Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression
Abstract
:1. Introduction
2. Methodology
3. Conventional Anti-Inflammatory Drugs
3.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
Study | Drug and Treatment Regimen | Participants | Duration of Intervention | Immune Parameters | Main Outcomes |
---|---|---|---|---|---|
Ghanizadeh, 2014 [30] | Aspirin, 160 mg/day (add-on to citalopram, 20 mg/day) | 10 adult out-patients with MDD | 14 days; discontinued in 8 out of 10 patients | Not measured | Harmful |
Zdanowicz, 2017 [32] | Aspirin, 100 mg/day (add-on to escitalopram or duloxetine) | 40 individuals with MDD | 2 years | Not measured | Not effective (but duloxetine + aspirin superior to escitalopram + placebo) |
Sepehrmanesh, 2017 [31] | Aspirin, 2 × 80 mg/day (add-on to sertraline, 50–200 mg/day) | 100 patients with MDD | 8 weeks | Not measured | Effective |
Berk, 2020 (YoDA-A) [33] | Aspirin, 100 mg/day or rosuvastatin 10 mg/day (add-on to treatment as usual) | 130 young people (15–25 years) with moderate to severe MDD | 12 weeks | Not measured | Not effective |
Müller, 2006 [39] | Celecoxib, 400 mg/day (add-on to reboxetine 4–10 mg/day) | 40 patients with MDD | 6 weeks | Not measured | Effective as add-on |
Akhondzadeh, 2009 [40] | Celecoxib, 2 × 200 mg/day (add-on to fluoxetine 40 mg/day) | 40 adults with MDD | 6 weeks | Not measured | Effective as add-on |
Musil, 2011 [49] | Celecoxib, 400 mg/day (add-on to reboxetine 4–10 mg/day) | 32 patients with MDD and 20 healthy controls | 6 weeks | No difference in MIF, TGF-β and sCD14 | Effective as add-on |
Abbasi, 2012 [43] | Celecoxib, 2 × 200 mg/day (add-on to sertraline 200 mg/day) | 40 patients with MDD | 6 weeks | Reduced IL-6 | Effective as add-on |
Majd, 2015 [50] | Celecoxib, 2 × 100 mg/day (add-on to sertraline, 25, then 50 mg/day) | 30 women with MDD (first episode), 18–50 years old | 8 weeks | Not measured | Effective after 4 weeks, not significant after 8 weeks |
Alamdarsaravi, 2017 [41] | Celecoxib, 400 mg/day (monotherapy) | 40 patients with mild to moderate MDD and colorectal cancer | 6 weeks | Not measured | Effective |
Krause, 2017 [51] | Celecoxib, 400 mg/day (add-on to reboxetine, 4–10 mg/day) | 40 patients with MDD and healthy controls | 6 weeks | Not measured | Remission in celecoxib group predicted by higher KYN/TRP baseline ratio |
Baune, 2021 [45] | Celecoxib, 400 mg/day (add-on to vortioxetine 5–10 mg/day) | 119 patients with MDD | 6 weeks | Participants were stratified by hsCRP (> or ≤3 mg/L) | Not effective |
Simon, 2021 [44] | Celecoxib, 2 × 200 mg/day (add-on to sertraline, 50–150 mg/day) | 43 patients with MDD, 18–60 years old | 6 weeks | MIF: lower at baseline in placebo remitters than non-remitters, trend for higher baseline levels in celecoxib responders than non-responders; neopterin, TNF-α: no clear pattern | Not effective |
Mohammadinejad, 2015 [52] | Celecoxib, 2 × 200 mg/day or diclofenac, 2 × 50 mg/day (monotherapy) | 52 patients with MDD and breast cancer | 6 weeks | Not measured | Celecoxib more effective than diclofenac |
3.2. Cytokine Inhibitors
Study | Drug and Treatment Regimen | Participants | Duration of Intervention | Immune Parameters | Main Outcomes |
---|---|---|---|---|---|
Raison, 2013 [18] | Infliximab (3 infusions of 5 mg/kg at baseline and weeks 2 and 6) (monotherapy or add-on to treatment as usual) | 60 patients with treatment-resistant MDD | 12 weeks | Greater decrease in hsCRP in responders | More effective when baseline hsCRP > 5 mg/dL |
Webers, 2020 [53] | Infliximab (infusions of 5 mg/kg infliximab or placebo at weeks 0, 2, 6, 12, and 18; from week 24 until week 54, all patients received infliximab therapy) | 23 patients with ankylosing spondylitis | 54 weeks | CRP levels not related to depression | Effective in improving symptoms |
Loftus, 2008 [57] | Adalimumab, Induction: open-label adalimumab 80-mg, then a 40-mg dose at week 2; then adalimumab 40 mg weekly/every other week or placebo injections | 499 patients with Crohn’s disease | 56 weeks | Not measured | Effective; no difference between adalimumab weekly/every other week for all visits |
Menter, 2010 [58] | Adalimumab, 40 mg every other week | 96 patients with psoriasis | 12 weeks | Not measured | Effective |
Scheinfeld, 2016 [55] | Adalimumab, 40 mg weekly/every other week | 154 patients with hidradenitis suppurativa | 16 weeks | Not measured | Effective in patients with high baseline pain |
Simpson, 2016 [59] | Dupilumab, 100 mg every 4 weeks/200 mg every 2 weeks/300 mg every 2 weeks/300 mg QW | 380 adults with moderate to severe atopic dermatitis | 16 weeks | Not measured | Effective (300 mg weekly/every 2 weeks) |
de Bruin-Weller, 2018 [60] | Dupilumab, 300 mg weekly/every 2 weeks + topical corticosteroids | 318 adults with atopic dermatitis | 16 weeks | Not measured | Effective |
Cork, 2020(SOLO 1 and 2) [61] | Dupilumab, 300 mg weekly/every 2 weeks | 1379 patients with atopic dermatitis for ≥ 3 years | 16 weeks | Not measured | Effective |
Tyring, 2006 [54] | Etanercept, 50 mg BIW | 618 patients with psoriasis | 12 weeks | Not measured | Effective |
Tyring, 2013 [56] | Etanercept; Group A: etanercept 50 mg BIW for 12 weeks, followed by etanercept 50 mg QW and placebo QW for 12 weeks. Group B: placebo BIW for 12 weeks, followed by etanercept 50 mg BIW for 12 weeks. | 121 patients with moderate-to-severe plaque psoriasis with scalp involvement | 24 weeks | Not measured | Effective |
Langley, 2010 [64] | Ustekinumab, 45 or 90 mg at weeks 0, 4, and every 12 weeks through week 52, or placebo at weeks 0 and 4 + 45 or 90 mg of ustekinumab at weeks 12, 16, and every 12 weeks | 1230 patients with psoriasis | Results reported through 24 weeks | Not measured | Effective |
Griffiths, 2017 [62] | Ixekizumab, 80 mg every 2/4 weeks, initial dose 160 mg; etanercept, 50 mg BIW | 575 patients with psoriasis | 12 weeks | Reduction in hsCRP | Ixekizumab effective |
Gordon, 2018 [63] | Guselkumab, 100 mg at weeks 0, 4, 12, and 20; placebo at weeks 0, 4, 12 followed by guselkumab 100 mg at weeks 16, 20; or adalimumab, 80 mg at week 0, 40 mg at week 1, and 40 mg every-2-weeks through week 23 | 989 patients with psoriasis | 24 weeks | Not measured | Guselkumab more effective |
3.3. Corticosteroids
4. Non-Conventional Anti-Inflammatory Drugs
4.1. Statins
4.2. Minocycline
4.3. N-Acetyl Cysteine (NAC)
4.4. Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs)
Study | Intervention and Treatment Regimen | Participants | Duration of Intervention | Immune Parameters | Main Outcomes |
---|---|---|---|---|---|
MDD patients without comorbidities | |||||
Nemets, 2002 [105] | E-EPA (derived from 96% pure fish oil), 2 × 1 g/day (add-on to treatment as usual) | 20 patients with current MDD | 4 weeks | Not measured | Effective |
Marangell, 2003 [113] | DHA, 2 g/day (monotherapy) | 36 patients with MDD | 6 weeks | Not measured | Not effective |
Su, 2003 [106] | EPA 440 mg + DHA 220 mg/capsule, 10 capsules/day(add-on to treatment as usual) | 28 patients with MDD | 8 weeks | Not measured | Effective |
Silvers, 2005 [114] | 3 g of omega-3 PUFAs (0.6 g EPA, 2.4 g DHA) per day(add-on to treatment as usual) | 77 participants being treated for a current depressive episode | 12 weeks | Not measured | Not effective |
Grenyer, 2007 [115] | 3 g of omega-3 PUFAs (2.2 g DHA, 0.6 g EPA)/day (monotherapy or add-on to treatment as usual) | 83 patients with MDD | 4 months | Not measured | Not effective |
Jazayeri, 2008 [107]; Jazayeri, 2010 [137] | EPA (1000 mg/day)/fluoxetine (20 mg/day)/combination | 60 patients with MDD | 8 weeks | Serum cortisol decreased in all 3 groups, IL-1β and IL-6 not changed | Both equally effective, combination superior |
Lespérance, 2011 [112] | 1050 mg/day of EPA and 150 mg/day of DHA (monotherapy or add-on to treatment as usual) | 432 patients with MDD, clinically significant symptoms ≥ 4 weeks | 8 weeks | Not measured | Effective in patients without comorbid anxiety disorders |
Rondanelli, 2012 [108]; Rizzo, 2012 [138] | 1.67 g EPA + 0.83 g DHA/day (monotherapy) | 46 elderly female patients with MDD or dysthymia, 66–95 years old | 8 weeks | CD2, CD3, CD4, CD8, CD19 lymphocytes, IL-5, IL-15—not significantly changed; increase in CD16 lymphocytes with a possible role in inflammation | Effective |
Gertsik, 2012 [109] | 900 mg EPA + 200 mg DHA + 100 mg other omega-3 fatty acids/day (add-on to citalopram 20/40 mg/day) | 42 patients with MDD | 8 weeks | No changes in plasma CRP | Effective as add-on |
Mischoulon, 2015 [116] | EPA-enriched n-3 1000 mg/day/DHA-enriched n-3 1000 mg/day (monotherapy) | 154 adults with MDD | 8 weeks | Not measured | Not effective |
Rapaport, 2016 [110] | 2 capsules/day of EPA-enriched mix (ProEPAxtra, 530 mg EPA/130 mg DHA per soft gel) and 2 placebo capsules/4 capsules/day of DHA-enriched mix (ProDHA, 225 mg DHA/45 mg EPA per soft gel) (monotherapy) | 155 patients with MDD | 8 weeks | High IL-1ra or hs-CRP or low adiponectin associated with better response to EPA; high hsCRP, IL-6 or leptin associated with worse response to placebo | EPA more effective and DHA less effective with high baseline inflammation markers; EPA inferior to placebo and DHA with low baseline inflammation |
Su, 2018 [111] | EPA (3.5 g/day) or DHA (1.75 g/day) (monotherapy) | 27 patients with MDD | 12 weeks | cPLA2 expression increased in EPA group, tendency for decrease in COX-2 expression in both groups | Both effective |
Jahangard, 2018 [139] | 1000 mg/day omega-3 PUFA (add-on to sertraline 50–200 mg/day) | 50 outpatients with MDD | 12 weeks | Not measured | Effective |
Patients with perinatal MDD | |||||
Freeman, 2008 [125] | 1.1 g of EPA + 0.8 g of DHA (+psychotherapy for all subjects) (monotherapy) | 59 women with perinatal MDD, no antidepressant treatment at the moment of the study | 8 weeks | Not measured | Not effective |
Rees, 2008 [126] | 6 g/day fish oil (27.3% DHA, 6.9% EPA and 3.3% omega-6 fatty acids) (monotherapy) | 26 women with perinatal MDD, no antidepressant treatment at the moment of the study | 6 weeks | Not measured | Not effective |
Su, 2008 [140] | 3.4 g omega-3 PUFAs/day (monotherapy) | 36 pregnant women with MDD | 8 weeks | Not measured | Effective |
MDD patients with comorbidities | |||||
Carney, 2009 [128]; Bot, 2011 [141] | 930 mg of EPA and 750 mg of DHA/day (add-on to sertraline 50 mg/day) | 122 patients with coronary heart disease and MDD | 10 weeks | Baseline hs-CRP, IL-6, and TNF-α not associated with symptoms, response or remission after sertraline treatment; no influence of omega-3 | Not effective |
Bot, 2010 [129]; Mocking, 2012 [142] | E-EPA (1 g/day) (add-on to treatment as usual) | 25 adults with diabetes mellitus and MDD, with antidepressant treatment at the moment of the study | 12 weeks | Serum CRP, IL-6 and TNF-α not changed | Not effective |
Keshavarz, 2018 [133] | 6 capsules/day, containing 180 mg EPA, and 120 mg DHA each (monotherapy) | 65 women with overweight/obesity and MDD | 12 weeks | Not measured | Effective |
Jiang, 2018 [130] | 4 capsules of 400/200 EPA/DHA 500 mg per capsule (“2:1 EPA/DHA”), 4 capsules of almost pure EPA 500 mg per capsule (“high EPA”), or 4 capsules of corn oil (“placebo”), daily (monotherapy or add-on to treatment as usual) | 108 patients with chronic heart failure and MDD | 12 weeks | Not measured | Effective only on cognitive depressive symptoms and social functioning |
Carney, 2019 [131] | EPA 2 g/day (as add-on to sertraline 50 mg/day) | 144 patients with/at high risk for coronary heart disease and MDD | 10 weeks | Not measured | Not effective as add-on |
Chang, 2020 [132] | 2 g EPA + 1 g DHA/day (monotherapy) | 59 patients with cardiovascular diseases and MDD | 12 weeks | Not measured | Not effective, but improved core depression symptoms in the very severe MDD group |
4.5. Probiotics
Study | Intervention and Treatment Regimen | Participants | Duration of Intervention | Immune Parameters | Main Outcomes |
---|---|---|---|---|---|
Akkasheh, 2016 [148] | Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, each 2 × 109 CFU/g, daily (monotherapy) | 40 patients with MDD, 20–55 years old | 8 weeks | Decreased hsCRP | Effective |
Kazemi, 2019 [162] | Lactobacillus helveticus and Bifidobacterium longum (≥10 × 109 CFU per 5 g sachet)/prebiotic (galactooligosaccharide) (monotherapy) | 81 patients with MDD | 8 weeks | kynurenine/ tryptophan ratio decreased, tryptophan/ isoleucine ratio increased | Probiotic effective, prebiotic not effective |
Rudzki, 2019 [151] | 10 × 109 CFU of probiotic bacteria Lactobacillus Plantarum 299 v/capsule, 2 capsules/day(add-on to an SSRI) | 79 patients with MDD | 8 weeks | Decrease in kynurenine, increase in 3-hydroxykynurenine: kynurenine; TNF-α, IL-6 and IL-1b—not changed | Not effective, but improvement in cognitive function |
Reininghaus, 2020 [152]; Reiter, 2020 [163] | OMNi-BiOTiC® Stress Repair (3 g/day, 7.5 × 109 CFU, Lactobacillus casei W56, Lactobacillus acidophilus W22, Lactobacillus paracasei W20, Bifidobacterium lactis W51, Lactobacillus salivarius W24, Lactococcus lactis W19, Bifidobacterium lactis W52, Lactobacillus plantarum W62, Bifidobacterium bifidum W23) + 125 mg biotin (add-on to treatment as usual) | 61 inpatients with MDD | 28 days | Upregulation of IL-17 pathways; reduction in IL-6 gene expression; no change in TNF and NF-κB | Not effective (regarding clinical parameters) |
Zhang, 2021 [153] | 100 mL of a Lacticaseibacillus paracasei strain Shirota beverage (108 CFU/mL) (monotherapy) | 82 patients with constipation and MDD | 9 weeks | Reduction in IL-6 | Not effective |
Tian, 2022 [149] | Bifidobacterium breve CCFM1025 1010 CFU/day (add-on to treatment as usual) | 45 patients with MDD | 4 weeks | No change in serum TNF-α and IL-β | Effective |
Schaub, 2022 [150] | Vivomixx® (Streptococcus thermophilus NCIMB 30438, Bifidobacterium breve NCIMB 30441, Bifidobacterium longum NCIMB 30435—Re-classified as Bifidobacterium. lactis, Bifidobacterium infantis NCIMB 30436—Re-classified as B. lactis, Lactobacillus acidophilus NCIMB 30442, Lactobacillus plantarum NCIMB 30437, Lactobacillus paracasei NCIMB 30439, Lactobacillus delbrueckii subsp. Bulgaricus NCIMB 30440—Re-classified as Lactobacillus helveticus), 900 billion CFU/day (add-on to treatment as usual) | 47 patients with MDD | 31 days | Not measured | Effective |
5. Physical Exercise
6. Electroconvulsive Therapy (ECT)
7. Psychological Therapy
8. Conclusions
9. Current Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 13 November 2021).
- Dionisie, V.; Filip, G.A.; Manea, M.C.; Movileanu, R.C.; Moisa, E.; Manea, M.; Riga, S.; Ciobanu, A.M. Neutrophil-to-Lymphocyte Ratio, a Novel Inflammatory Marker, as a Predictor of Bipolar Type in Depressed Patients: A Quest for Biological Markers. J. Clin. Med. 2021, 10, 1924. [Google Scholar] [CrossRef] [PubMed]
- Depression Clinical Presentation: History, Physical Examination, Major Depressive Disorder. Available online: https://emedicine.medscape.com/article/286759-clinical#b4 (accessed on 13 November 2021).
- Penninx, B.W.J.H.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the Somatic Consequences of Depression: Biological Mechanisms and the Role of Depression Symptom Profile. BMC Med. 2013, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Harbi, K.S. Treatment-Resistant Depression: Therapeutic Trends, Challenges, and Future Directions. Patient Prefer. Adherence 2012, 6, 369–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antidepressants—StatPearls—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538182/ (accessed on 14 November 2021).
- Maffioletti, E.; Minelli, A.; Tardito, D.; Gennarelli, M. Blues in the Brain and Beyond: Molecular Bases of Major Depressive Disorder and Relative Pharmacological and Non-Pharmacological Treatments. Genes 2020, 11, 1089. [Google Scholar] [CrossRef] [PubMed]
- Kotas, M.E.; Medzhitov, R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015, 160, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, S.; Zhu, X.; Hasegawa, Y.; Karma, S.; Obayashi, M.; Alway, E.; Kamiya, A. Inflamed Brain: Targeting Immune Changes and Inflammation for Treatment of Depression. Psychiatr. Clin. Neurosci. 2021, 75, 304–311. [Google Scholar] [CrossRef]
- Dionisie, V.; Filip, G.A.; Manea, M.C.; Manea, M.; Riga, S. The Anti-Inflammatory Role of SSRI and SNRI in the Treatment of Depression: A Review of Human and Rodent Research Studies. Inflammopharmacology 2021, 29, 75–90. [Google Scholar] [CrossRef]
- Zhang, F.F.; Peng, W.; Sweeney, J.A.; Jia, Z.Y.; Gong, Q.Y. Brain Structure Alterations in Depression: Psychoradiological Evidence. CNS Neurosci. Ther. 2018, 24, 994. [Google Scholar] [CrossRef] [Green Version]
- Dombrovski, A.Y.; Siegle, G.J.; Szanto, K.; Clark, L.; Reynolds, C.F.; Aizenstein, H. The Temptation of Suicide: Striatal Gray Matter, Discounting of Delayed Rewards, and Suicide Attempts in Late-Life Depression. Psychol. Med. 2012, 42, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, S.; Thayer, J.F. Functional Interplay between Central and Autonomic Nervous Systems in Human Fear Conditioning. Trends Neurosci. 2022, 45, 504–506. [Google Scholar] [CrossRef]
- Battaglia, S.; Orsolini, S.; Borgomaneri, S.; Barbieri, R.; Diciotti, S.; di Pellegrino, G. Characterizing Cardiac Autonomic Dynamics of Fear Learning in Humans. Psychophysiology 2022, e14122. [Google Scholar] [CrossRef] [PubMed]
- Han, K.M.; Ham, B.J. How Inflammation Affects the Brain in Depression: A Review of Functional and Structural MRI Studies. J. Clin. Neurol. 2021, 17, 503. [Google Scholar] [CrossRef] [PubMed]
- Burrows, K.; Stewart, J.L.; Kuplicki, R.; Figueroa-Hall, L.; Spechler, P.A.; Zheng, H.; Guinjoan, S.M.; Savitz, J.B.; Kent Teague, T.; Paulus, M.P. Elevated Peripheral Inflammation Is Associated with Attenuated Striatal Reward Anticipation in Major Depressive Disorder. Brain. Behav. Immun. 2021, 93, 214. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Spekker, E.; Polyák, H.; Tóth, F.; Vécsei, L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan–Kynurenine Metabolic System. Cells 2022, 11, 2607. [Google Scholar] [CrossRef]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatr. 2013, 70, 31–41. [Google Scholar] [CrossRef]
- Zajkowska, Z.E.; Englund, A.; Zunszain, P.A. Towards a Personalized Treatment in Depression: Endocannabinoids, Inflammation and Stress Response. Pharmacogenomics 2014, 15, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Łojko, D.; Rybakowski, J.K. Atypical Depression: Current Perspectives. Neuropsychiatr. Dis. Treat. 2017, 13, 2447. [Google Scholar] [CrossRef] [Green Version]
- Lamers, F.; De Jonge, P.; Nolen, W.A.; Smit, J.H.; Zitman, F.G.; Beekman, A.T.F.; Penninx, B.W.J.H. Identifying Depressive Subtypes in a Large Cohort Study: Results from the Netherlands Study of Depression and Anxiety (NESDA). J. Clin. Psychiatr. 2010, 71, 1582–1589. [Google Scholar] [CrossRef]
- Maes, M.; Berk, M.; Goehler, L.; Song, C.; Anderson, G.; Gałecki, P.; Leonard, B. Depression and Sickness Behavior Are Janus-Faced Responses to Shared Inflammatory Pathways. BMC Med. 2012, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234. [Google Scholar] [CrossRef]
- Strawbridge, R.; Hodsoll, J.; Powell, T.R.; Hotopf, M.; Hatch, S.L.; Breen, G.; Cleare, A.J. Inflammatory Profiles of Severe Treatment-Resistant Depression. J. Affect. Disord. 2019, 246, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.H.; Raison, C.L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of Anti-Inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects a Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Psychiatr. 2014, 71, 1381–1391. [Google Scholar] [CrossRef]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Mendlewicz, J.; Kriwin, P.; Oswald, P.; Souery, D.; Alboni, S.; Brunello, N. Shortened Onset of Action of Antidepressants in Major Depression Using Acetylsalicylic Acid Augmentation: A Pilot Open-Label Study. Int. Clin. Psychopharmacol. 2006, 21, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Sjölander, A.; Lu, D.; Walker, A.K.; Sloan, E.K.; Fall, K.; Valdimarsdóttir, U.; Hall, P.; Smedby, K.E.; Fang, F. Aspirin and Other Non-Steroidal Anti-Inflammatory Drugs and Depression, Anxiety, and Stress-Related Disorders Following a Cancer Diagnosis: A Nationwide Register-Based Cohort Study. BMC Med. 2020, 18, 238. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Hedayati, A. Augmentation of Citalopram with Aspirin for Treating Major Depressive Disorder, a Double Blind Randomized Placebo Controlled Clinical Trial. Antiinflamm. Antiallergy. Agents Med. Chem. 2014, 13, 108–111. [Google Scholar] [CrossRef]
- Sepehrmanesh, Z.; Fahimi, H.; Akasheh, G.; Davoudi, M.; Gilasi, H.; Ghaderi, A. The Effects of Combined Sertraline and Aspirin Therapy on Depression Severity among Patients with Major Depressive Disorder: A Randomized Clinical Trial. Electron. Physician 2017, 9, 5770. [Google Scholar] [CrossRef] [Green Version]
- Zdanowicz, N.; Reynaert, C.; Jacques, D.; Lepiece, B.; Dubois, T. Selective Serotonergic (SSRI) Versus Noradrenergic (SNRI) Reuptake Inhibitors with and without Acetylsalicylic Acid in Major Depressive Disorder. Psychiatr. Danub. 2017, 29 (Suppl. 3), 270–273. [Google Scholar]
- Berk, M.; Mohebbi, M.; Dean, O.M.; Cotton, S.M.; Chanen, A.M.; Dodd, S.; Ratheesh, A.; Amminger, G.P.; Phelan, M.; Weller, A.; et al. Youth Depression Alleviation with Anti-Inflammatory Agents (YoDA-A): A Randomised Clinical Trial of Rosuvastatin and Aspirin. BMC Med. 2020, 18, 16. [Google Scholar] [CrossRef] [Green Version]
- Berk, M.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Reid, C.M.; Storey, E.; Fitzgerald, S.; Lockery, J.E.; Wolfe, R.; Mohebbi, M.; et al. Effect of Aspirin vs Placebo on the Prevention of Depression in Older People: A Randomized Clinical Trial. JAMA Psychiatr. 2020, 77, 1012–1020. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Jung, J. The Association between Aspirin Use and Depression: A Systematic Review and Meta-analysis of Observational Studies. Pharmacoepidemiol. Drug Saf. 2020, 29, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Ramamoorthy, K.; Loke, W.; Lee, M.W.L.; Yeo, W.S.; Lim, D.Y.; Sivalingam, V. Clinical Role of Aspirin in Mood Disorders: A Systematic Review. Brain Sci. 2019, 9, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyengar, R.L.; Gandhi, S.; Aneja, A.; Thorpe, K.; Razzouk, L.; Greenberg, J.; Mosovich, S.; Farkouh, M.E. NSAIDs Are Associated with Lower Depression Scores in Patients with Osteoarthritis. Am. J. Med. 2013, 126, 1017.e11–1017.e18. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Drye, L.; Vaidya, V.; Lyketsos, C.; ADAPT Research Group. Celecoxib or Naproxen Treatment Does Not Benefit Depressive Symptoms in Persons Age 70 and Older: Findings from a Randomized Controlled Trial. Am. J. Geriatr. Psychiatr. 2012, 20, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Müller, N.; Schwarz, M.J.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Müller, B.; Spellmann, I.; Hetzel, G.; Maino, K.; Kleindienst, N.; et al. The Cyclooxygenase-2 Inhibitor Celecoxib Has Therapeutic Effects in Major Depression: Results of a Double-Blind, Randomized, Placebo Controlled, Add-on Pilot Study to Reboxetine. Mol. Psychiatr. 2006, 11, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Jafari, S.; Raisi, F.; Nasehi, A.A.; Ghoreishi, A.; Salehi, B.; Mohebbi-Rasa, S.; Raznahan, M.; Kamalipour, A. Clinical Trial of Adjunctive Celecoxib Treatment in Patients with Major Depression: A Double Blind and Placebo Controlled Trial. Depress. Anxiety 2009, 26, 607–611. [Google Scholar] [CrossRef]
- Alamdarsaravi, M.; Ghajar, A.; Noorbala, A.A.; Arbabi, M.; Emami, A.; Shahei, F.; Mirzania, M.; Jafarinia, M.; Afarideh, M.; Akhondzadeh, S. Efficacy and Safety of Celecoxib Monotherapy for Mild to Moderate Depression in Patients with Colorectal Cancer: A Randomized Double-Blind, Placebo Controlled Trial. Psychiatr. Res. 2017, 255, 59–65. [Google Scholar] [CrossRef]
- Jafari, S.; Ashrafizadeh, S.G.; Zeinoddini, A.; Rasoulinejad, M.; Entezari, P.; Seddighi, S.; Akhondzadeh, S. Celecoxib for the Treatment of Mild-to-Moderate Depression Due to Acute Brucellosis: A Double-Blind, Placebo-Controlled, Randomized Trial. J. Clin. Pharm. Ther. 2015, 40, 441–446. [Google Scholar] [CrossRef]
- Abbasi, S.H.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of Celecoxib Add-on Treatment on Symptoms and Serum IL-6 Concentrations in Patients with Major Depressive Disorder: Randomized Double-Blind Placebo-Controlled Study. J. Affect. Disord. 2012, 141, 308–314. [Google Scholar] [CrossRef]
- Simon, M.S.; Burger, B.; Weidinger, E.; Arteaga-Henríquez, G.; Zill, P.; Musil, R.; Drexhage, H.A.; Müller, N. Efficacy of Sertraline Plus Placebo or Add-On Celecoxib in Major Depressive Disorder: Macrophage Migration Inhibitory Factor as a Promising Biomarker for Remission After Sertraline—Results From a Randomized Controlled Clinical Trial. Front. Psychiatr. 2021, 12, 615261. [Google Scholar] [CrossRef]
- Baune, B.T.; Sampson, E.; Louise, J.; Hori, H.; Schubert, K.O.; Clark, S.R.; Mills, N.T.; Fourrier, C. No Evidence for Clinical Efficacy of Adjunctive Celecoxib with Vortioxetine in the Treatment of Depression: A 6-Week Double-Blind Placebo Controlled Randomized Trial. Eur. Neuropsychopharmacol. 2021, 53, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M.J.; Radulovic, J.; Maric, N.P. Therapeutic Strategies for Treatment of Inflammation-Related Depression. Curr. Neuropharmacol. 2018, 16, 176–209. [Google Scholar] [CrossRef] [PubMed]
- Kohler, O.; Krogh, J.; Mors, O.; Eriksen Benros, M. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr. Neuropharmacol. 2016, 14, 732–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wium-Andersen, I.K.; Wium-Andersen, M.K.; Jørgensen, M.B.; Osler, M. Anti-Inflammatory Treatment and Risk for Depression. J. Psychiatr. Neurosci. 2017, 42, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musil, R.; Schwarz, M.J.; Riedel, M.; Dehning, S.; Cerovecki, A.; Spellmann, I.; Arolt, V.; Müller, N. Elevated Macrophage Migration Inhibitory Factor and Decreased Transforming Growth Factor-Beta Levels in Major Depression—No Influence of Celecoxib Treatment. J. Affect. Disord. 2011, 134, 217–225. [Google Scholar] [CrossRef]
- Majd, M.; Hashemian, F.; Hosseinib, S.M.; Shariatpanahi, M.V.; Sharifid, A. A Randomized, Double-Blind, Placebo-Controlled Trial of Celecoxib Augmentation of Sertraline in Treatment of Drug-Naive Depressed Women: A Pilot Study. Iran. J. Pharm. Res. IJPR 2015, 14, 891. [Google Scholar]
- Krause, D.; Myint, A.M.; Schuett, C.; Musil, R.; Dehning, S.; Cerovecki, A.; Riedel, M.; Arolt, V.; Schwarz, M.J.; Müller, N. High Kynurenine (a Tryptophan Metabolite) Predicts Remission in Patients with Major Depression to Add-on Treatment with Celecoxib. Front. Psychiatr. 2017, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Mohammadinejad, P.; Arya, P.; Esfandbod, M.; Kaviani, A.; Najafi, M.; Kashani, L.; Zeinoddini, A.; Emami, S.A.; Akhondzadeh, S. Celecoxib Versus Diclofenac in Mild to Moderate Depression Management among Breast Cancer Patients: A Double-Blind, Placebo-Controlled, Randomized Trial. Ann. Pharmacother. 2015, 49, 953–961. [Google Scholar] [CrossRef]
- Webers, C.; Stolwijk, C.; Schiepers, O.; Schoonbrood, T.; Van Tubergen, A.; Landewé, R.; Van Der Heijde, D.; Boonen, A. Infliximab Treatment Reduces Depressive Symptoms in Patients with Ankylosing Spondylitis: An Ancillary Study to a Randomized Controlled Trial (ASSERT). Arthritis Res. Ther. 2020, 22, 1–11. [Google Scholar] [CrossRef]
- Tyring, S.; Gottlieb, A.; Papp, K.; Gordon, K.; Leonardi, C.; Wang, A.; Lalla, D.; Woolley, M.; Jahreis, A.; Zitnik, R.; et al. Etanercept and Clinical Outcomes, Fatigue, and Depression in Psoriasis: Double-Blind Placebo-Controlled Randomised Phase III Trial. Lancet 2006, 367, 29–35. [Google Scholar] [CrossRef]
- Scheinfeld, N.; Sundaram, M.; Teixeira, H.; Gu, Y.; Okun, M. Reduction in Pain Scores and Improvement in Depressive Symptoms in Patients with Hidradenitis Suppurativa Treated with Adalimumab in a Phase 2, Randomized, Placebo-Controlled Trial. Dermatol. Online J. 2016, 22, 2. [Google Scholar] [CrossRef]
- Tyring, S.; Bagel, J.; Lynde, C.; Klekotka, P.; Thompson, E.H.Z.; Gandra, S.R.; Shi, Y.; Kricorian, G. Patient-Reported Outcomes in Moderate-to-Severe Plaque Psoriasis with Scalp Involvement: Results from a Randomized, Double-Blind, Placebo-Controlled Study of Etanercept. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Loftus, E.V.; Feagan, B.G.; Colombel, J.F.; Rubin, D.T.; Wu, E.Q.; Yu, A.P.; Pollack, P.F.; Chao, J.; Mulani, P. Effects of Adalimumab Maintenance Therapy on Health-Related Quality of Life of Patients with Crohn’s Disease: Patient-Reported Outcomes of the CHARM Trial. Am. J. Gastroenterol. 2008, 103, 3132–3141. [Google Scholar] [CrossRef] [PubMed]
- Menter, A.; Augustin, M.; Signorovitch, J.; Yu, A.P.; Wu, E.Q.; Gupta, S.R.; Bao, Y.; Mulani, P. The Effect of Adalimumab on Reducing Depression Symptoms in Patients with Moderate to Severe Psoriasis: A Randomized Clinical Trial. J. Am. Acad. Dermatol. 2010, 62, 812–818. [Google Scholar] [CrossRef]
- Simpson, E.L.; Gadkari, A.; Worm, M.; Soong, W.; Blauvelt, A.; Eckert, L.; Wu, R.; Ardeleanu, M.; Graham, N.M.H.; Pirozzi, G.; et al. Dupilumab Therapy Provides Clinically Meaningful Improvement in Patient-Reported Outcomes (PROs): A Phase IIb, Randomized, Placebo-Controlled, Clinical Trial in Adult Patients with Moderate to Severe Atopic Dermatitis (AD). J. Am. Acad. Dermatol. 2016, 75, 506–515. [Google Scholar] [CrossRef]
- de Bruin-Weller, M.; Thaçi, D.; Smith, C.H.; Reich, K.; Cork, M.J.; Radin, A.; Zhang, Q.; Akinlade, B.; Gadkari, A.; Eckert, L.; et al. Dupilumab with Concomitant Topical Corticosteroid Treatment in Adults with Atopic Dermatitis with an Inadequate Response or Intolerance to Ciclosporin A or When This Treatment Is Medically Inadvisable: A Placebo-Controlled, Randomized Phase III Clinical Trial (LIBERTY AD CAFÉ). Br. J. Dermatol. 2018, 178, 1083–1101. [Google Scholar] [CrossRef] [Green Version]
- Cork, M.J.; Eckert, L.; Simpson, E.L.; Armstrong, A.; Barbarot, S.; Puig, L.; Girolomoni, G.; de Bruin-Weller, M.; Wollenberg, A.; Kataoka, Y.; et al. Dupilumab Improves Patient-Reported Symptoms of Atopic Dermatitis, Symptoms of Anxiety and Depression, and Health-Related Quality of Life in Moderate-to-Severe Atopic Dermatitis: Analysis of Pooled Data from the Randomized Trials SOLO 1 and SOLO 2. J. Dermatolog. Treat. 2020, 31, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, C.E.M.; Fava, M.; Miller, A.H.; Russell, J.; Ball, S.G.; Xu, W.; Acharya, N.; Rapaport, M.H. Impact of Ixekizumab Treatment on Depressive Symptoms and Systemic Inflammation in Patients with Moderate-to-Severe Psoriasis: An Integrated Analysis of Three Phase 3 Clinical Studies. Psychother. Psychosom. 2017, 86, 260–267. [Google Scholar] [CrossRef]
- Gordon, K.B.; Armstrong, A.W.; Han, C.; Foley, P.; Song, M.; Wasfi, Y.; You, Y.; Shen, Y.K.; Reich, K. Anxiety and Depression in Patients with Moderate-to-Severe Psoriasis and Comparison of Change from Baseline after Treatment with Guselkumab vs. Adalimumab: Results from the Phase 3 VOYAGE 2 Study. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1940–1949. [Google Scholar] [CrossRef]
- Langley, R.G.; Feldman, S.R.; Han, C.; Schenkel, B.; Szapary, P.; Hsu, M.C.; Ortonne, J.P.; Gordon, K.B.; Kimball, A.B. Ustekinumab Significantly Improves Symptoms of Anxiety, Depression, and Skin-Related Quality of Life in Patients with Moderate-to-Severe Psoriasis: Results from a Randomized, Double-Blind, Placebo-Controlled Phase III Trial. J. Am. Acad. Dermatol. 2010, 63, 457–465. [Google Scholar] [CrossRef]
- Patten, S.B.; Barbui, C. Drug-Induced Depression: A Systematic Review to Inform Clinical Practice. Psychother. Psychosom. 2004, 73, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Arana, G.W.; Santos, A.B.; Laraia, M.T.; McLeod-Bryant, S.; Beale, M.D.; Rames, L.J.; Roberts, J.M.; Dias, J.K.; Molloy, M. Dexamethasone for the Treatment of Depression: A Randomized, Placebo-Controlled, Double-Blind Trial. Am. J. Psychiatr. 1995, 152, 265–267. [Google Scholar] [CrossRef] [PubMed]
- DeBattista, C.; Posener, J.A.; Kalehzan, B.M.; Schatzberg, A.F. Acute Antidepressant Effects of Intravenous Hydrocortisone and CRH in Depressed Patients: A Double-Blind, Placebo-Controlled Study. Am. J. Psychiatr. 2000, 157, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Kok, L.; Hillegers, M.H.; Veldhuijzen, D.S.; Cornelisse, S.; Nierich, A.P.; Van Der Maaten, J.M.; Rosseel, P.M.; Hofland, J.; Sep, M.S.; Dieleman, J.M.; et al. The Effect of Dexamethasone on Symptoms of Posttraumatic Stress Disorder and Depression After Cardiac Surgery and Intensive Care Admission: Longitudinal Follow-Up of a Randomized Controlled Trial. Crit. Care Med. 2016, 44, 512–520. [Google Scholar] [CrossRef] [Green Version]
- Bates, S.M.; Hill, V.A.; Anderson, J.B.; Chapple, C.R.; Spence, R.; Ryan, C.; Talbot, M.D. A Prospective, Randomized, Double-Blind Trial to Evaluate the Role of a Short Reducing Course of Oral Corticosteroid Therapy in the Treatment of Chronic Prostatitis/Chronic Pelvic Pain Syndrome. BJU Int. 2007, 99, 355–359. [Google Scholar] [CrossRef]
- Yennurajalingam, S.; Frisbee-Hume, S.; Palmer, J.L.; Delgado-Guay, M.O.; Bull, J.; Phan, A.T.; Tannir, N.M.; Litton, J.K.; Reddy, A.; Hui, D.; et al. Reduction of Cancer-Related Fatigue with Dexamethasone: A Double-Blind, Randomized, Placebo-Controlled Trial in Patients with Advanced Cancer. J. Clin. Oncol. 2013, 31, 3076–3082. [Google Scholar] [CrossRef]
- Hang, X.; Zhang, Y.; Li, J.; Li, Z.; Zhang, Y.; Ye, X.; Tang, Q.; Sun, W. Comparative Efficacy and Acceptability of Anti-Inflammatory Agents on Major Depressive Disorder: A Network Meta-Analysis. Front. Pharmacol. 2021, 12, 691200. [Google Scholar] [CrossRef]
- Avan, R.; Sahebnasagh, A.; Hashemi, J.; Monajati, M.; Faramarzi, F.; Henney, N.C.; Montecucco, F.; Jamialahmadi, T.; Sahebkar, A. Update on Statin Treatment in Patients with Neuropsychiatric Disorders. Life 2021, 11, 1365. [Google Scholar] [CrossRef]
- Ortego, M.; Bustos, C.; Hernández-Presa, M.A.; Tuñón, J.; Díaz, C.; Hernández, G.; Egido, J. Atorvastatin Reduces NF-ΚB Activation and Chemokine Expression in Vascular Smooth Muscle Cells and Mononuclear Cells. Atherosclerosis 1999, 147, 253–261. [Google Scholar] [CrossRef]
- Kim, S.W.; Bae, K.Y.; Kim, J.M.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Berk, M.; Yoon, J.S. The Use of Statins for the Treatment of Depression in Patients with Acute Coronary Syndrome. Transl. Psychiatr. 2015, 5, e620. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, S.H.; Mohammadinejad, P.; Shahmansouri, N.; Salehiomran, A.; Beglar, A.A.; Zeinoddini, A.; Forghani, S.; Akhondzadeh, S. Simvastatin versus Atorvastatin for Improving Mild to Moderate Depression in Post-Coronary Artery Bypass Graft Patients: A Double-Blind, Placebo-Controlled, Randomized Trial. J. Affect. Disord. 2015, 183, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Gougol, A.; Zareh-Mohammadi, N.; Raheb, S.; Farokhnia, M.; Salimi, S.; Iranpour, N.; Yekehtaz, H.; Akhondzadeh, S. Simvastatin as an Adjuvant Therapy to Fluoxetine in Patients with Moderate to Severe Major Depression: A Double-Blind Placebo-Controlled Trial. J. Psychopharmacol. 2015, 29, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, A.; Hedayati, A. Augmentation of Fluoxetine with Lovastatin for Treating Major Depressive Disorder, a Randomized Double-Blind Placebo Controlled-Clinical Trial. Depress. Anxiety 2013, 30, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Khodakarami, S.; Jahangard, L.; Ahmadpanah, M.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. In a Randomized, Double-Blind Clinical Trial, Adjuvant Atorvastatin Improved Symptoms of Depression and Blood Lipid Values in Patients Suffering from Severe Major Depressive Disorder. J. Psychiatr. Res. 2014, 58, 109–114. [Google Scholar] [CrossRef]
- De Giorgi, R.; Rizzo Pesci, N.; Quinton, A.; De Crescenzo, F.; Cowen, P.J.; Harmer, C.J. Statins in Depression: An Evidence-Based Overview of Mechanisms and Clinical Studies. Front. Psychiatr. 2021, 12, 1250. [Google Scholar] [CrossRef]
- Yatham, M.S.; Yatham, K.S.; Ravindran, A.V.; Sullivan, F. Do Statins Have an Effect on Depressive Symptoms? A Systematic Review and Meta-Analysis. J. Affect. Disord. 2019, 257, 55–63. [Google Scholar] [CrossRef]
- Parsaik, A.K.; Singh, B.; Hassan Murad, M.; Singh, K.; Mascarenhas, S.S.; Williams, M.D.; Lapid, M.I.; Richardson, J.W.; West, C.P.; Rummans, T.A. Statins Use and Risk of Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2014, 160, 62–67. [Google Scholar] [CrossRef]
- De Giorgi, R.; Waters, S.; Pesci, N.R.; Rosso, G.; Cowen, P.J.; Harmer, C.J. The Effects of Statin Monotherapy on Depressive Symptoms: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2022, 311, 336–343. [Google Scholar] [CrossRef]
- Lee, M.C.; Peng, T.R.; Chen, B.L.; Lee, C.H.; Wang, J.Y.; Lai, C.P.; Lee, J.A.; Chen, S.M.; Shiang, J.C. Effects of Various Statins on Depressive Symptoms: A Network Meta-Analysis. J. Affect. Disord. 2021, 293, 205–213. [Google Scholar] [CrossRef]
- De Giorgi, R.; De Crescenzo, F.; Pesci, N.R.; Martens, M.; Howard, W.; Cowen, P.J.; Harmer, C.J. Statins for Major Depressive Disorder: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2021, 16, e0249409. [Google Scholar] [CrossRef]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nettis, M.A. Minocycline in Major Depressive Disorder: And Overview with Considerations on Treatment-Resistance and Comparisons with Other Psychiatric Disorders. Brain. Behav. Immun. Health 2021, 17, 100335. [Google Scholar] [CrossRef] [PubMed]
- Bassett, B.; Subramaniyam, S.; Fan, Y.; Varney, S.; Pan, H.; Carneiro, A.M.D.; Chung, C.Y. Minocycline Alleviates Depression-like Symptoms by Rescuing Decrease in Neurogenesis in Dorsal Hippocampus via Blocking Microglia Activation/Phagocytosis. Brain. Behav. Immun. 2021, 91, 519–530. [Google Scholar] [CrossRef]
- Husain, M.I.; Chaudhry, I.B.; Husain, N.; Khoso, A.B.; Rahman, R.R.; Hamirani, M.M.; Hodsoll, J.; Qurashi, I.; Deakin, J.F.W.; Young, A.H. Minocycline as an Adjunct for Treatment-Resistant Depressive Symptoms: A Pilot Randomised Placebo-Controlled Trial. J. Psychopharmacol. 2017, 31, 1166–1175. [Google Scholar] [CrossRef]
- Nettis, M.A.M.A.; Lombardo, G.; Hastings, C.; Zajkowska, Z.; Mariani, N.; Nikkheslat, N.; Worrell, C.; Enache, D.; McLaughlin, A.; Kose, M.; et al. Augmentation Therapy with Minocycline in Treatment-Resistant Depression Patients with Low-Grade Peripheral Inflammation: Results from a Double-Blind Randomised Clinical Trial. Neuropsychopharmacology 2021, 46, 939–948. [Google Scholar] [CrossRef]
- Dean, O.M.; Kanchanatawan, B.; Ashton, M.; Mohebbi, M.; Ng, C.H.; Maes, M.; Berk, L.; Sughondhabirom, A.; Tangwongchai, S.; Singh, A.B.; et al. Adjunctive Minocycline Treatment for Major Depressive Disorder: A Proof of Concept Trial. Aust. N. Z. J. Psychiatr. 2017, 51, 829–840. [Google Scholar] [CrossRef]
- Emadi-Kouchak, H.; Mohammadinejad, P.; Asadollahi-Amin, A.; Rasoulinejad, M.; Zeinoddini, A.; Yalda, A.; Akhondzadeh, S. Therapeutic Effects of Minocycline on Mild-to-Moderate Depression in HIV Patients: A Double-Blind, Placebo-Controlled, Randomized Trial. Int. Clin. Psychopharmacol. 2016, 31, 20–26. [Google Scholar] [CrossRef]
- Rosenblat, J.D.; McIntyre, R.S. Efficacy and Tolerability of Minocycline for Depression: A Systematic Review and Meta-Analysis of Clinical Trials. J. Affect. Disord. 2018, 227, 219–225. [Google Scholar] [CrossRef]
- Cai, D.-B.; Zheng, W.; Zhang, Q.E.; Ng, C.H.; Ungvari, G.S.; Huang, X.; Xiang, Y.T. Minocycline for Depressive Symptoms: A Meta-Analysis of Randomized, Double-Blinded, Placebo-Controlled Trials. Psychiatr. Q. 2020, 91, 451–461. [Google Scholar] [CrossRef]
- Ershad, M.; Naji, A.; Vearrier, D. N Acetylcysteine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hoepner, C.; McIntyre, R.; Papakostas, G. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. Nutrients 2021, 13, 767. [Google Scholar] [CrossRef]
- Dean, O.; Giorlando, F.; Berk, M. N-Acetylcysteine in Psychiatr.: Current Therapeutic Evidence and Potential Mechanisms of Action. J. Psychiatr. Neurosci. 2011, 36, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hans, D.; Rengel, A.; Hans, J.; Bassett, D.; Hood, S. N-Acetylcysteine as a Novel Rapidly Acting Anti-Suicidal Agent: A Pilot Naturalistic Study in the Emergency Setting. PLoS ONE 2022, 17, e0263149. [Google Scholar] [CrossRef] [PubMed]
- Porcu, M.; Urbano, M.R.; Verri, W.A.; Barbosa, D.S.; Baracat, M.; Vargas, H.O.; Machado, R.C.B.R.; Pescim, R.R.; Nunes, S.O.V. Effects of Adjunctive N-Acetylcysteine on Depressive Symptoms: Modulation by Baseline High-Sensitivity C-Reactive Protein. Psychiatr. Res. 2018, 263, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, K.; Gray, L.; Bortolasci, C.; Panizzutti, B.; Mohebbi, M.; Kidnapillai, S.; Spolding, B.; Walder, K.; Berk, M.; Malhi, G.; et al. Adjunctive N-Acetylcysteine in Depression: Exploration of Interleukin-6, C-Reactive Protein and Brain-Derived Neurotrophic Factor. Acta Neuropsychiatr. 2017, 29, 337–346. [Google Scholar] [CrossRef]
- Berk, M.; Dean, O.M.; Cotton, S.M.; Jeavons, S.; Tanious, M.; Kohlmann, K.; Hewitt, K.; Moss, K.; Allwang, C.; Schapkaitz, I.; et al. The Efficacy of Adjunctive N-Acetylcysteine in Major Depressive Disorder: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Clin. Psychiatr. 2014, 75, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Nowak, G.; Caso, J.R.; Leza, J.C.; Song, C.; Kubera, M.; Klein, H.; Galecki, P.; Noto, C.; Glaab, E.; et al. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research. Mol. Neurobiol. 2016, 53, 2927–2935. [Google Scholar] [CrossRef]
- Conklin, S.M.; Harris, J.I.; Manuck, S.B.; Yao, J.K.; Hibbeln, J.R.; Muldoon, M.F. Serum Omega-3 Fatty Acids Are Associated with Variation in Mood, Personality and Behavior in Hypercholesterolemic Community Volunteers. Psychiatr. Res. 2007, 152, 1–10. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Procter, N.; Gordon, A.; Bogomolova, S.; O’Dea, K.; Strachan, J.; Ballestrin, M.; et al. People with Schizophrenia and Depression Have a Low Omega-3 Index. Prostaglandins. Leukot. Essent. Fatty Acids 2016, 110, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatr. 2020, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Nemets, B.; Stahl, Z.; Belmaker, R.H. Addition of Omega-3 Fatty Acid to Maintenance Medication Treatment for Recurrent Unipolar Depressive Disorder. Am. J. Psychiatr. 2002, 159, 477–479. [Google Scholar] [CrossRef]
- Su, K.-P.; Huang, S.-Y.; Chiu, C.-C.; Shen, W.W. Omega-3 Fatty Acids in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2003, 13, 267–271. [Google Scholar] [CrossRef]
- Jazayeri, S.; Tehrani-Doost, M.; Keshavarz, S.A.; Hosseini, M.; Djazayery, A.; Amini, H.; Jalali, M.; Peet, M. Comparison of Therapeutic Effects of Omega-3 Fatty Acid Eicosapentaenoic Acid and Fluoxetine, Separately and in Combination, in Major Depressive Disorder. Aust. N. Z. J. Psychiatr. 2008, 42, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Giacosa, A.; Opizzi, A.; Pelucchi, C.; La Vecchia, C.; Montorfano, G.; Negroni, M.; Berra, B.; Politi, P.; Rizzo, A.M. Long Chain Omega 3 Polyunsaturated Fatty Acids Supplementation in the Treatment of Elderly Depression: Effects on Depressive Symptoms, on Phospholipids Fatty Acids Profile and on Health-Related Quality of Life. J. Nutr. Health Aging 2011, 15, 37–44. [Google Scholar] [CrossRef]
- Gertsik, L.; Poland, R.E.; Bresee, C.; Rapaport, M.H. Omega-3 Fatty Acid Augmentation of Citalopram Treatment for Patients with Major Depressive Disorder. J. Clin. Psychopharmacol. 2012, 32, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapaport, M.H.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.; Cardoos, A.; Walker, R.; Mischoulon, D. Inflammation as a Predictive Biomarker for Response to Omega-3 Fatty Acids in Major Depressive Disorder: A Proof of Concept Study. Mol. Psychiatr. 2016, 21, 71. [Google Scholar] [CrossRef] [Green Version]
- Su, K.P.; Yang, H.T.; Chang, J.P.C.; Shih, Y.H.; Guu, T.W.; Kumaran, S.S.; Gałecki, P.; Walczewska, A.; Pariante, C.M. Eicosapentaenoic and Docosahexaenoic Acids Have Different Effects on Peripheral Phospholipase A2 Gene Expressions in Acute Depressed Patients. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2018, 80, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Lespérance, F.; Frasure-Smith, N.; St-André, E.; Turecki, G.; Lespérance, P.; Wisniewski, S.R. The Efficacy of Omega-3 Supplementation for Major Depression: A Randomized Controlled Trial. J. Clin. Psychiatr. 2011, 72, 1054–1062. [Google Scholar] [CrossRef]
- Marangell, L.B.; Martinez, J.M.; Zboyan, H.A.; Kertz, B.; Kim, H.F.S.; Puryear, L.J. A Double-Blind, Placebo-Controlled Study of the Omega-3 Fatty Acid Docosahexaenoic Acid in the Treatment of Major Depression. Am. J. Psychiatr. 2003, 160, 996–998. [Google Scholar] [CrossRef]
- Silvers, K.M.; Woolley, C.C.; Hamilton, F.C.; Watts, P.M.; Watson, R.A. Randomised Double-Blind Placebo-Controlled Trial of Fish Oil in the Treatment of Depression. Prostaglandins Leukot. Essent. Fat. Acids 2005, 72, 211–218. [Google Scholar] [CrossRef]
- Grenyer, B.F.S.; Crowe, T.; Meyer, B.; Owen, A.J.; Grigonis-Deane, E.M.; Caputi, P.; Howe, P.R.C. Fish Oil Supplementation in the Treatment of Major Depression: A Randomised Double-Blind Placebo-Controlled Trial. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2007, 31, 1393–1396. [Google Scholar] [CrossRef]
- Mischoulon, D.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.L.; Fehling, K.; Martinson, M.A.; Rapaport, M.H. A Double-Blind, Randomized Controlled Clinical Trial Comparing Eicosapentaenoic Acid versus Docosahexaenoic Acid for Depression. J. Clin. Psychiatr. 2015, 76, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Glaser, R. Omega-3 Supplementation Lowers Inflammation and Anxiety in Medical Students: A Randomized Controlled Trial. Brain. Behav. Immun. 2011, 25, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Hwang, B.S.; Glaser, R. Omega-3 Supplementation Lowers Inflammation in Healthy Middle-Aged and Older Adults: A Randomized Controlled Trial. Brain. Behav. Immun. 2012, 26, 988–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorente, A.M.; Jensen, C.L.; Voigt, R.G.; Fraley, J.K.; Berretta, M.C.; Heird, W.C. Effect of Maternal Docosahexaenoic Acid Supplementation on Postpartum Depression and Information Processing. Am. J. Obstet. Gynecol. 2003, 188, 1348–1353. [Google Scholar] [CrossRef]
- Doornbos, B.; van Goor, S.A.; Dijck-Brouwer, D.A.J.; Schaafsma, A.; Korf, J.; Muskiet, F.A.J. Supplementation of a Low Dose of DHA or DHA+AA Does Not Prevent Peripartum Depressive Symptoms in a Small Population Based Sample. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2009, 33, 49–52. [Google Scholar] [CrossRef]
- Giltay, E.J.; Geleijnse, J.M.; Kromhout, D. Effects of N-3 Fatty Acids on Depressive Symptoms and Dispositional Optimism after Myocardial Infarction. Am. J. Clin. Nutr. 2011, 94, 1442–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreeva, V.A.; Galan, P.; Torrès, M.; Julia, C.; Hercberg, S.; Kesse-Guyot, E. Supplementation with B Vitamins or N-3 Fatty Acids and Depressive Symptoms in Cardiovascular Disease Survivors: Ancillary Findings from the SUpplementation with FOLate, Vitamins B-6 and B-12 and/or OMega-3 Fatty Acids (SU.FOL.OM3) Randomized Trial. Am. J. Clin. Nutr. 2012, 96, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Martini, J.; Petzoldt, J.; Einsle, F.; Beesdo-Baum, K.; Höfler, M.; Wittchen, H.-U. Risk Factors and Course Patterns of Anxiety and Depressive Disorders during Pregnancy and after Delivery: A Prospective-Longitudinal Study. J. Affect. Disord. 2015, 175, 385–395. [Google Scholar] [CrossRef]
- Ornoy, A.; Koren, G. SSRIs and SNRIs (SRI) in Pregnancy: Effects on the Course of Pregnancy and the Offspring: How Far Are We from Having All the Answers? Int. J. Mol. Sci. 2019, 20, 2370. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.P.; Davis, M.; Sinha, P.; Wisner, K.L.; Hibbeln, J.R.; Gelenberg, A.J. Omega-3 Fatty Acids and Supportive Psychotherapy for Perinatal Depression: A Randomized Placebo-Controlled Study. J. Affect. Disord. 2008, 110, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Rees, A.M.; Austin, M.P.; Parker, G.B. Omega-3 Fatty Acids as a Treatment for Perinatal Depression: Randomized Double-Blind Placebo-Controlled Trial. Aust. N. Z. J. Psychiatr. 2008, 42, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Suneson, K.; Lindahl, J.; Chamli Hårsmar, S.; Söderberg, G.; Lindqvist, D. Inflammatory Depression—Mechanisms and Non-Pharmacological Interventions. Int. J. Mol. Sci. 2021, 22, 1640. [Google Scholar] [CrossRef] [PubMed]
- Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Harris, W.S. Omega-3 Augmentation of Sertraline in Treatment of Depression in Patients with Coronary Heart Disease: A Randomized Controlled Trial. JAMA 2009, 302, 1651–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bot, M.; Pouwer, F.; Assies, J.; Jansen, E.H.J.M.; Diamant, M.; Snoek, F.J.; Beekman, A.T.F.; De Jonge, P. Eicosapentaenoic Acid as an Add-on to Antidepressant Medication for Co-Morbid Major Depression in Patients with Diabetes Mellitus: A Randomized, Double-Blind Placebo-Controlled Study. J. Affect. Disord. 2010, 126, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Whellan, D.J.; Adams, K.F.; Babyak, M.A.; Boyle, S.H.; Wilson, J.L.; Patel, C.B.; Rogers, J.G.; Harris, W.S.; O’Connor, C.M. Long-Chain Omega-3 Fatty Acid Supplements in Depressed Heart Failure Patients: Results of the OCEAN Trial. JACC. Heart Fail. 2018, 6, 833–843. [Google Scholar] [CrossRef]
- Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Harris, W.S. A Randomized Placebo-Controlled Trial of Omega-3 and Sertraline in Depressed Patients With or at Risk for Coronary Heart Disease. J. Clin. Psychiatr. 2019, 80, 13302. [Google Scholar] [CrossRef]
- Chang, J.P.C.; Chang, S.S.; Yang, H.T.; Chen, H.T.; Chien, Y.C.; Yang, B.; Su, H.; Su, K.P. Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Diseases Comorbid Major Depressive Disorder—Results from a Randomized Controlled Trial. Brain. Behav. Immun. 2020, 85, 14–20. [Google Scholar] [CrossRef]
- Keshavarz, S.A.; Mostafavi, S.A.; Akhondzadeh, S.; Mohammadi, M.R.; Hosseini, S.; Eshraghian, M.R.; Chamari, M. Omega-3 Supplementation Effects on Body Weight and Depression among Dieter Women with Co-Morbidity of Depression and Obesity Compared with the Placebo: A Randomized Clinical Trial. Clin. Nutr. ESPEN 2018, 25, 37–43. [Google Scholar] [CrossRef]
- Nemets, H.; Nemets, B.; Apter, A.; Bracha, Z.; Belmaker, R.H. Omega-3 Treatment of Childhood Depression: A Controlled, Double-Blind Pilot Study. Am. J. Psychiatr. 2006, 163, 1098–1100. [Google Scholar] [CrossRef]
- Ginty, A.T.; Conklin, S.M. Short-Term Supplementation of Acute Long-Chain Omega-3 Polyunsaturated Fatty Acids May Alter Depression Status and Decrease Symptomology among Young Adults with Depression: A Preliminary Randomized and Placebo Controlled Trial. Psychiatr. Res. 2015, 229, 485–489. [Google Scholar] [CrossRef]
- Amminger, G.P.; Chanen, A.M.; Ohmann, S.; Klier, C.M.; Mossaheb, N.; Bechdolf, A.; Nelson, B.; Thompson, A.; McGorry, P.D.; Yung, A.R.; et al. Omega-3 Fatty Acid Supplementation in Adolescents with Borderline Personality Disorder and Ultra-High Risk Criteria for Psychosis: A Post Hoc Subgroup Analysis of a Double-Blind, Randomized Controlled Trial. Can. J. Psychiatr. 2013, 58, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazayeri, S.; Keshavarz, S.A.; Tehrani-Doost, M.; Djalali, M.; Hosseini, M.; Amini, H.; Chamari, M.; Djazayery, A. Effects of Eicosapentaenoic Acid and Fluoxetine on Plasma Cortisol, Serum Interleukin-1beta and Interleukin-6 Concentrations in Patients with Major Depressive Disorder. Psychiatr. Res. 2010, 178, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.M.; Corsetto, P.A.; Montorfano, G.; Opizzi, A.; Faliva, M.; Giacosa, A.; Ricevuti, G.; Pelucchi, C.; Berra, B.; Rondanelli, M. Comparison between the AA/EPA Ratio in Depressed and Non Depressed Elderly Females: Omega-3 Fatty Acid Supplementation Correlates with Improved Symptoms but Does Not Change Immunological Parameters. Nutr. J. 2012, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Jahangard, L.; Sadeghi, A.; Ahmadpanah, M.; Holsboer-Trachsler, E.; Sadeghi Bahmani, D.; Haghighi, M.; Brand, S. Influence of Adjuvant Omega-3-Polyunsaturated Fatty Acids on Depression, Sleep, and Emotion Regulation among Outpatients with Major Depressive Disorders—Results from a Double-Blind, Randomized and Placebo-Controlled Clinical Trial. J. Psychiatr. Res. 2018, 107, 48–56. [Google Scholar] [CrossRef]
- Su, K.P.; Huang, S.Y.; Chiu, T.H.; Huang, K.C.; Huang, C.L.; Chang, H.C.; Pariante, C.M. Omega-3 Fatty Acids for Major Depressive Disorder during Pregnancy: Results from a Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Psychiatr. 2008, 69, 644–651. [Google Scholar] [CrossRef]
- Bot, M.; Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Mann, D.L. Inflammation and Treatment Response to Sertraline in Patients with Coronary Heart Disease and Comorbid Major Depression. J. Psychosom. Res. 2011, 71, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocking, R.J.T.; Assies, J.; Bot, M.; Jansen, E.H.J.M.; Schene, A.H.; Pouwer, F. Biological Effects of Add-On Eicosapentaenoic Acid Supplementation in Diabetes Mellitus and Co-Morbid Depression: A Randomized Controlled Trial. PLoS ONE 2012, 7, e49431. [Google Scholar] [CrossRef]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The Gut Microbiota in Anxiety and Depression—A Systematic Review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef]
- Sampson, T.R.; Mazmanian, S.K. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe 2015, 17, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the Gut-Brain Axis: Regulation by the Microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Brietzke, E.; Rosenblat, J.D.; Musial, N.; Zuckerman, H.; Ragguett, R.M.; Pan, Z.; Rong, C.; Fus, D.; McIntyre, R.S. Probiotics for the Treatment of Depressive Symptoms: An Anti-Inflammatory Mechanism? Brain Behav. Immun. 2018, 73, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A Novel Class of Psychotropic. Biol. Psychiatr. 2013, 74, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and Metabolic Response to Probiotic Administration in Patients with Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Chen, Y.; Zhu, H.; Wang, L.; Qian, X.; Zou, R.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; et al. Bifidobacterium Breve CCFM1025 Attenuates Major Depression Disorder via Regulating Gut Microbiome and Tryptophan Metabolism: A Randomized Clinical Trial. Brain. Behav. Immun. 2022, 100, 233–241. [Google Scholar] [CrossRef]
- Schaub, A.-C.; Schneider, E.; Vazquez-Castellanos, J.F.; Schweinfurth, N.; Kettelhack, C.; Doll, J.P.K.; Yamanbaeva, G.; Mählmann, L.; Brand, S.; Beglinger, C.; et al. Clinical, Gut Microbial and Neural Effects of a Probiotic Add-on Therapy in Depressed Patients: A Randomized Controlled Trial. Transl. Psychiatr. 2022, 12, 227. [Google Scholar] [CrossRef]
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v Decreases Kynurenine Concentration and Improves Cognitive Functions in Patients with Major Depression: A Double-Blind, Randomized, Placebo Controlled Study. Psychoneuroendocrinology 2019, 100, 213–222. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Mörkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schöggl, H.; et al. PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression-A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Zhang, M.; Ren, F.; Ren, Y.; Li, Y.; Liu, N.; Zhang, Y.; Zhang, Q.; Wang, R. Effects of Fermented Milk Containing Lacticaseibacillus Paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2238. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of Psychotropic-like Properties of a Probiotic Formulation (Lactobacillus Helveticus R0052 and Bifidobacterium Longum R0175) in Rats and Human Subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Hong, J.K.; Kim, J.K.; Kim, D.H.; Jang, S.W.; Han, S.W.; Yoon, I.Y. Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2660. [Google Scholar] [CrossRef]
- Rahimlou, M.; Hosseini, S.A.; Majdinasab, N.; Haghighizadeh, M.H.; Husain, D. Effects of Long-Term Administration of Multi-Strain Probiotic on Circulating Levels of BDNF, NGF, IL-6 and Mental Health in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutr. Neurosci. 2022, 25, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Moludi, J.; Khedmatgozar, H.; Saiedi, S.; Razmi, H.; Alizadeh, M.; Ebrahimi, B. Probiotic Supplementation Improves Clinical Outcomes and Quality of Life Indicators in Patients with Plaque Psoriasis: A Randomized Double-Blind Clinical Trial. Clin. Nutr. ESPEN 2021, 46, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and Probiotics for Depression and Anxiety: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Neurosci. Biobehav. Rev. 2019, 102, 13. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wang, K.; Hu, J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- El Dib, R.; Periyasamy, A.G.; de Barros, J.L.; França, C.G.; Senefonte, F.L.; Vesentini, G.; Alves, M.G.O.; Rodrigues, J.V.D.S.; Gomaa, H.; Júnior, J.R.G.; et al. Probiotics for the Treatment of Depression and Anxiety: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. ESPEN 2021, 45, 75–90. [Google Scholar] [CrossRef]
- Goh, K.K.; Liu, Y.W.; Kuo, P.H.; Chung, Y.C.E.; Lu, M.L.; Chen, C.H. Effect of Probiotics on Depressive Symptoms: A Meta-Analysis of Human Studies. Psychiatr. Res. 2019, 282, 112568. [Google Scholar] [CrossRef]
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of Probiotic and Prebiotic vs Placebo on Psychological Outcomes in Patients with Major Depressive Disorder: A Randomized Clinical Trial. Clin. Nutr. 2019, 38, 522–528. [Google Scholar] [CrossRef]
- Reiter, A.; Bengesser, S.A.; Hauschild, A.C.; Birkl-Töglhofer, A.M.; Fellendorf, F.T.; Platzer, M.; Färber, T.; Seidl, M.; Mendel, L.M.; Unterweger, R.; et al. Interleukin-6 Gene Expression Changes after a 4-Week Intake of a Multispecies Probiotic in Major Depressive Disorder-Preliminary Results of the PROVIT Study. Nutrients 2020, 12, 2575. [Google Scholar] [CrossRef]
- Zepf, F.D.; Stewart, R.M.; Guillemin, G.; Ruas, J.L. Inflammation, Immunology, Stress and Depression: A Role for Kynurenine Metabolism in Physical Exercise and Skeletal Muscle. Acta Neuropsychiatr. 2016, 28, 244–245. [Google Scholar] [CrossRef] [Green Version]
- El-Kade, S.M.A.; Al-Jiffri, O.H. Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients. Afr. Health Sci. 2017, 16, 1078–1088. [Google Scholar] [CrossRef] [Green Version]
- Vučić Lovrenčić, M.; Pibernik-Okanović, M.; Šekerija, M.; Prašek, M.; Ajduković, D.; Kos, J.; Hermanns, N.; Vucic Lovrencic, M.; Pibernik-Okanović, M.; Šekerija, M.; et al. Improvement in Depressive Symptoms Is Associated with Reduced Oxidative Damage and Inflammatory Response in Type 2 Diabetic Patients with Subsyndromal Depression: The Results of a Randomized Controlled Trial Comparing Psychoeducation, Physical Exercise, and Enhanced Treatment as Usual. Int. J. Endocrinol. 2015, 2015, 210406. [Google Scholar] [CrossRef] [Green Version]
- Herrstedt, A.; Bay, M.L.; Simonsen, C.; Sundberg, A.; Egeland, C.; Thorsen-Streit, S.; Djurhuus, S.S.; Magne Ueland, P.; Midttun, Ø.; Pedersen, B.K.; et al. Exercise-Mediated Improvement of Depression in Patients with Gastro-Esophageal Junction Cancer Is Linked to Kynurenine Metabolism. Acta Oncol. 2019, 58, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Gilio, L.; Fresegna, D.; Gentile, A.; Guadalupi, L.; Sanna, K.; De Vito, F.; Balletta, S.; Caioli, S.; Rizzo, F.R.; Musella, A.; et al. Preventive Exercise Attenuates IL-2-Driven Mood Disorders in Multiple Sclerosis. Neurobiol. Dis. 2022, 172, 105817. [Google Scholar] [CrossRef] [PubMed]
- Rethorst, C.D.; Toups, M.S.; Greer, T.L.; Nakonezny, P.A.; Carmody, T.J.; Grannemann, B.D.; Huebinger, R.M.; Barber, R.C.; Trivedi, M.H. Pro-Inflammatory Cytokines as Predictors of Antidepressant Effects of Exercise in Major Depressive Disorder. Mol. Psychiatr. 2013, 18, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Euteneuer, F.; Dannehl, K.; Del Rey, A.; Engler, H.; Schedlowski, M.; Rief, W. Immunological Effects of Behavioral Activation with Exercise in Major Depression: An Exploratory Randomized Controlled Trial. Transl. Psychiatr. 2017, 7, e1132. [Google Scholar] [CrossRef] [Green Version]
- Lavebratt, C.; Herring, M.P.; Liu, J.J.; Bin Wei, Y.; Bossoli, D.; Hallgren, M.; Forsell, Y. Interleukin-6 and Depressive Symptom Severity in Response to Physical Exercise. Psychiatr. Res. 2017, 252, 270–276. [Google Scholar] [CrossRef]
- Kohut, M.L.; McCann, D.A.; Russell, D.W.; Konopka, D.N.; Cunnick, J.E.; Franke, W.D.; Castillo, M.C.; Reighard, A.E.; Vanderah, E. Aerobic Exercise, but Not Flexibility/Resistance Exercise, Reduces Serum IL-18, CRP, and IL-6 Independent of Beta-Blockers, BMI, and Psychosocial Factors in Older Adults. Brain. Behav. Immun. 2006, 20, 201–209. [Google Scholar] [CrossRef]
- Paolucci, E.M.; Loukov, D.; Bowdish, D.M.E.; Heisz, J.J. Exercise Reduces Depression and Inflammation but Intensity Matters. Biol. Psychol. 2018, 133, 79–84. [Google Scholar] [CrossRef]
- Li, M.; Yao, X.; Sun, L.; Zhao, L.; Xu, W.; Zhao, H.; Zhao, F.; Zou, X.; Cheng, Z.; Li, B.; et al. Effects of Electroconvulsive Therapy on Depression and Its Potential Mechanism. Front. Psychol. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Yrondi, A.; Sporer, M.; Péran, P.; Schmitt, L.; Arbus, C.; Sauvaget, A. Electroconvulsive Therapy, Depression, the Immune System and Inflammation: A Systematic Review. Brain Stimul. 2018, 11, 29–51. [Google Scholar] [CrossRef]
- Belge, J.B.; Van DIermen, L.; Sabbe, B.; Parizel, P.; Morrens, M.; Coppens, V.; Constant, E.; De Timary, P.; Sienaert, P.; Schrijvers, D.; et al. Inflammation, Hippocampal Volume, and Therapeutic Outcome Following Electroconvulsive Therapy in Depressive Patients: A Pilot Study. Neuropsychobiology 2020, 79, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Bioque, M.; Mac-Dowell, K.S.; Meseguer, A.; Macau, E.; Valero, R.; Vieta, E.; Leza, J.C.; Bernardo, M. Effects of Electroconvulsive Therapy in the Systemic Inflammatory Balance of Patients with Severe Mental Disorder. Psychiatr. Clin. Neurosci. 2019, 73, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Mindt, S.; Neumaier, M.; Hoyer, C.; Sartorius, A.; Kranaster, L. Cytokine-Mediated Cellular Immune Activation in Electroconvulsive Therapy: A CSF Study in Patients with Treatment-Resistant Depression. World J. Biol. Psychiatr. 2020, 21, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Järventausta, K.; Sorri, A.; Kampman, O.; Björkqvist, M.; Tuohimaa, K.; Hämäläinen, M.; Moilanen, E.; Leinonen, E.; Peltola, J.; Lehtimäki, K. Changes in Interleukin-6 Levels during Electroconvulsive Therapy May Reflect the Therapeutic Response in Major Depression. Acta Psychiatr. Scand. 2017, 135, 87–92. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hasegawa, T.; Takeda, M. Serum Level of Soluble Interleukin 6 Receptor Is a Useful Biomarker for Identification of Treatment-Resistant Major Depressive Disorder. Neuropsychopharmacol. Reports 2020, 40, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Kranaster, L.; Hoyer, C.; Aksay, S.S.; Bumb, J.M.; Müller, N.; Zill, P.; Schwarz, M.J.; Sartorius, A. Antidepressant Efficacy of Electroconvulsive Therapy Is Associated with a Reduction of the Innate Cellular Immune Activity in the Cerebrospinal Fluid in Patients with Depression. World J. Biol. Psychiatr. 2017, 19, 379–389. [Google Scholar] [CrossRef]
- Sorri, A.; Järventausta, K.; Kampman, O.; Lehtimäki, K.; Björkqvist, M.; Tuohimaa, K.; Hämäläinen, M.; Moilanen, E.; Leinonen, E. Low Tumor Necrosis Factor-α Levels Predict Symptom Reduction during Electroconvulsive Therapy in Major Depressive Disorder. Brain Behav. 2018, 8, e00933. [Google Scholar] [CrossRef]
- Rotter, A.; Biermann, T.; Stark, C.; Decker, A.; Demling, J.; Zimmermann, R.; Sperling, W.; Kornhuber, J.; Henkel, A. Changes of Cytokine Profiles during Electroconvulsive Therapy in Patients with Major Depression. J. ECT 2013, 29, 162–169. [Google Scholar] [CrossRef]
- Rush, G.; O’Donovan, A.; Nagle, L.; Conway, C.; McCrohan, A.M.; O’Farrelly, C.; Lucey, J.V.; Malone, K.M. Alteration of Immune Markers in a Group of Melancholic Depressed Patients and Their Response to Electroconvulsive Therapy. J. Affect. Disord. 2016, 205, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Fluitman, S.B.A.H.A.; Heijnen, C.J.; Denys, D.A.J.P.; Nolen, W.A.; Balk, F.J.; Westenberg, H.G.M. Electroconvulsive Therapy Has Acute Immunological and Neuroendocrine Effects in Patients with Major Depressive Disorder. J. Affect. Disord. 2011, 131, 388–392. [Google Scholar] [CrossRef]
- Zincir, S.; Öztürk, P.; Bilgen, A.E.; Izci, F.; Yükselir, C. Levels of Serum Immunomodulators and Alterations with Electroconvulsive Therapy in Treatment-Resistant Major Depression. Neuropsychiatr. Dis. Treat. 2016, 12, 1389–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, J.L.; Olmstead, R.; Hellemann, G.; Wade, B.; Jiang, J.; Vasavada, M.M.; Brooks, J.O., III; Congdon, E.; Espinoza, R.; Narr, K.L.; et al. Inflammation and Depression Treatment Response to Electroconvulsive Therapy: Sex-Specific Role of Interleukin-8. Brain. Behav. Immun. 2020, 89, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Desfossés, C.-Y.; Peredo, R.; Chabot, A.; Carmel, J.-P.; Tremblay, P.-M.; Mérette, C.; Picher, G.; Lachance, I.; Patry, S.; Lemasson, M. The Pattern of Change in Depressive Symptoms and Inflammatory Markers After Electroconvulsive Therapy: A Systematic Review. J. ECT 2021, 37, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Carlier, A.; Berkhof, J.G.; Rozing, M.; Bouckaert, F.; Sienaert, P.; Eikelenboom, P.; Veerhuis, R.; Vandenbulcke, M.; Berkhof, J.; Stek, M.L.; et al. Inflammation and Remission in Older Patients with Depression Treated with Electroconvulsive Therapy; Findings from the MODECT Study. J. Affect. Disord. 2019, 256, 509–516. [Google Scholar] [CrossRef]
- Kruse, J.L.; Congdon, E.; Olmstead, R.; Njau, S.; Breen, E.C.; Narr, K.L.; Espinoza, R.; Irwin, M.R. Inflammation and Improvement of Depression Following Electroconvulsive Therapy in Treatment-Resistant Depression. J. Clin. Psychiatr. 2018, 79, 17m11597. [Google Scholar] [CrossRef]
- Carlier, A.; Rhebergen, D.; Veerhuis, R.; Schouws, S.; Oudega, M.L.; Eikelenboom, P.; Bouckaert, F.; Sienaert, P.; Obbels, J.; Stek, M.L.; et al. Inflammation and Cognitive Functioning in Depressed Older Adults Treated With Electroconvulsive Therapy: A Prospective Cohort Study. J. Clin. Psychiatr. 2021, 82, 35808. [Google Scholar] [CrossRef]
- Del Grande da Silva, G.; Wiener, C.D.; Barbosa, L.P.; Gonçalves Araujo, J.M.; Molina, M.L.; San Martin, P.; Oses, J.P.; Jansen, K.; Dias de Mattos Souza, L.; Azevedo da Silva, R. Pro-Inflammatory Cytokines and Psychotherapy in Depression: Results from a Randomized Clinical Trial. J. Psychiatr. Res. 2016, 75, 57–64. [Google Scholar] [CrossRef]
- Moreira, F.P.; de Azevedo Cardoso, T.; Mondin, T.C.; de Mattos Souza, L.D.; Silva, R.; Jansen, K.; Oses, J.P.; Wiener, C.D. The Effect of Proinflammatory Cytokines in Cognitive Behavioral Therapy. J. Neuroimmunol. 2015, 285, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sagar, A.P.; Kéri, S. Translocator Protein (18 kDa TSPO) Binding, a Marker of Microglia, Is Reduced in Major Depression during Cognitive-Behavioral Therapy. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2018, 83, 1–7. [Google Scholar] [CrossRef]
- Dahl, J.; Ormstad, H.; Aass, H.C.D.; Sandvik, L.; Malt, U.F.; Andreassen, O.A. Recovery from Major Depressive Disorder Episode after Non-Pharmacological Treatment Is Associated with Normalized Cytokine Levels. Acta Psychiatr. Scand. 2016, 134, 40–47. [Google Scholar] [CrossRef]
- Kéri, S.; Szabó, C.; Kelemen, O. Expression of Toll-Like Receptors in Peripheral Blood Mononuclear Cells and Response to Cognitive-Behavioral Therapy in Major Depressive Disorder. Brain. Behav. Immun. 2014, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, K.; Memon, A.A.; Palmér, K.; Sundquist, J.; Wang, X. Inflammatory Proteins and MiRNA-144-5p in Patients with Depression, Anxiety, or Stress- and Adjustment Disorders after Psychological Treatment. Cytokine 2021, 146, 155646. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Sundquist, K.; Ahmad, A.; Wang, X.; Hedelius, A.; Sundquist, J. Role of IL-8, CRP and Epidermal Growth Factor in Depression and Anxiety Patients Treated with Mindfulness-Based Therapy or Cognitive Behavioral Therapy in Primary Health Care. Psychiatr. Res. 2017, 254, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Belliveau, C.; Nagy, C.; Escobar, S.; Mechawar, N.; Turecki, G.; Rej, S.; Torres-Platas, S.G. Effects of Mindfulness-Based Cognitive Therapy on Peripheral Markers of Stress and Inflammation in Older-Adults With Depression and Anxiety: A Parallel Analysis of a Randomized Controlled Trial. Front. Psychiatr. 2021, 12, 804269. [Google Scholar] [CrossRef]
- Harley, J.; Luty, S.; Carter, J.; Mulder, R.; Joyce, P. Elevated C-Reactive Protein in Depression: A Predictor of Good Long-Term Outcome with Antidepressants and Poor Outcome with Psychotherapy. J. Psychopharmacol. 2010, 24, 625–626. [Google Scholar] [CrossRef]
- Zahn, D.; Herpertz, S.; Albus, C.; Hermanns, N.; Hiemke, C.; Hiller, W.; Kronfeld, K.; Kruse, J.; Kulzer, B.; Müller, M.J.; et al. Hs-CRP Predicts Improvement in Depression in Patients With Type 1 Diabetes and Major Depression Undergoing Depression Treatment: Results From the Diabetes and Depression (DAD) Study. Diabetes Care 2016, 39, e171–e173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, E.M.J.; Neusetzer, M.; Akinci, S.; Murat, A.; Treuherz, S.; Rose, M.; Leweke, F.; Leichsenring, F.; Conrad, M.L.; Kruse, J. Multimodal Psychotherapeutic Inpatient Therapy of Depression Is Successful in Patients With High Cytokine Production. Front. Psychiatr. 2020, 11, 571636. [Google Scholar] [CrossRef]
- O’Toole, M.S.; Bovbjerg, D.H.; Renna, M.E.; Lekander, M.; Mennin, D.S.; Zachariae, R. Effects of Psychological Interventions on Systemic Levels of Inflammatory Biomarkers in Humans: A Systematic Review and Meta-Analysis. Brain. Behav. Immun. 2018, 74, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L. Cognitive Behaviour Therapy and Inflammation: A Systematic Review of Its Relationship and the Potential Implications for the Treatment of Depression. Aust. N. Zeal. J. Psychiatr. 2017, 51, 565–582. [Google Scholar] [CrossRef] [Green Version]
- Marini, S.; Vellante, F.; Matarazzo, I.; De Berardis, D.; Serroni, N.; Gianfelice, D.; Olivieri, L.; Di Renzo, F.; Di Marco, A.; Fornaro, M.; et al. Inflammatory Markers and Suicidal Attempts in Depressed Patients: A Review. Int. J. Immunopathol. Pharmacol. 2016, 29, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Orsolini, L.; Latini, R.; Pompili, M.; Serafini, G.; Volpe, U.; Vellante, F.; Fornaro, M.; Valchera, A.; Tomasetti, C.; Fraticelli, S.; et al. Understanding the Complex of Suicide in Depression: From Research to Clinics. Psychiatr. Investig. 2020, 17, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusar-Poli, L.; Aguglia, A.; Amerio, A.; Orsolini, L.; Salvi, V.; Serafini, G.; Volpe, U.; Amore, M.; Aguglia, E. Peripheral BDNF Levels in Psychiatric Patients with and without a History of Suicide Attempt: A Systematic Review and Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatr. 2021, 111, 110342. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Pompili, S.; Valenta, S.T.; Salvi, V.; Volpe, U. C-Reactive Protein as a Biomarker for Major Depressive Disorder? Int. J. Mol. Sci. 2022, 23, 1616. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Fornaro, M.; Orsolini, L.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Serroni, N.; De Lauretis, I.; Girinelli, G.; Mazza, M.; et al. Effect of Agomelatine Treatment on C-Reactive Protein Levels in Patients with Major Depressive Disorder: An Exploratory Study in “Real-World,” Everyday Clinical Practice. CNS Spectr. 2017, 22, 342–347. [Google Scholar] [CrossRef]
- Chen, M.-H.; Li, C.-T.; Lin, W.-C.; Hong, C.-J.; Tu, P.-C.; Bai, Y.-M.; Cheng, C.-M.; Su, T.-P. Rapid Inflammation Modulation and Antidepressant Efficacy of a Low-Dose Ketamine Infusion in Treatment-Resistant Depression: A Randomized, Double-Blind Control Study. Psychiatr. Res. 2018, 269, 207–211. [Google Scholar] [CrossRef]
- Jones, B.D.M.; Farooqui, S.; Kloiber, S.; Husain, M.O.; Mulsant, B.H.; Husain, M.I. Targeting Metabolic Dysfunction for the Treatment of Mood Disorders: Review of the Evidence. Life 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Escalona, R.; Fawcett, J. Pramipexole in Treatment Resistant-Depression, Possible Role of Inflammatory Cytokines. Neuropsychopharmacology 2017, 42, 363. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.I.; Cullen, C.; Umer, M.; Carvalho, A.F.; Kloiber, S.; Meyer, J.H.; Ortiz, A.; Knyahnytska, Y.; Husain, M.O.; Giddens, J.; et al. Minocycline as Adjunctive Treatment for Treatment-Resistant Depression: Study Protocol for a Double Blind, Placebo-Controlled, Randomized Trial (MINDEP2). BMC Psychiatr. 2020, 20, 173. [Google Scholar] [CrossRef] [Green Version]
- Otte, C.; Chae, W.R.; Nowacki, J.; Kaczmarczyk, M.; Piber, D.; Roepke, S.; Märschenz, S.; Lischewski, S.; Schmidt, S.; Ettrich, B.; et al. Simvastatin Add-on to Escitalopram in Patients with Comorbid Obesity and Major Depression (SIMCODE): Study Protocol of a Multicentre, Randomised, Double-Blind, Placebo-Controlled Trial. BMJ Open 2020, 10, e040119. [Google Scholar] [CrossRef]
- Yang, C.; Bosker, F.J.; Li, J.; Schoevers, R.A. N-Acetylcysteine as Add-on to Antidepressant Medication in Therapy Refractory Major Depressive Disorder Patients with Increased Inflammatory Activity: Study Protocol of a Double-Blind Randomized Placebo-Controlled Trial. BMC Psychiatr. 2018, 18, 279. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogaru, I.-A.; Puiu, M.G.; Manea, M.; Dionisie, V. Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression. Brain Sci. 2022, 12, 1403. https://doi.org/10.3390/brainsci12101403
Dogaru I-A, Puiu MG, Manea M, Dionisie V. Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression. Brain Sciences. 2022; 12(10):1403. https://doi.org/10.3390/brainsci12101403
Chicago/Turabian StyleDogaru, Ioana-Alexandra, Maria Gabriela Puiu, Mirela Manea, and Vlad Dionisie. 2022. "Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression" Brain Sciences 12, no. 10: 1403. https://doi.org/10.3390/brainsci12101403
APA StyleDogaru, I. -A., Puiu, M. G., Manea, M., & Dionisie, V. (2022). Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression. Brain Sciences, 12(10), 1403. https://doi.org/10.3390/brainsci12101403