Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. EEG Data Acquisition & Preprocessing
2.4. Functional Connectivity Network Construction
2.5. Graph Theoretic Metrics & Analysis
2.6. Laterality Analysis
2.7. Olfactory Hedonic Network
2.8. Null Network Comparisons
3. Results
3.1. Behavioral Data
3.2. Graph Metrics & Functional Connectivity
3.3. Laterality
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROI | Region of interest, a single entry in the AAL atlas |
AAL | Automated anatomical labelling |
OMST | Orthogonal minimum spanning tree |
fMRI | Functional magnetic resonance imaging |
WD | Weighted nodal degree |
CC | Clustering coefficient |
BC | Betweenness centrality |
LD | Left dominant |
RD | Right dominant |
Delta frequency band [1–4] Hz | |
Theta frequency band [4–8] Hz | |
Alpha frequency band [8–13] Hz | |
Beta frequency band [13–30] Hz | |
Gamma frequency band [30–40] Hz |
References
- Yeshurun, Y.; Sobel, N. An odor is not worth a thousand words: From multidimensional odors to unidimensional odor objects. Annu. Rev. Psychol. 2010, 61, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laska, M.; Ayabe-Kanamura, S.; Hübener, F.; Saito, S. Olfactory discrimination ability for aliphatic odorants as a function of oxygen moiety. Chem. Senses 2000, 25, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 2004, 5, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Licon, C.C.; Manesse, C.; Dantec, M.; Fournel, A.; Bensafi, M. Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci. Rep. 2018, 8, 8444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soussignan, R.; Schaal, B.; Marlier, L.; Jiang, T. Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiol. Behav. 1997, 62, 745–758. [Google Scholar] [CrossRef]
- Stevenson, R.J. An initial evaluation of the functions of human olfaction. Chem. Senses 2010, 35, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T. Taste, olfactory, and food reward value processing in the brain. Prog. Neurobiol. 2015, 127, 64–90. [Google Scholar] [CrossRef]
- Pashkovski, S.L.; Iurilli, G.; Brann, D.; Chicharro, D.; Drummey, K.; Franks, K.M.; Panzeri, S.; Datta, S.R. Structure and flexibility in cortical representations of odour space. Nature 2020, 583, 253–258. [Google Scholar] [CrossRef]
- Bolding, K.A.; Franks, K.M. Complementary codes for odor identity and intensity in olfactory cortex. Elife 2017, 6, e22630. [Google Scholar] [CrossRef]
- Diano, M.; Celeghin, A.; Bagnis, A.; Tamietto, M. Amygdala response to emotional stimuli without awareness: Facts and interpretations. Front. Psychol. 2017, 7, 2029. [Google Scholar] [CrossRef]
- Kringelbach, M.L. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6, 691–702. [Google Scholar] [CrossRef]
- Rolls, E.T. The orbitofrontal cortex and reward. Cereb. Cortex 2000, 10, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rempel-Clower, N.L. Role of orbitofrontal cortex connections in emotion. Ann. N. Y. Acad. Sci. 2007, 1121, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Siegle, G.J. Common and distinct brain networks underlying explicit emotional evaluation: A meta-analytic study. Soc. Cogn. Affect. Neurosci. 2012, 7, 521–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolls, E.T.; Grabenhorst, F.; Parris, B.A. Neural systems underlying decisions about affective odors. J. Cogn. Neurosci. 2010, 22, 1069–1082. [Google Scholar] [CrossRef]
- Rushworth, M.F.; Noonan, M.P.; Boorman, E.D.; Walton, M.E.; Behrens, T.E. Frontal cortex and reward-guided learning and decision-making. Neuron 2011, 70, 1054–1069. [Google Scholar] [CrossRef] [Green Version]
- Croy, I.; Krone, F.; Walker, S.; Hummel, T. Olfactory Processing: Detection of Rapid Changes. Chem. Senses 2015, 40, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Gallinat, J. The neural correlates of subjective pleasantness. Neuroimage 2012, 61, 289–294. [Google Scholar] [CrossRef]
- Zou, L.q.; van Hartevelt, T.J.; Kringelbach, M.L.; Cheung, E.F.; Chan, R.C. The neural mechanism of hedonic processing and judgment of pleasant odors: An activation likelihood estimation meta-analysis. Neuropsychology 2016, 30, 970. [Google Scholar] [CrossRef]
- Kroupi, E.; Yazdani, A.; Vesin, J.M.; Ebrahimi, T. EEG correlates of pleasant and unpleasant odor perception. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2014, 11, 1–17. [Google Scholar] [CrossRef]
- Hou, H.R.; Zhang, X.N.; Meng, Q.H. Odor-induced emotion recognition based on average frequency band division of EEG signals. J. Neurosci. Methods 2020, 334, 108599. [Google Scholar] [CrossRef]
- Flumeri, G.D.; Herrero, M.T.; Trettel, A.; Cherubino, P.; Maglione, A.G.; Colosimo, A.; Moneta, E.; Peparaio, M.; Babiloni, F. EEG frontal asymmetry related to pleasantness of olfactory stimuli in young subjects. In Selected Issues in Experimental Economics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 373–381. [Google Scholar]
- Abbasi, N.I.; Bose, R.; Bezerianos, A.; Thakor, N.V.; Dragomir, A. EEG-Based Classification of Olfactory Response to Pleasant Stimuli. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5160–5163. [Google Scholar]
- Xu, H.; Kroupi, E.; Ebrahimi, T. Functional connectivity from EEG signals during perceiving pleasant and unpleasant odors. In Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 21–24 September 2015; pp. 911–914. [Google Scholar]
- Callara, A.L.; Greco, A.; Frasnelli, J.; Rho, G.; Vanello, V.; Scilingo, E.P. Cortical network and connectivity underlying hedonic olfactory perception. J. Neural Eng. 2021, 18, 056050. [Google Scholar] [CrossRef]
- Liu, J.; Cai, S.; Chen, D.; Wu, K.; Liu, Y.; Zhang, R.; Chen, M.; Li, X. Behavioral and Neural Changes Induced by a Blended Essential Oil on Human Selective Attention. Behav. Neurobiol. 2019, 2019, 5842132. [Google Scholar] [CrossRef] [Green Version]
- Farruggia, M.C.; Pellegrino, R.; Scheinost, D. Functional Connectivity of the Chemosenses: A Review. Front. Syst. Neurosci. 2022, 16, 865929. [Google Scholar] [CrossRef]
- Jiang, M.; Dimitriadis, S.; Seet, M.S.; Hamano, J.; Saba, M.; Thakor, N.V.; Dragomir, A. Multilayer Network Framework Reveals Cross-Frequency Coupling Hubs in Cortical Olfactory Perception. In Proceedings of the 2022 44rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3338–3341. [Google Scholar]
- Low, J.; Seet, M.S.; Hamano, J.; Saba, M.; Thakor, N.V.; Dragomir, A. Community Analysis of Brain Functional Networks Reveals Systems-Level Integration in Olfactory Hedonic Perception. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; pp. 5995–5998. [Google Scholar]
- Davidson, R.J. Well–being and affective style: Neural substrates and biobehavioural correlates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 1395–1411. [Google Scholar] [CrossRef]
- Herz, R.S.; McCall, C.; Cahill, L. Hemispheric lateralization in the processing of odor pleasantness versus odor names. Chem. Senses 1999, 24, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Zatorre, R.J.; Jones-Gotman, M.; Rouby, C. Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport 2000, 11, 2711–2716. [Google Scholar] [CrossRef]
- Gottfried, J.A.; Deichmann, R.; Winston, J.S.; Dolan, R.J. Functional heterogeneity in human olfactory cortex: An event-related functional magnetic resonance imaging study. J. Neurosci. 2002, 22, 10819–10828. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T.; Kringelbach, M.L.; De Araujo, I.E. Different representations of pleasant and unpleasant odours in the human brain. Eur. J. Neurosci. 2003, 18, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.M.; Luk, C.H.; Flinker, A.; Aggarwal, A.; Lapid, H.; Haddad, R.; Sobel, N. Predicting odor pleasantness from odorant structure: Pleasantness as a reflection of the physical world. J. Neurosci. 2007, 27, 10015–10023. [Google Scholar] [CrossRef]
- Mancini, M.; Cherubino, P.; Cartocci, G.; Martinez, A.; Borghini, G.; Guastamacchia, E.; Di Flumeri, G.; Rossi, D.; Modica, E.; Menicocci, S.; et al. Forefront Users’ Experience Evaluation by Employing Together Virtual Reality and Electroencephalography: A Case Study on Cognitive Effects of Scents. Brain Sci. 2021, 11, 256. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammone, N.; La Foresta, F.; Morabio, F.C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens. J. 2011, 12, 533–542. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Erkki, O. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp. Clin. Pharmacol. 2002, 24, 5–12. [Google Scholar]
- Rolls, E.T.; Joliot, M.; Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015, 122, 1–5. [Google Scholar] [CrossRef]
- Bastos, A.; Schoffelen, J.M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.; Tarnanas, I.; Linden, D.E. Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: A novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front. Neuroinform. 2017, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Luppi, A.I.; Gellersen, H.M.; Peattie, A.R.; Manktelow, A.E.; Menon, D.K.; Dimitriadis, S.I.; Stamatakis, E.A. Searching for consistent brain network topologies across the garden of (shortest) forking paths. bioRxiv 2021. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Antonakakis, M.; Simos, P.; Fletcher, J.; Papanicolaou, A. Data-driven Topological Filtering based on Orthogonal Minimal Spanning Trees: Application to Multi-Group MEG Resting-State Connectivity. Brain Connect. 2017, 7, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A.; Zalesky, A.; Bullmore, E. Fundamentals of Brain Network Analysis; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2002, 64, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Kareken, D.A.; Sabri, M.; Radnovich, A.J.; Claus, E.; Foresman, B.; Hector, D.; Hutchins, G.D. Olfactory system activation from sniffing: Effects in piriform and orbitofrontal cortex. Neuroimage 2004, 22, 456–465. [Google Scholar] [CrossRef]
- Huart, C.; Legrain, V.; Hummel, T.; Rombaux, P.; Mouraux, A. Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans. PLoS ONE 2012, 7, e33221. [Google Scholar] [CrossRef]
- Mainland, J.; Sobel, N. The sniff is part of the olfactory percept. Chem. Senses 2006, 31, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Váša, F.; Mišić, B. Null models in network neuroscience. Nat. Rev. Neurosci. 2022, 23, 1–12. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Gainotti, G. A historical review of investigations on laterality of emotions in the human brain. J. Hist. Neurosci. 2019, 28, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.; Green, E.; Haase, L.; Szajer, J.; Murphy, C. Differential effects of BMI on brain response to odor in olfactory, reward and memory regions: Evidence from fMRI. Nutrients 2019, 11, 926. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.G.; Wudarczyk, O.; Leclerc, M.; Regenbogen, C.; Lampert, A.; Rothermel, M.; Habel, U. Effect of odor pleasantness on heat-induced pain: An fMRI study. Brain Imaging Behav. 2021, 15, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Athanassi, A.; Dorado Doncel, R.; Bath, K.G.; Mandairon, N. Relationship between depression and olfactory sensory function: A review. Chem. Senses 2021, 46, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.I.; Bezerianos, A.; Hamano, J.; Chaudhury, A.; Thakor, N.V.; Dragomir, A. Evoked brain responses in odor stimuli evaluation-an EEG event related potential study. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2861–2864. [Google Scholar]
- Bensafi, M.; Sobel, N.; Khan, R.M. Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. J. Neurophysiol. 2007, 98, 3254–3262. [Google Scholar] [CrossRef] [Green Version]
- Fournel, A.; Ferdenzi, C.; Sezille, C.; Rouby, C.; Bensafi, M. Multidimensional representation of odors in the human olfactory cortex. Hum. Brain Mapp. 2016, 37, 2161–2172. [Google Scholar] [CrossRef]
- Howard, J.D.; Plailly, J.; Grueschow, M.; Haynes, J.D.; Gottfried, J.A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 2009, 12, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Frederick, D.E.; Brown, A.; Brim, E.; Mehta, N.; Vujovic, M.; Kay, L.M. Gamma and beta oscillations define a sequence of neurocognitive modes present in odor processing. J. Neurosci. 2016, 29, 7750–7767. [Google Scholar] [CrossRef] [Green Version]
- Mas-Herrero, E.; Ripollés, P.; HajiHosseini, A.; Rodríguez-Fornells, A.; Marco-Pallarés, J. Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses. NeuroImage 2015, 119, 13–19. [Google Scholar] [CrossRef]
- Seet, M.S.; Abbasi, N.; Hamano, J.; Chaudhury, A.; Thakor, N.V.; Dragomir, A. Lateralized Frontal-to-Temporal Cross-Frequency Coupling in Cortical Processing of Pleasant Odors. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy, 4–6 May 2021; pp. 900–903. [Google Scholar]
- Zhou, G.; Lane, G.; Cooper, S.L.; Kahnt, T.; Zelano, C. Characterizing functional pathways of the human olfactory system. eLife 2019, 8, e47177. [Google Scholar] [CrossRef]
- Palomero-Gallagher, N.; Amunts, K. A short review on emotion processing: A lateralized network of neuronal networks. Brain Struct. Funct. 2022, 227, 673–684. [Google Scholar] [CrossRef]
- Etkin, A.; Egner, T.; Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 2011, 15, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Sorokowski, P.; Karwowski, M.; Misiak, M.; Marczak, M.K.; Dziekan, M.; Hummel, T.; Sorokowska, A. Sex differences in human olfaction: A meta-analysis. Front. Psychol. 2019, 10, 242. [Google Scholar] [CrossRef] [Green Version]
- Royet, J.P.; Plailly, J.; Delon-Martin, C.; Kareken, D.A.; Segebarth, C. fMRI of emotional responses to odors:: Influence of hedonic valence and judgment, handedness, and gender. Neuroimage 2003, 20, 713–728. [Google Scholar] [CrossRef]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepler, V.F.; Seet, M.S.; Hamano, J.; Saba, M.; Thakor, N.V.; Dimitriadis, S.I.; Dragomir, A. Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network. Brain Sci. 2022, 12, 1408. https://doi.org/10.3390/brainsci12101408
Kepler VF, Seet MS, Hamano J, Saba M, Thakor NV, Dimitriadis SI, Dragomir A. Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network. Brain Sciences. 2022; 12(10):1408. https://doi.org/10.3390/brainsci12101408
Chicago/Turabian StyleKepler, Veit Frederik, Manuel S. Seet, Junji Hamano, Mariana Saba, Nitish V. Thakor, Stavros I. Dimitriadis, and Andrei Dragomir. 2022. "Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network" Brain Sciences 12, no. 10: 1408. https://doi.org/10.3390/brainsci12101408
APA StyleKepler, V. F., Seet, M. S., Hamano, J., Saba, M., Thakor, N. V., Dimitriadis, S. I., & Dragomir, A. (2022). Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network. Brain Sciences, 12(10), 1408. https://doi.org/10.3390/brainsci12101408