in C. elegans. WormBook 2006, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Ferkey, D.M.; Sengupta, P.; L’Etoile, N.D. Chemosensory Signal Transduction in Caenorhabditis elegans. Genetics 2021, 217, iyab004. [Google Scholar] [CrossRef]
- Goodman, M.B. Mechanosensation. WormBook 2006, 1–14. [Google Scholar] [CrossRef]
- Goodman, M.B.; Klein, M.; Lasse, S.; Luo, L.; Mori, I.; Samuel, A.; Sengupta, P.; Wang, D. Thermotaxis Navigation Behavior. WormBook 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.; Liu, J.; Feng, Z.; Xu, X.Z.S. Light-Sensitive Neurons and Channels Mediate Phototaxis in C. elegans. Nat. Neurosci. 2008, 11, 916–922. [Google Scholar] [CrossRef]
- Ghosh, D.D.; Lee, D.; Jin, X.; Horvitz, H.R.; Nitabach, M.N. C. elegans Discriminates Colors to Guide Foraging. Science 2021, 371, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Po, M.D.; Hulme, E.; Chen, S.; Liu, X.; Kwok, S.W.; Gershow, M.; Leifer, A.M.; Butler, V.; Fang-Yen, C.; et al. Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion. Neuron 2012, 76, 750–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal-Gadea, A.; Ward, K.; Beron, C.; Ghorashian, N.; Gokce, S.; Russell, J.; Truong, N.; Parikh, A.; Gadea, O.; Ben-Yakar, A.; et al. Magnetosensitive Neurons Mediate Geomagnetic Orientation in Caenorhabditis elegans. eLife 2015, 4, e07493. [Google Scholar] [CrossRef] [PubMed]
- Iliff, A.J.; Wang, C.; Ronan, E.A.; Hake, A.E.; Guo, Y.; Li, X.; Zhang, X.; Zheng, M.; Liu, J.; Grosh, K.; et al. The Nematode C. elegans Senses Airborne Sound. Neuron 2021, 109, 3633–3646.e7. [Google Scholar] [CrossRef]
- Sengupta, P.; Chou, J.H.; Bargmann, C.I. Odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl. Cell 1996, 84, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Yuan, Y.; Ward, A.; Kang, L.; Zhang, B.; Wu, Z.; Peng, J.; Feng, Z.; Liu, J.; Xu, X.Z.S. The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell 2016, 167, 1252–1263.e10. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.M.; Karow, D.S.; Lu, H.; Chang, A.J.; Chang, J.S.; Ellis, R.E.; Marletta, M.A.; Bargmann, C.I. Oxygen Sensation and Social Feeding Mediated by a C. elegans Guanylate Cyclase Homologue. Nature 2004, 430, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Liu, J.; Ronan, E.A.; He, F.; Cai, W.; Fatima, M.; Zhang, W.; Lee, H.; Li, Z.; Kim, G.-H.; et al. A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene. Cell 2019, 178, 1375–1386.e11. [Google Scholar] [CrossRef]
- Takeishi, A.; Yu, Y.V.; Hapiak, V.M.; Bell, H.W.; O’Leary, T.; Sengupta, P. Receptor-Type Guanylyl Cyclases Confer Thermosensory Responses in C. elegans. Neuron 2016, 90, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.B.; Ernstrom, G.G.; Chelur, D.S.; O’Hagan, R.; Yao, C.A.; Chalfie, M. MEC-2 Regulates C. elegans DEG/ENaC Channels Needed for Mechanosensation. Nature 2002, 415, 1039–1042. [Google Scholar] [CrossRef]
- O’Hagan, R.; Chalfie, M.; Goodman, M.B. The MEC-4 DEG/ENaC Channel of Caenorhabditis elegans Touch Receptor Neurons Transduces Mechanical Signals. Nat. Neurosci. 2005, 8, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Colbert, H.A.; Smith, T.L.; Bargmann, C.I. OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation in Caenorhabditis elegans. J. Neurosci. 1997, 17, 8259–8269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, D.M.; Madsen, D.M.; Kahn-Kirby, A.; Peckol, E.L.; Moulder, G.; Barstead, R.; Maricq, A.V.; Bargmann, C.I. Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons. Neuron 2002, 35, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Coburn, C.M.; Bargmann, C.I. A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans. Neuron 1996, 17, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, H.; Mori, I.; Rhee, J.-S.; Akaike, N.; Ohshima, Y. Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans. Neuron 1996, 17, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Troemel, E.R.; Chou, J.H.; Dwyer, N.D.; Colbert, H.A.; Bargmann, C.I. Divergent Seven Transmembrane Receptors Are Candidate Chemosensory Receptors in C. elegans. Cell 1995, 83, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Serizawa, S.; Miyamichi, K.; Sakano, H. One Neuron-One Receptor Rule in the Mouse Olfactory System. Trends Genet. 2004, 20, 648–653. [Google Scholar] [CrossRef]
- Chalfie, M.; Sulston, J.E.; White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The Neural Circuit for Touch Sensitivity in Caenorhabditis elegans. J. Neurosci. 1985, 5, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, S.; Iwata, R.; Iwamoto, M.; Imai, T. Widespread Inhibition, Antagonism, and Synergy in Mouse Olfactory Sensory Neurons In Vivo. Cell Rep. 2020, 31, 107814. [Google Scholar] [CrossRef]
- Kumazawa, T. Chapter 1. The Polymodal Receptor: Bio-Warning and Defense System. In Progress in Brain Research; Kumazawa, T., Kruger, L., Mizumura, K., Eds.; The Polymodal Pathological Pain Receptor—A Gateway to Pathological Pain; Elsevier: Amsterdam, The Netherlands, 1996; Volume 113, pp. 3–18. [Google Scholar]
- Lawson, S.N.; Fang, X.; Djouhri, L. Nociceptor Subtypes and Their Incidence in Rat Lumbar Dorsal Root Ganglia (DRGs): Focussing on C-Polymodal Nociceptors, Aβ-Nociceptors, Moderate Pressure Receptors and Their Receptive Field Depths. Curr. Opin. Physiol. 2019, 11, 125–146. [Google Scholar] [CrossRef]
- Ochoa, J. Chapter 11. Human Polymodal Receptors in Pathological Conditions. In Progress in Brain Research; Kumazawa, T., Kruger, L., Mizumura, K., Eds.; The Polymodal Pathological Pain Receptor—A Gateway to Pathological Pain; Elsevier: Amsterdam, The Netherlands, 1996; Volume 113, pp. 185–197. [Google Scholar]
- Hart, A.C.; Sims, S.; Kaplan, J.M. Synaptic Code for Sensory Modalities Revealed by C. elegans GLR-1 Glutamate Receptor. Nature 1995, 378, 82–85. [Google Scholar] [CrossRef]
- Mellem, J.E.; Brockie, P.J.; Zheng, Y.; Madsen, D.M.; Maricq, A.V. Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans. Neuron 2002, 36, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Biron, D.; Wasserman, S.; Thomas, J.H.; Samuel, A.D.T.; Sengupta, P. An Olfactory Neuron Responds Stochastically to Temperature and Modulates Caenorhabditis elegans Thermotactic Behavior. Proc. Natl. Acad. Sci. USA 2008, 105, 11002–11007. [Google Scholar] [CrossRef] [Green Version]
- Kuhara, A.; Okumura, M.; Kimata, T.; Tanizawa, Y.; Takano, R.; Kimura, K.D.; Inada, H.; Matsumoto, K.; Mori, I. Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans. Science 2008, 320, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Bretscher, A.J.; Kodama-Namba, E.; Busch, K.E.; Murphy, R.J.; Soltesz, Z.; Laurent, P.; de Bono, M. Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors That Control Avoidance Behavior. Neuron 2011, 69, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Kodama-Namba, E.; Fenk, L.A.; Bretscher, A.J.; Gross, E.; Busch, K.E.; de Bono, M. Cross-Modulation of Homeostatic Responses to Temperature, Oxygen and Carbon Dioxide in C. elegans. PLoS Genet. 2013, 9, e1004011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemus, L.; Hernández, A.; Luna, R.; Zainos, A.; Romo, R. Do Sensory Cortices Process More than One Sensory Modality during Perceptual Judgments? Neuron 2010, 67, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Troemel, E.R.; Kimmel, B.E.; Bargmann, C.I. Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans. Cell 1997, 91, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Macosko, E.Z.; Pokala, N.; Feinberg, E.H.; Chalasani, S.H.; Butcher, R.A.; Clardy, J.; Bargmann, C.I. A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behaviour in C. elegans. Nature 2009, 458, 1171–1175. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.M.; Horvitz, H.R. A Dual Mechanosensory and Chemosensory Neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1993, 90, 2227–2231. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitch, I.; Chatzigeorgiou, M.; Schafer, W.R. A Gap Junction Circuit Enhances Processing of Coincident Mechanosensory Inputs. Curr. Biol. 2013, 23, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Chatzigeorgiou, M.; Schafer, W.R. Lateral Facilitation between Primary Mechanosensory Neurons Controls Nose Touch Perception in C. elegans. Neuron 2011, 70, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobosiewicz, M.; Liu, Q.; Bargmann, C.I. Reliability of an Interneuron Response Depends on an Integrated Sensory State. eLife 2019, 8, e50566. [Google Scholar] [CrossRef] [PubMed]
- López-Cruz, A.; Sordillo, A.; Pokala, N.; Liu, Q.; McGrath, P.T.; Bargmann, C.I. Parallel Multimodal Circuits Control an Innate Foraging Behavior. Neuron 2019, 102, 407–419.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lőrincz, M.L.; Adamantidis, A.R. Monoaminergic Control of Brain States and Sensory Processing: Existing Knowledge and Recent Insights Obtained with Optogenetics. Prog. Neurobiol. 2017, 151, 237–253. [Google Scholar] [CrossRef]
- Bhat, U.S.; Shahi, N.; Surendran, S.; Babu, K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front. Mol. Neurosci. 2021, 14, 786471. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Yi, Y.; Huang, W.; Yang, S.; Niu, W.; Zhang, L.; Xu, Z.; Qu, A.; Wu, Z.; et al. Dissecting a Central Flip-Flop Circuit That Integrates Contradictory Sensory Cues in C. elegans Feeding Regulation. Nat. Commun. 2012, 3, 776. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.D.; Sanders, T.; Hong, S.; McCurdy, L.Y.; Chase, D.L.; Cohen, N.; Koelle, M.R.; Nitabach, M.N. Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron 2016, 92, 1049–1062. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chalfie, M. Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels. J. Neurosci. 2014, 34, 6522–6536. [Google Scholar] [CrossRef] [Green Version]
- Summers, P.J.; Layne, R.M.; Ortega, A.C.; Harris, G.P.; Bamber, B.A.; Komuniecki, R.W. Multiple Sensory Inputs Are Extensively Integrated to Modulate Nociception in C. elegans. J. Neurosci. 2015, 35, 10331–10342. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, S.; Yankura, K.A.; Guillermin, M.L.; Fung, W.; Hallem, E.A. Feeding State Sculpts a Circuit for Sensory Valence in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2019, 116, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. Monitoring the Kynurenine System: Concentrations, Ratios or What Else? Adv. Clin. Exp. Med. 2021, 30, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.-Q. Kynurenines in the Mammalian Brain: When Physiology Meets Pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Spekker, E.; Polyák, H.; Tóth, F.; Vécsei, L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan–Kynurenine Metabolic System. Cells 2022, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, G.A.; Cunningham, K.A.; Lin, L.; Mayer, F.; Werb, Z.; Ashrafi, K. Kynurenic Acid Is a Nutritional Cue That Enables Behavioral Plasticity. Cell 2015, 160, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, C.D.; Sigman, M. Brain States: Top-Down Influences in Sensory Processing. Neuron 2007, 54, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, C.D.; Li, W. Top-down Influences on Visual Processing. Nat. Rev. Neurosci. 2013, 14, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, S.; Orsolini, S.; Borgomaneri, S.; Barbieri, R.; Diciotti, S.; di Pellegrino, G. Characterizing Cardiac Autonomic Dynamics of Fear Learning in Humans. Psychophysiology 2022, e14122. [Google Scholar] [CrossRef]
- Gilbert, C.D.; Sigman, M.; Crist, R.E. The Neural Basis of Perceptual Learning. Neuron 2001, 31, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, T.; Iino, Y.; Mohri, A.; Mori, I.; Gengyo-Ando, K.; Mitani, S.; Katsura, I. HEN-1, a Secretory Protein with an LDL Receptor Motif, Regulates Sensory Integration and Learning in Caenorhabditis elegans. Cell 2002, 109, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Matty, M.A.; Lau, H.E.; Haley, J.A.; Singh, A.; Chakraborty, A.; Kono, K.; Reddy, K.C.; Hansen, M.; Chalasani, S.H. Intestine-to-Neuronal Signaling Alters Risk-Taking Behaviors in Food-Deprived Caenorhabditis elegans. PLoS Genet. 2022, 18, e1010178. [Google Scholar] [CrossRef] [PubMed]
- Gourgou, E.; Adiga, K.; Goettemoeller, A.; Chen, C.; Hsu, A.-L. Caenorhabditis elegans Learning in a Structured Maze Is a Multisensory Behavior. iScience 2021, 24, 102284. [Google Scholar] [CrossRef] [PubMed]
- Hedgecock, E.M.; Russell, R.L. Normal and Mutant Thermotaxis in the Nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1975, 72, 4061–4065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawk, J.D.; Calvo, A.C.; Liu, P.; Almoril-Porras, A.; Aljobeh, A.; Torruella-Suárez, M.L.; Ren, I.; Cook, N.; Greenwood, J.; Luo, L.; et al. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory. Neuron 2018, 97, 356–367.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunitomo, H.; Sato, H.; Iwata, R.; Satoh, Y.; Ohno, H.; Yamada, K.; Iino, Y. Concentration Memory-Dependent Synaptic Plasticity of a Taste Circuit Regulates Salt Concentration Chemotaxis in Caenorhabditis elegans. Nat. Commun. 2013, 4, 2210. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Kunitomo, H.; Fei, X.; Hashimoto, K.; Iino, Y. Glutamate Signaling from a Single Sensory Neuron Mediates Experience-Dependent Bidirectional Behavior in Caenorhabditis elegans. Cell Rep. 2021, 35, 109177. [Google Scholar] [CrossRef]
- Wallace, M.T.; McHaffie, J.G.; Stein, B.E. Visual Response Properties and Visuotopic Representation in the Newborn Monkey Superior Colliculus. J. Neurophysiol. 1997, 78, 2732–2741. [Google Scholar] [CrossRef] [Green Version]
- Dionne-Dostie, E.; Paquette, N.; Lassonde, M.; Gallagher, A. Multisensory Integration and Child Neurodevelopment. Brain Sci. 2015, 5, 32–57. [Google Scholar] [CrossRef] [Green Version]
- Hale, L.A.; Lee, E.S.; Pantazis, A.K.; Chronis, N.; Chalasani, S.H. Altered Sensory Code Drives Juvenile-to-Adult Behavioral Maturation in Caenorhabditis elegans. eNeuro 2016, 3, ENEURO.0175-16.2016. [Google Scholar] [CrossRef] [Green Version]
- Stern, S.; Kirst, C.; Bargmann, C.I. Neuromodulatory Control of Long-Term Behavioral Patterns and Individuality across Development. Cell 2017, 171, 1649–1662.e10. [Google Scholar] [CrossRef] [Green Version]
- de Dieuleveult, A.L.; Siemonsma, P.C.; van Erp, J.B.F.; Brouwer, A.-M. Effects of Aging in Multisensory Integration: A Systematic Review. Front. Aging Neurosci. 2017, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.O.; Vieira De Melo, B.B.; Dores, A.R.; Peixoto, B.; Geraldo, A.; Barbosa, F. Narrative Review of the Multisensory Integration Tasks Used with Older Adults: Inclusion of Multisensory Integration Tasks into Neuropsychological Assessment. Expert Rev. Neurother. 2021, 21, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; Noppeney, U. Ageing and Multisensory Integration: A Review of the Evidence, and a Computational Perspective. Cortex 2021, 138, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Lee, S.A.; Chew, Y.L.; Broderick, K.; Schafer, W.R.; Lu, H. Multimodal Stimulation in a Microfluidic Device Facilitates Studies of Interneurons in Sensory Integration in C. elegans. Small 2020, 16, 1905852. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.B.; Lindsay, T.H.; Lockery, S.R.; Richmond, J.E. Electrophysiological Methods for Caenorhabditis elegans Neurobiology. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 107, pp. 409–436. ISBN 978-0-12-394620-1. [Google Scholar]
- Lockery, S.R.; Goodman, M.B. The Quest for Action Potentials in C. elegans Neurons Hits a Plateau. Nat. Neurosci. 2009, 12, 377–378. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Kidd, P.B.; Dobosiewicz, M.; Bargmann, C.I. C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell 2018, 175, 57–70.e17. [Google Scholar] [CrossRef] [Green Version]
- Prevedel, R.; Yoon, Y.-G.; Hoffmann, M.; Pak, N.; Wetzstein, G.; Kato, S.; Schrödel, T.; Raskar, R.; Zimmer, M.; Boyden, E.S.; et al. Simultaneous Whole-Animal 3D Imaging of Neuronal Activity Using Light-Field Microscopy. Nat. Methods 2014, 11, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Urai, A.E.; Doiron, B.; Leifer, A.M.; Churchland, A.K. Large-Scale Neural Recordings Call for New Insights to Link Brain and Behavior. Nat. Neurosci. 2022, 25, 11–19. [Google Scholar] [CrossRef]
- Weisenburger, S.; Vaziri, A. A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity. Annu. Rev. Neurosci. 2018, 41, 431–452. [Google Scholar] [CrossRef]
- Susoy, V.; Hung, W.; Witvliet, D.; Whitener, J.E.; Wu, M.; Park, C.F.; Graham, B.J.; Zhen, M.; Venkatachalam, V.; Samuel, A.D.T. Natural Sensory Context Drives Diverse Brain-Wide Activity during C. elegans Mating. Cell 2021, 184, 5122–5137.e17. [Google Scholar] [CrossRef]
- Kato, S.; Kaplan, H.S.; Schrödel, T.; Skora, S.; Lindsay, T.H.; Yemini, E.; Lockery, S.; Zimmer, M. Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans. Cell 2015, 163, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-C.; Barry, N.C.; Wassie, A.T.; Sinha, A.; Bhattacharya, A.; Asano, S.; Zhang, C.; Chen, F.; Hobert, O.; Goodman, M.B.; et al. Hydrogel-Expansion Microscopy of C. elegans. eLife 2020, 9, e46249. [Google Scholar] [CrossRef] [PubMed]
- Sarma, G.P.; Lee, C.W.; Portegys, T.; Ghayoomie, V.; Jacobs, T.; Alicea, B.; Cantarelli, M.; Currie, M.; Gerkin, R.C.; Gingell, S.; et al. OpenWorm: Overview and Recent Advances in Integrative Biological Simulation of Caenorhabditis elegans. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170382. [Google Scholar] [CrossRef] [PubMed]
C. elegans | Mammals | |
---|---|---|
Dominant modality | Olfaction | Vision |
Receptor expression | One neuron, many receptors | One neuron, one receptor |
Valence of stimulus | Often determined at the sensory neuron level | Often determined at higher brain region such as amygdala |
Common method measuring neural activity | Calcium imaging | Electrophysiology |
Type of neuron membrane potential | Mostly graded potential | Action potential |
Behavioral output | Often presented as directed behaviors, that involves a directional response to a directional sensory input | Presented as increased response magnitude, reduced response latency, more solid memories formation, more accurate perception and so on |
Top-down modulators | Hunger is mostly used | Stress, attention, expectation, emotion, motivation and so on |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.V.; Xue, W.; Chen, Y. Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sci. 2022, 12, 1368. https://doi.org/10.3390/brainsci12101368
Yu YV, Xue W, Chen Y. Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sciences. 2022; 12(10):1368. https://doi.org/10.3390/brainsci12101368
Chicago/Turabian StyleYu, Yanxun V., Weikang Xue, and Yuanhua Chen. 2022. "Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals" Brain Sciences 12, no. 10: 1368. https://doi.org/10.3390/brainsci12101368
APA StyleYu, Y. V., Xue, W., & Chen, Y. (2022). Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sciences, 12(10), 1368. https://doi.org/10.3390/brainsci12101368