Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study
Abstract
:1. Introduction
1.1. COVID-19 and Neurological Disorders
1.2. Vaccine Hesitancy (VH)
2. Materials and Methods
2.1. Study Design and Aims
2.2. Patient Collection
2.3. Data Collection
2.4. Informed Consent form and Data Privacy
2.5. Statistical Analysis
3. Results
3.1. Adherence to Vaccination
3.2. Adverse Events
3.3. Medications and Adverse Events
3.4. Previous COVID-19 and Reactogenicity to Vaccination
3.5. Patient’s Reported Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Sharma, B.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef] [PubMed]
- Zubair, A.; McAlpine, L.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.; Kornberg, M.; Kessler, K.; Haq, I.; Patel, A.D.; Nath, A.; Schierman, B.; Jones, L.K., Jr. COVID-19 and Vaccination in the Setting of Neurologic Disease: An Emerging Issue in Neurology. Neurology 2021, 97, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Solé, G.; Salort-Campana, E.; Pereon, Y.; Stojkovic, T.; Wahbi, K.; Cintas, P.; Adams, D.; Laforet, P.; Tiffreau, V.; Desguerre, I.; et al. Guidance for the Care of Neuromuscular Patients during the COVID-19 Pandemic Outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev. Neurol. 2020, 176, 507–515. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Q&A on Coronaviruses (COVID-19); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Bersano, A.; Pantoni, L. On Being a Neurologist in Italy at the Time of the COVID-19 Outbreak. Neurology 2020, 94, 905–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidon, A.C.; Amato, A.A. COVID-19 and Neuromuscular Disorders. Neurology 2020, 94, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, V.; Battaglia, G.; Giustino, V.; Gagliardo, A.; D’Aleo, M.; Giannini, O.; Palma, A.; Brighina, F. Significant Reduction of Physical Activity in Patients with Neuromuscular Disease during COVID-19 Pandemic: The Long-Term Consequences of Quarantine. J. Neurol. 2020, 268, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Bellino, S. COVID-19 Vaccines Approved in the European Union: Current Evidence and Perspectives. Expert Rev. Vaccines 2021, 20, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Y.; Chen, J.; Wen, Z.; Feng, F.; Zou, H.; Fu, C.; Chen, L.; Shu, Y.; Sun, C. An Online Survey of the Attitude and Willingness of Chinese Adults to Receive COVID-19 Vaccination. Hum. Vaccines Immunother. 2021, 17, 2279–2288. [Google Scholar] [CrossRef]
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Groenewoud, R.; Rachor, G.S.; Asmundson, G.J.G. A Proactive Approach for Managing COVID-19: The Importance of Understanding the Motivational Roots of Vaccination Hesitancy for SARS-CoV2. Front. Psychol. 2020, 11, 575950. [Google Scholar] [CrossRef] [PubMed]
- Contoli, B.; Possenti, V.; Minardi, V.; Binkin, N.J.; Ramigni, M.; Carrozzi, G.; Masocco, M. What Is the Willingness to Receive Vaccination Against COVID-19 Among the Elderly in Italy? Data From the PASSI d’Argento Surveillance System. Front. Public Health 2021, 9, 736976. [Google Scholar] [CrossRef] [PubMed]
- Doneddu, P.E.; Spina, E.; Briani, C.; Fabrizi, G.M.; Manganelli, F.; Nobile-Orazio, E. Acute and Chronic Inflammatory Neuropathies and COVID-19 Vaccines: Practical Recommendations from the Task Force of the Italian Peripheral Nervous System Association (ASNP). J. Peripher. Nerv. Syst. 2021, 26, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari-Rafi, A.; Teehera, K.B.; Higashihara, T.J.; Morden, F.T.C.; Goo, C.; Pang, M.; Sutton, C.X.Y.; Kim, K.M.; Lew, R.J.; Luu, K.; et al. Variables Associated with Coronavirus Disease 2019 Vaccine Hesitancy Amongst Patients with Neurological Disorders. Infect. Dis. Rep. 2021, 13, 763–810. [Google Scholar] [CrossRef]
- Holtz, B.O.; Grimm, A.; Axer, H. Patients’ Attitude towards Vaccination after Guillain Barré Syndrome. Health Sci. Rep. 2021, 4, e469. [Google Scholar] [CrossRef]
- Cosentino, G.; Di Stefano, V.; Presti, R.L.; Montana, M.; Todisco, M.; Gastaldi, M.; Cortese, A.; Alfonsi, E.; Tassorelli, C.; Fierro, B.; et al. Expression Pattern of Matrix Metalloproteinases-2 and -9 and Their Tissue Inhibitors in Patients with Chronic Inflammatory Demyelinating Polyneuropathy. Neurol. Sci. 2021, 42, 4297–4300. [Google Scholar] [CrossRef]
- Lupica, A.; Di Stefano, V.; Gagliardo, A.; Iacono, S.; Pignolo, A.; Ferlisi, S.; Torrente, A.; Pagano, S.; Gangitano, M.; Brighina, F. Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci. 2021, 11, 398. [Google Scholar] [CrossRef]
- Di Stefano, V.; Barbone, F.; Ferrante, C.; Telese, R.; Vitale, M.; Onofrj, M.; di Muzio, A. Inflammatory Polyradiculoneuropathies: Clinical and Immunological Aspects, Current Therapies, and Future Perspectives. Eur. J. Inflamm. 2020, 18, 2058739220942340. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and Immunogenicity of the ChAdOx1 NCoV-19 Vaccine against SARS-CoV-2: A Preliminary Report of a Phase 1/2, Single-Blind, Randomised Controlled Trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Confavreux, C.; Suissa, S.; Saddier, P.; Bourdès, V.; Vukusic, S. Vaccinations and the Risk of Relapse in Multiple Sclerosis. Vaccines in Multiple Sclerosis Study Group. N. Engl. J. Med. 2001, 344, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.Y.; Shin, H.Y.; Kim, J.K.; Kim, B.J.; Oh, J.; Suh, B.C.; Kim, S.Y.; Kang, S.Y.; Ahn, S.W.; Bae, J.S.; et al. The Impacts of Influenza Infection and Vaccination on Exacerbation of Myasthenia Gravis. J. Clin. Neurol. 2017, 13, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupica, A.; Di Stefano, V.; Iacono, S.; Pignolo, A.; Quartana, M.; Gagliardo, A.; Fierro, B.; Brighina, F. Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurol. Int. 2022, 14, 406–416. [Google Scholar] [CrossRef]
- Beatty, A.L.; Peyser, N.D.; Butcher, X.E.; Cocohoba, J.M.; Lin, F.; Olgin, J.E.; Pletcher, M.J.; Marcus, G.M. Analysis of COVID-19 Vaccine Type and Adverse Effects Following Vaccination. JAMA Netw. Open 2021, 4, e2140364. [Google Scholar] [CrossRef]
- Goda, K.; Kenzaka, T.; Yahata, S.; Okayama, M.; Nishisaki, H. Association between Adverse Reactions to the First and Second Doses of COVID-19 Vaccine. Vaccines 2022, 10, 1232. [Google Scholar] [CrossRef]
- Raw, R.K.; Kelly, C.A.; Rees, J.; Wroe, C.; Chadwick, D.R. Previous COVID-19 Infection, but Not Long-COVID, Is Associated with Increased Adverse Events Following BNT162b2/Pfizer Vaccination. J. Infect. 2021, 83, 381–412. [Google Scholar] [CrossRef]
- Di Florio, D.N.; Sin, J.; Coronado, M.J.; Atwal, P.S.; Fairweather, D.L. Sex Differences in Inflammation, Redox Biology, Mitochondria and Autoimmunity. Redox Biol. 2020, 31, 101482. [Google Scholar] [CrossRef]
- Vivekanandam, V.; Jayaseelan, D.; Hanna, M.G. COVID-19 Infection and Vaccination in Patients with Skeletal Muscle Channelopathies. Muscle Nerve 2022. [Google Scholar] [CrossRef]
Inflammatory | Hereditary | Diabetic | Toxic | Deficiency | Overall | |
---|---|---|---|---|---|---|
No. of participants, n, (%) | 99, (36.9) | 109, (40.5) | 32, (11.9) | 13, (4.8) | 15, (5.6) | 268 |
Female, n, (%) | 28, (28.3) | 57, (52.3) | 13, (40.6) | 3, (23.1) | 11, (73.3) | 105, (39.2) |
Age, median (IQR), y | 59 (50–67) | 56 (43–67) | 67 (58–75) | 62 (51–69) | 60 (57–66) | 59 (48–68) |
Adherence, n, (%) | 93, (93.9) | 109, (100) | 30, (93.8) | 12, (92.3) | 14, (93.3) | 258, (96.3) |
BNT162b2 | 77, (82.8) | 97, (89) | 23, (76.7) | 11, (91.7) | 11, (78.6) | 219, (84.9) |
mRNA-1273 | 10, (10.8) | 9, (8.3) | 7, (23.3) | 1, (8.3) | 3, (21.4) | 30, (11.6) |
Viral vectors-based | 6, (6.4) | 3, (2.7) | 0 | 0 | 0 | 9, (3.5) |
No. of doses, mean ± SD | 2.41 ± 0.53 | 2.50 ± 0.58 | 2.33 ± 0.48 | 2.42 ± 0.67 | 2.43 ± 0.51 | 2.44 ± 0.57 |
COVID before vaccination, n, (%) | 8/93 (8.6) | 11/109 (10) | 4/32 (12.5) | 0 | 1/14 (7.1) | 24/258 (9.3) |
Asymptomatic | 2, (25) | 3, (27.3) | 1, (25) | 0 | 6, (25) | |
Flu-like symptoms | 2, (25) | 6, (54.5) | 3, (75) | 0 | 11, (45.8) | |
Hospitalized | 4, (50) | 2, (18.2) | 0 | 1, (100) | 7, (29.2) | |
Medications, n, (%) | 69/93, (74.2) | 48/109, (44) | 13/30, (43.3) | 11/12, (91.7) | 6/14, (42.9) | 147/258, (57) |
Steroids | 14, (20.3) | 0 | 0 | 1, (9) | 1, (16.7) | 16, (10.9) |
Immunosuppressants | 7, (10.1) | 0 | 1, (7.7) | 1, (9) | 1, (16.7) | 10, (6.8) |
Immunoglobulins | 38, (55) | 0 | 0 | 0 | 0 | 38, (25.9) |
Analgesics | 6, (8.7) | 8, (16.6) | 3, (23) | 1, (9) | 0 | 18, (12.2) |
Antidepressants | 5, (7.2) | 5, (10.4) | 0 | 1, (9) | 1, (16.7) | 13, (8.1) |
Antiepileptic drugs | 14/69, (20.3) | 9, (18.8) | 9, (69.2) | 9/11, (81.8) | 1, (16.7) | 42, (29.3) |
Patisiran | 0 | 18, (37.5) | 0 | 0 | 0 | 18, (12.2) |
Nutraceutics | 5/69, (7.2) | 18/48, (37.5) | 6/13, (46.2) | 6/11, (54.5) | 4/6, (66.6) | 39, (26.5) |
No. medication, mean ± SD | 1.31 ± 0.55 | 1.46 ± 0.8 | 1.77 ± 1.16 | 2.27 ± 0.9 | 1.83 ± 0.4 | 1.53 ± 0.84 |
Inflammatory N = 94 | Hereditary N = 109 | Diabetic N = 30 | Toxic N = 12 | Deficiency N = 14 | Overall N = 258 | |
---|---|---|---|---|---|---|
AEs prevalence n, (%) | 46, (48.9) | 74, (67.9) | 18, (60) | 10, (83.3) | 10, (71.4) | 158, (61.2) |
Females | 20, (43.5) | 41, (55.4) | 9, (50) | 3, (30) | 2, (20) | 75/102, (73.5) |
Males | 26, (56.5) | 33, (44.6) | 9, (50) | 7, (70) | 8 (80) | 83/156, (53.2) |
Age, median (IQR), y | 61 (54–67) | 53 (38–68) | 67 (57–79) | 62 (43–66) | 63 (57–71) | 60 (47–69) |
AEs type n, (%) | ||||||
Local pain | 33, (71.7) | 47, (63.5) | 10, (55.6) | 8, (80) | 9, (90) | 107, (67.7) |
Asthenia | 16, (34.8) | 41, (55.4) | 6, (8.5) | 4, (40) | 4, (40) | 71, (44.9) |
Cephalalgia | 2, (4.3) | 11, (14.9) | 4, (22.2) | 0 | 0 | 17, (18.8) |
Fever | 11, (23.9) | 14, (18.9) | 5, (27.8) | 1, (10) | 1, (10) | 32, (20.2) |
Myalgia | 17, (37) | 24, (32.4) | 2, (11.1) | 1, (10) | 1, (10) | 45, (28.5) |
Gastrointestinal | 4, (8.7) | 2, (2.7) | 2, (11.1) | 0 | 1, (10) | 9, (5.7) |
Erythema | 2, (4.3) | 1, (1.4) | 0 | 0 | 0 | 3, (1.9) |
Two or more | 22, (47.8) | 40, (54.1) | 9, (50) | 3, (30) | 3, (30) | 77, (48.7) |
No. of AEs, mean ± SD | 1.85 ± 1.1 | 1.89 ± 1 | 1.61 ± 0.7 | 1.4 ± 0.5 | 1.6 ± 1.16 | 1.8 ± 1 |
Stable or Improved N = 223 | Worsened N = 35 | Odd Ratio (CI 95%) | p | |
---|---|---|---|---|
Females n, (%) | 87 (38.8) | 16 (45.7) | 0.83 (0.33–2) | 0.4 |
Age, median (IQR), y | 60 (50–69) | 56 (42–65) | 0.08 | |
Group of age n, (%) | ||||
18–30 years | 13, (5.8) | 6, (17.1) | 3.34 (1.18–9.48) | 0.03 |
31–45 years | 31, (13.9) | 3, (8.6) | 0.58 (0.17–2) | 0.59 |
46–60 years | 77, (34.4) | 14, (40) | 1.3 (0.62–2.68) | 0.49 |
61–75 years | 81, (36.2) | 9, (10) | 1.5 (0.27–1.36) | 0.2 |
>75 years | 22, (9.8) | 3, (8.6) | 3.3 (1.18–9.48) | 0.81 |
COVID before vaccination n, (%) | 17, (7.6) | 7/35 (20) | 3 [1.15–7.95] | 0.03 |
Medications n, (%) | 126 (56.5) | 21 (60) | 1.1 (0.56–2.4) | 0.7 |
Viral vectors-based vaccine n, (%) | 7, (3.1) | 2, (5.7) | 0.46 | |
mRNA-based vaccine n, (%) | 216 (96.9) | 33 (94.3) | 0.46 | |
Adverse events n, (%) | 130/223 (58.3) | 28/35 (80) | 2.9 (1.11–6.83) | 0.014 |
Local pain | 92, (70.8) | 15, (53.6) | 0.47 (0.2–1.1) | 0.08 |
Asthenia | 52, (40) | 19 (67.9) | 3.2 (1.33–7.53) | 0.007 |
Cephalalgia | 11, (8.5) | 6, (21.4) | 2.9 (0.98–8.8) | 0.08 |
Fever | 22, (16.9) | 10, (35.7) | 2.7 (1.11–6.7) | 0.03 |
Myalgia | 30, (23.1) | 15, (53.6) | 3.8 (1.65–8.97) | 0.001 |
Gastrointestinal | 6, (4.6) | 3, (10.7) | 2.48 (0.58–10.58) | 0.2 |
Erythema | 3, (2.3) | 0 | 0.27 | |
Two or more | 56, (43.1) | 21, (75) | 3.96 (1.58–9.98) | 0.002 |
Polyneuropathy subtype n, (%) | ||||
Inflammatory | 82, (36.8) | 11, (31.4) | 0.79 (0.37–1.7) | 0.5 |
Hereditary | 94, (42) | 15, (42.9) | 1 (0.5–2.11) | 0.9 |
Diabetic | 27, (12.1) | 3, (8.6) | 0.68 (0.19–2.37) | 0.6 |
Toxic | 8, (3.6) | 4, (11.4) | 3.5 (0.99–12.2) | 0.06 |
Deficiency | 12, (5.4) | 2, (5.7) | 1 (0.23–4.98) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, S.; Di Stefano, V.; Alonge, P.; Vinciguerra, C.; Milella, G.; Caputo, F.; Lasorella, P.; Neto, G.; Pignolo, A.; Torrente, A.; et al. Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study. Brain Sci. 2022, 12, 1396. https://doi.org/10.3390/brainsci12101396
Iacono S, Di Stefano V, Alonge P, Vinciguerra C, Milella G, Caputo F, Lasorella P, Neto G, Pignolo A, Torrente A, et al. Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study. Brain Sciences. 2022; 12(10):1396. https://doi.org/10.3390/brainsci12101396
Chicago/Turabian StyleIacono, Salvatore, Vincenzo Di Stefano, Paolo Alonge, Claudia Vinciguerra, Giammarco Milella, Francesca Caputo, Piergiorgio Lasorella, Gabriele Neto, Antonia Pignolo, Angelo Torrente, and et al. 2022. "Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study" Brain Sciences 12, no. 10: 1396. https://doi.org/10.3390/brainsci12101396
APA StyleIacono, S., Di Stefano, V., Alonge, P., Vinciguerra, C., Milella, G., Caputo, F., Lasorella, P., Neto, G., Pignolo, A., Torrente, A., Lupica, A., Ajdinaj, P., Firenze, A., Tozza, S., Manganelli, F., Di Muzio, A., Piscosquito, G., & Brighina, F. (2022). Adherence and Reactogenicity to Vaccines against SARS-COV-2 in 285 Patients with Neuropathy: A Multicentric Study. Brain Sciences, 12(10), 1396. https://doi.org/10.3390/brainsci12101396