Visual-Based Spatial Coordinate Dominates Probabilistic Multisensory Inference in Macaque MST-d Disparity Encoding
Abstract
:1. Introduction
2. Methods
2.1. Subjects and Surgery
2.2. Vestibular and Visual Stimuli
2.3. Electrophysiological Recordings
2.4. Experimental Protocol
2.5. Data Analysis
2.6. Multisensory Tuning Curves Averaging
2.7. Bayesian Modeling
3. Results
3.1. Quantification of MST-d Neuronal Reliability Weightings Based on Tuning Curves
3.2. Balanced and Imbalanced MST-d Neurons Comprise Encoding Bases
3.3. Discriminated Multisensory Tuning of Visual and Vestibular Modalities
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, Y.; Angelaki, D.E.; DeAngelis, G.C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 2008, 11, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, C.R.; Pouget, A.; DeAngelis, G.C.; Angelaki, D.E. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 2011, 15, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Binns, K.E.; Salt, T.E. Importance of NMDA receptors for multimodal integration in the deep layers of the cat superior colliculus. J. Neurophysiol. 1996, 75, 920–930. [Google Scholar] [CrossRef]
- Meredith, M.A. On the neuronal basis for multisensory convergence: A brief overview. Cogn. Brain Res. 2002, 14, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.A.; Stein, B.E. Spatial determinants of multisensory integration in cat superior colliculus neurons. J. Neurophysiol. 1996, 75, 1843–1857. [Google Scholar] [CrossRef] [PubMed]
- Parise, C.V.; Ernst, M.O. Correlation detection as a general mechanism for multisensory integration. Nat. Commun. 2016, 7, 11543. [Google Scholar] [CrossRef] [Green Version]
- Truszkowski, T.L.S.; Carrillo, O.A.; Bleier, J.; Ramirez-Vizcarrondo, C.M.; Felch, D.L.; McQuillan, M.; Truszkowski, C.P.; Khakhalin, A.S.; Aizenman, C.D. A cellular mechanism for inverse effectiveness in multisensory integration. Elife 2017, 6, e25392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Wang, H.; Chen, A.; Gu, Y.; Lee, T.S.; Wong, K.M.; Wu, S. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. Elife 2019, 8, e43753. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.; Spence, C. Multisensory perception: Beyond modularity and convergence. Curr. Biol. 2000, 10, R731–R735. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, C.E.; Foxe, J. Multisensory contributions to low-level, ’unisensory’ processing. Curr. Opin. Neurobiol. 2005, 15, 454–458. [Google Scholar] [CrossRef]
- Kayser, C.; Logothetis, N.K. Do early sensory cortices integrate cross-modal information? Brain Struct. Funct. 2007, 212, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004, 27, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Beck, J.M.; Latham, P.E.; Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 2006, 9, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Pouget, A.; Beck, J.M.; Ma, W.J.; Latham, P.E. Probabilistic brains: Knowns and unknowns. Nat. Neurosci. 2013, 16, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Kording, K.P.; Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 2004, 427, 244–247. [Google Scholar] [CrossRef]
- Wallace, M.T.; Roberson, G.; Hairston, W.D.; Stein, B.E.; Vaughan, J.W.; Schirillo, J.A. Unifying multisensory signals across time and space. Exp. Brain Res. 2004, 158, 252–258. [Google Scholar] [CrossRef]
- Kording, K.P.; Beierholm, U.; Ma, W.J.; Quartz, S.; Tenenbaum, J.B.; Shams, L. Causal inference in multisensory perception. PLoS ONE 2007, 2, e943. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, L.; Dokka, K.; Angelaki, D.E.; Ma, W.J. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. PLoS Comput. Biol. 2018, 14, e1006110. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.J.; Wurtz, R.H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 1995, 15, 5192–5208. [Google Scholar] [CrossRef]
- Duffy, C.J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 1998, 80, 1816–1827. [Google Scholar] [CrossRef]
- Bremmer, F.; Kubischik, M.; Pekel, M.; Lappe, M.; Hoffmann, K.P. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann. N. Y. Acad. Sci. 1999, 871, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Fukada, Y.; Saito, H. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 1989, 62, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Rideaux, R.; Storrs, K.R.; Maiello, G.; Welchman, A.E. How multisensory neurons solve causal inference. Proc. Natl. Acad. Sci. USA 2021, 118, e2106235118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gu, Y.; Chen, A.; Yu, Y. Unveiling Dynamic System Strategies for Multisensory Processing: From Neuronal Fixed-Criterion Integration to Population Bayesian Inference. Research 2022, 2022, 9787040. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Watkins, P.V.; Angelaki, D.E.; DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Shulman, G.L.; Corbetta, M.; Buckner, R.L.; Raichle, M.E.; Fiez, J.A.; Miezin, F.M.; Petersen, S.E. Top-down modulation of early sensory cortex. Cereb Cortex 1997, 7, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, L.; Kastner, S.; Ungerleider, L.G. Neuroimaging studies of attention: From modulation of sensory processing to top-down control. J. Neurosci. 2003, 23, 3990–3998. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, P.; Hyvärinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. Adv. Neural Inf. Process. Syst. 2002, 15. [Google Scholar]
- Buesing, L.; Bill, J.; Nessler, B.; Maass, W. Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 2011, 7, e1002211. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Rao, R.P. Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Zhang, W.; Wu, S.; Josic, K.; Doiron, B. Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ferrè, E.R.; Walther, L.E.; Haggard, P. Multisensory interactions between vestibular, visual and somatosensory signals. PLoS ONE 2015, 10, e0124573. [Google Scholar] [CrossRef] [PubMed]
- Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 2011, 14, 775–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohe, T.; Noppeney, U. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol. 2015, 13, e1002073. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gu, Y. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. Elife 2017, 6, e29809. [Google Scholar] [CrossRef]
- Groh, J.M. Converting neural signals from place codes to rate codes. Biol. Cybern. 2001, 85, 159–165. [Google Scholar] [CrossRef]
- Deneve, S.; Latham, P.E.; Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 2001, 4, 826–831. [Google Scholar] [CrossRef]
- Vaina, L.M.; Cowey, A.; Eskew, R.T., Jr.; LeMay, M.; Kemper, T. Regional cerebral correlates of global motion perception: Evidence from unilateral cerebral brain damage. Brain 2001, 124, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Huk, A.C.; Dougherty, R.F.; Heeger, D.J. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 2002, 22, 7195–7205. [Google Scholar] [CrossRef] [Green Version]
- Bottini, G.; Karnath, H.-O.; Vallar, G.; Sterzi, R.; Frith, C.D.; Frackowiak, R.S.; Paulesu, E. Cerebral representations for egocentric space: Functional–anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 2001, 124, 1182–1196. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, M.; Gu, Y.; Chen, A.; Yu, Y. Visual-Based Spatial Coordinate Dominates Probabilistic Multisensory Inference in Macaque MST-d Disparity Encoding. Brain Sci. 2022, 12, 1387. https://doi.org/10.3390/brainsci12101387
Zhang J, Huang M, Gu Y, Chen A, Yu Y. Visual-Based Spatial Coordinate Dominates Probabilistic Multisensory Inference in Macaque MST-d Disparity Encoding. Brain Sciences. 2022; 12(10):1387. https://doi.org/10.3390/brainsci12101387
Chicago/Turabian StyleZhang, Jiawei, Mingyi Huang, Yong Gu, Aihua Chen, and Yuguo Yu. 2022. "Visual-Based Spatial Coordinate Dominates Probabilistic Multisensory Inference in Macaque MST-d Disparity Encoding" Brain Sciences 12, no. 10: 1387. https://doi.org/10.3390/brainsci12101387
APA StyleZhang, J., Huang, M., Gu, Y., Chen, A., & Yu, Y. (2022). Visual-Based Spatial Coordinate Dominates Probabilistic Multisensory Inference in Macaque MST-d Disparity Encoding. Brain Sciences, 12(10), 1387. https://doi.org/10.3390/brainsci12101387