Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence
Abstract
:1. Introduction
2. The Role of Agency and Reward in Shaping Actions
2.1. Neural Underpinnings
2.2. Bridging Mechanisms
3. A Developmental Journey
4. Agency and Reward in Autism
4.1. Underlying Mechanisms
4.2. Intervention Perspectives
5. Future Research Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, J.W. What Is the Sense of Agency and Why Does It Matter? Front. Psychol. 2016, 7, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggard, P. Sense of Agency in the Human Brain. Nat. Rev. Neurosci. 2017, 18, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Braun, N.; Debener, S.; Spychala, N.; Bongartz, E.; Sörös, P.; Müller, H.H.O.; Philipsen, A. The Senses of Agency and Ownership: A Review. Front. Psychol. 2018, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrer, C.; Valentin, G.; Hupé, J.M. The Time Windows of the Sense of Agency. Conscious. Cogn. 2013, 22, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Nobusako, S.; Tsujimoto, T.; Sakai, A.; Shuto, T.; Hashimoto, Y.; Furukawa, E.; Osumi, M.; Nakai, A.; Maeda, T.; Morioka, S. The Time Window for Sense of Agency in School-Age Children Is Different from That in Young Adults. Cogn. Dev. 2020, 54, 100891. [Google Scholar] [CrossRef]
- Synofzik, M.; Vosgerau, G.; Newen, A. Beyond the Comparator Model: A Multifactorial Two-Step Account of Agency. Conscious. Cogn. 2008, 17, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Karsh, N.; Eitam, B.; Mark, I.; Higgins, E.T. Bootstrapping Agency: How Control-Relevant Information Affects Motivation. J. Exp. Psychol. Gen. 2016, 145, 1333–1350. [Google Scholar] [CrossRef] [PubMed]
- Haggard, P.; Clark, S.; Kalogeras, J. Voluntary Action and Conscious Awareness. Nat. Neurosci. 2002, 5, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Karsh, N.; Eitam, B. I Control Therefore I Do: Judgments of Agency Influence Action Selection. Cognition 2015, 138, 122–131. [Google Scholar] [CrossRef]
- Glover, S. Separate Visual Representations in the Planning and Control of Action. Behav. Brain Sci. 2004, 27, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Wenke, D.; Fleming, S.M.; Haggard, P. Subliminal Priming of Actions Influences Sense of Control over Effects of Action. Cognition 2010, 115, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Karsh, N.; Hemed, E.; Nafcha, O.; Elkayam, S.B.; Custers, R.; Eitam, B. The Differential Impact of a Response’s Effectiveness and Its Monetary Value on Response-Selection. Sci. Rep. 2020, 10, 3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperduti, M.; Delaveau, P.; Fossati, P.; Nadel, J. Different Brain Structures Related to Self-and External-Agency Attribution: A Brief Review and Meta-Analysis. Brain Struct. Funct. 2011, 216, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Farrer, C.; Frith, C.D. Experiencing Oneself vs Another Person as Being the Cause of an Action: The Neural Correlates of the Experience of Agency. Neuroimage 2002, 15, 596–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miele, D.B.; Wager, T.D.; Mitchell, J.P.; Metcalfe, J. Dissociating Neural Correlates of Action Monitoring and Metacognition of Agency. J. Cogn. Neurosci. 2011, 23, 3620–3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrer, C.; Frey, S.H.; Van Horn, J.D.; Tunik, E.; Turk, D.; Inati, S.; Grafton, S.T. The Angular Gyrus Computes Action Awareness Representations. Cereb. Cortex 2008, 18, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Zito, G.A.; Wiest, R.; Aybek, S. Neural Correlates of Sense of Agency in Motor Control: A Neuroimaging Meta-Analysis. PLoS ONE 2020, 15, e0234321. [Google Scholar] [CrossRef] [PubMed]
- Cavazzana, A.; Penolazzi, B.; Begliomini, C.; Bisiacchi, P.S. Neural Underpinnings of the ‘Agent Brain’: New Evidence from Transcranial Direct Current Stimulation. Eur. J. Neurosci. 2015, 42, 1889–1894. [Google Scholar] [CrossRef]
- Elsner, B.; Hommel, B.; Mentschel, C.; Drzezga, A.; Prinz, W.; Conrad, B.; Siebner, H. Linking Actions and Their Perceivable Consequences in the Human Brain. Neuroimage 2002, 17, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, S.; Brass, M.; Haggard, P. Feeling in Control: Neural Correlates of Experience of Agency. Cortex 2013, 49, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Ruge, D.; Wenke, D.; Rothwell, J.; Haggard, P. Disrupting the Experience of Control in the Human Brain: Pre-Supplementary Motor Area Contributes to the Sense of Agency. Proc. R. Soc. B Biol. Sci. 2010, 277, 2503–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachev, P.; Wydell, H.; O’neill, K.; Husain, M.; Kennard, C. The Role of the Pre-Supplementary Motor Area in the Control of Action. Neuroimage 2007, 36, T155–T163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurger, A.; Pak, J.; Roskies, A.L. What Is the Readiness Potential? Trends Cogn. Sci. 2021, 25, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Vercillo, T.; O’Neil, S.; Jiang, F. Action–Effect Contingency Modulates the Readiness Potential. Neuroimage 2018, 183, 273–279. [Google Scholar] [CrossRef]
- Aytemur, A.; Lee, K.-H.; Levita, L. Neural Correlates of Implicit Agency during the Transition from Adolescence to Adulthood: An ERP Study. Neuropsychologia 2021, 158, 107908. [Google Scholar] [CrossRef]
- Blakemore, S.-J.; Sirigu, A. Action Prediction in the Cerebellum and in the Parietal Lobe. Exp. Brain Res. 2003, 153, 239–245. [Google Scholar] [CrossRef] [PubMed]
- David, N.; Cohen, M.X.; Newen, A.; Bewernick, B.H.; Shah, N.J.; Fink, G.R.; Vogeley, K. The Extrastriate Cortex Distinguishes between the Consequences of One’s Own and Others’ Behavior. Neuroimage 2007, 36, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M.; Koski, L.M.; Brass, M.; Bekkering, H.; Woods, R.P.; Dubeau, M.-C.; Mazziotta, J.C.; Rizzolatti, G. Reafferent Copies of Imitated Actions in the Right Superior Temporal Cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 13995–13999. [Google Scholar] [CrossRef] [Green Version]
- Leube, D.T.; Knoblich, G.; Erb, M.; Grodd, W.; Bartels, M.; Kircher, T.T. The Neural Correlates of Perceiving One’s Own Movements. Neuroimage 2003, 20, 2084–2090. [Google Scholar] [CrossRef]
- Blakemore, S.-J.; Frith, C.D.; Wolpert, D.M. The Cerebellum Is Involved in Predicting the Sensory Consequences of Action. Neuroreport 2001, 12, 1879–1884. [Google Scholar] [CrossRef]
- Downing, P.E.; Jiang, Y.; Shuman, M.; Kanwisher, N. A Cortical Area Selective for Visual Processing of the Human Body. Science 2001, 293, 2470–2473. [Google Scholar] [CrossRef] [PubMed]
- Schuetze, M.; Rohr, C.S.; Dewey, D.; McCrimmon, A.; Bray, S. Reinforcement Learning in Autism Spectrum Disorder. Front. Psychol. 2017, 8, 2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, T.W.; Everitt, B.J. Neurobehavioural Mechanisms of Reward and Motivation. Curr. Opin. Neurobiol. 1996, 6, 228–236. [Google Scholar] [CrossRef]
- Bartra, O.; McGuire, J.T.; Kable, J.W. The Valuation System: A Coordinate-Based Meta-Analysis of BOLD FMRI Experiments Examining Neural Correlates of Subjective Value. Neuroimage 2013, 76, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, Decision Making and the Orbitofrontal Cortex. Cereb. Cortex 2000, 10, 295–307. [Google Scholar] [CrossRef] [Green Version]
- De Lafuente, V.; Romo, R. Neural Correlate of Subjective Sensory Experience Gradually Builds up across Cortical Areas. Proc. Natl. Acad. Sci. USA 2006, 103, 14266–14271. [Google Scholar] [CrossRef] [Green Version]
- Dichter, G.S.; Felder, J.N.; Green, S.R.; Rittenberg, A.M.; Sasson, N.J.; Bodfish, J.W. Reward Circuitry Function in Autism Spectrum Disorders. Soc. Cogn. Affect. Neurosci. 2012, 7, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Dillon, D.G.; Holmes, A.J.; Jahn, A.L.; Bogdan, R.; Wald, L.L.; Pizzagalli, D.A. Dissociation of Neural Regions Associated with Anticipatory versus Consummatory Phases of Incentive Processing. Psychophysiology 2008, 45, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.W.; Braver, T.S. Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex. Science 2005, 307, 1118–1121. [Google Scholar] [CrossRef]
- O’Doherty, J.P.; Dayan, P.; Friston, K.; Critchley, H.; Dolan, R.J. Temporal Difference Models and Reward-Related Learning in the Human Brain. Neuron 2003, 38, 329–337. [Google Scholar] [CrossRef]
- Bray, S.; O’Doherty, J. Neural Coding of Reward-Prediction Error Signals during Classical Conditioning with Attractive Faces. J. Neurophysiol. 2007, 97, 3036–3045. [Google Scholar] [CrossRef] [PubMed]
- Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The Role of the Dorsal Striatum in Reward and Decision-Making. J. Neurosci. 2007, 27, 8161–8165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adolphs, R. What Does the Amygdala Contribute to Social Cognition? Ann. N. Y. Acad. Sci. 2010, 1191, 42–61. [Google Scholar] [CrossRef] [Green Version]
- Proudfit, G.H. The Reward Positivity: From Basic Research on Reward to a Biomarker for Depression. Psychophysiology 2015, 52, 449–459. [Google Scholar] [CrossRef]
- Schutte, I.; Heitland, I.; Kenemans, J.L. Disentangling the Effects of Reward Value and Probability on Anticipatory Event-Related Potentials. Neuropsychologia 2019, 132, 107138. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, L.; Krach, S.; Kohls, G.; Irmak, A.; Gründer, G.; Spreckelmeyer, K.N. Dissociation of Neural Networks for Anticipation and Consumption of Monetary and Social Rewards. NeuroImage 2010, 49, 3276–3285. [Google Scholar] [CrossRef]
- Lin, A.; Adolphs, R.; Rangel, A. Social and Monetary Reward Learning Engage Overlapping Neural Substrates. Soc. Cogn. Affect. Neurosci. 2012, 7, 274–281. [Google Scholar] [CrossRef] [Green Version]
- van Elk, M.; Rutjens, B.T.; van der Pligt, J. The Development of the Illusion of Control and Sense of Agency in 7- to-12-Year Old Children and Adults. Cognition 2015, 145, 1–12. [Google Scholar] [CrossRef]
- Barlas, Z.; Obhi, S. Freedom, Choice, and the Sense of Agency. Front. Hum. Neurosci. 2013, 7, 514. [Google Scholar] [CrossRef] [Green Version]
- Barlas, Z.; Hockley, W.E.; Obhi, S.S. Effects of Free Choice and Outcome Valence on the Sense of Agency: Evidence from Measures of Intentional Binding and Feelings of Control. Exp. Brain Res. 2018, 236, 129–139. [Google Scholar] [CrossRef]
- Christensen, J.; Yoshie, M.; Di Costa, S.; Haggard, P. Emotional Valence, Sense of Agency and Responsibility: A Study Using Intentional Binding. Conscious. Cogn. 2016, 43, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, T.J.; Lee, T.G. Reward Modulates Cortical Representations of Action. NeuroImage 2021, 228, 117708. [Google Scholar] [CrossRef]
- Ramkumar, P.; Dekleva, B.; Cooler, S.; Miller, L.; Kording, K. Premotor and Motor Cortices Encode Reward. PLoS ONE 2016, 11, e0160851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, T.; Kotani, Y.; Ohgami, Y.; Omura, K.; Inoue, Y.; Aihara, Y. Activation of Insular Cortex and Subcortical Regions Related to Feedback Stimuli in a Time Estimation Task: An FMRI Study. Neurosci. Lett. 2006, 399, 39–44. [Google Scholar] [CrossRef]
- Hassall, C.D.; Hajcak, G.; Krigolson, O.E. The Importance of Agency in Human Reward Processing. Cogn. Affect Behav. Neurosci. 2019, 19, 1458–1466. [Google Scholar] [CrossRef]
- Sen, U.; Gredebäck, G. Making the World Behave: A New Embodied Account on Mobile Paradigm. Front. Syst. Neurosci. 2021, 15, 643526. [Google Scholar] [CrossRef] [PubMed]
- Zaadnoordijk, L.; Meyer, M.; Zaharieva, M.; Kemalasari, F.; van Pelt, S.; Hunnius, S. From Movement to Action: An EEG Study into the Emerging Sense of Agency in Early Infancy. Dev. Cogn. Neurosci. 2020, 42, 100760. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, S.A.; Weidema, M.; Biro, S.; Hommel, B. Where Do Action Goals Come from? Evidence for Spontaneous Action–Effect Binding in Infants. Front. Psychol. 2010, 1, 201. [Google Scholar] [CrossRef] [Green Version]
- Bednarski, F.M.; Musholt, K.; Grosse Wiesmann, C. Do Infants Have Agency?—The Importance of Control for the Study of Early Agency. Dev. Rev. 2022, 64, 101022. [Google Scholar] [CrossRef]
- Cavazzana, A.; Begliomini, C.; Bisiacchi, P.S. Intentional Binding Effect in Children: Insights from a New Paradigm. Front. Hum. Neurosci. 2014, 8, 651. [Google Scholar] [CrossRef]
- Cavazzana, A.; Begliomini, C.; Bisiacchi, P.S. Intentional Binding as a Marker of Agency across the Lifespan. Conscious. Cogn. 2017, 52, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, S.; McCormack, T.; Blakey, E.; Lagnado, D.A.; Hoerl, C.; Tecwyn, E.C.; Buehner, M.J. The Developmental Profile of Temporal Binding: From Childhood to Adulthood. Q. J. Exp. Psychol. 2020, 73, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- Nobusako, S.; Sakai, A.; Tsujimoto, T.; Shuto, T.; Nishi, Y.; Asano, D.; Furukawa, E.; Zama, T.; Osumi, M.; Shimada, S.; et al. Manual Dexterity Is a Strong Predictor of Visuo-Motor Temporal Integration in Children. Front. Psychol. 2018, 9, 948. [Google Scholar] [CrossRef] [PubMed]
- Hillock-Dunn, A.; Wallace, M.T. Developmental Changes in the Multisensory Temporal Binding Window Persist into Adolescence. Dev. Sci. 2012, 15, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Aytemur, A.; Levita, L. A Reduction in the Implicit Sense of Agency during Adolescence Compared to Childhood and Adulthood. Conscious. Cogn. 2021, 87, 103060. [Google Scholar] [CrossRef]
- Metcalfe, J.; Eich, T.S.; Castel, A.D. Metacognition of Agency across the Lifespan. Cognition 2010, 116, 267–282. [Google Scholar] [CrossRef]
- Castelli, I.; Massaro, D.; Sanfey, A.G.; Marchetti, A. The More I Can Choose, The More I Am Disappointed: The “Illusion of Control” in Children’s Decision-Making. Open Psychol. J. 2017, 10, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.J.; Burns, E.C.; Collie, R.J. ADHD, Personal and Interpersonal Agency, and Achievement: Exploring Links from a Social Cognitive Theory Perspective. Contemp. Educ. Psychol. 2017, 50, 13–22. [Google Scholar] [CrossRef]
- Mezulis, A.H.; Abramson, L.Y.; Hyde, J.S.; Hankin, B.L. Is There a Universal Positivity Bias in Attributions? A Meta-Analytic Review of Individual, Developmental, and Cultural Differences in the Self-Serving Attributional Bias. Psychol. Bull. 2004, 130, 711. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.J.; Cumming, T.M.; O’Neill, S.C.; Strnadová, I. Social and Emotional Competence and At-Risk Children’s Well-Being: The Roles of Personal and Interpersonal Agency for Children with ADHD, Emotional and Behavioral Disorder, Learning Disability, and Developmental Disability. In Social and Emotional Learning in Australia and the Asia-Pacific: Perspectives, Programs and Approaches; Frydenberg, E., Martin, A.J., Collie, R.J., Eds.; Springer: Singapore, 2017; pp. 123–145. ISBN 978-981-10-3394-0. [Google Scholar]
- Luman, M.; Tripp, G.; Scheres, A. Identifying the Neurobiology of Altered Reinforcement Sensitivity in ADHD: A Review and Research Agenda. Neurosci. Biobehav. Rev. 2010, 34, 744–754. [Google Scholar] [CrossRef]
- Marx, I.; Hacker, T.; Yu, X.; Cortese, S.; Sonuga-Barke, E. ADHD and the Choice of Small Immediate Over Larger Delayed Rewards: A Comparative Meta-Analysis of Performance on Simple Choice-Delay and Temporal Discounting Paradigms. J. Atten. Disord. 2021, 25, 171–187. [Google Scholar] [CrossRef] [PubMed]
- van Meel, C.S.; Oosterlaan, J.; Heslenfeld, D.J.; Sergeant, J.A. Telling Good from Bad News: ADHD Differentially Affects Processing of Positive and Negative Feedback during Guessing. Neuropsychologia 2005, 43, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Vernetti, A.; Senju, A.; Charman, T.; Johnson, M.H.; Gliga, T. BASIS team Simulating Interaction: Using Gaze-Contingent Eye-Tracking to Measure the Reward Value of Social Signals in Toddlers with and without Autism. Dev. Cogn. Neurosci. 2018, 29, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kohls, G.; Peltzer, J.; Herpertz-Dahlmann, B.; Konrad, K. Differential Effects of Social and Non-Social Reward on Response Inhibition in Children and Adolescents. Dev. Sci. 2009, 12, 614–625. [Google Scholar] [CrossRef]
- Foulkes, L.; Blakemore, S.-J. Is There Heightened Sensitivity to Social Reward in Adolescence? Curr. Opin. Neurobiol. 2016, 40, 81–85. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013; ISBN 0-89042-557-4. [Google Scholar]
- Sperduti, M.; Pieron, M.; Leboyer, M.; Zalla, T. Altered Pre-Reflective Sense of Agency in Autism Spectrum Disorders as Revealed by Reduced Intentional Binding. J. Autism. Dev. Disord. 2014, 44, 343–352. [Google Scholar] [CrossRef]
- David, N.; Gawronski, A.; Santos, N.S.; Huff, W.; Lehnhardt, F.-G.; Newen, A.; Vogeley, K. Dissociation Between Key Processes of Social Cognition in Autism: Impaired Mentalizing But Intact Sense of Agency. J. Autism. Dev. Disord. 2008, 38, 593–605. [Google Scholar] [CrossRef]
- Zalla, T.; Sperduti, M. The Sense of Agency in Autism Spectrum Disorders: A Dissociation between Prospective and Retrospective Mechanisms? Front. Psychol. 2015, 6, 1278. [Google Scholar] [CrossRef] [Green Version]
- Piek, J.P.; Dyck, M.J. Sensory-Motor Deficits in Children with Developmental Coordination Disorder, Attention Deficit Hyperactivity Disorder and Autistic Disorder. Hum. Mov. Sci. 2004, 23, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Nobusako, S.; Osumi, M.; Hayashida, K.; Furukawa, E.; Nakai, A.; Maeda, T.; Morioka, S. Altered Sense of Agency in Children with Developmental Coordination Disorder. Res. Dev. Disabil. 2020, 107, 103794. [Google Scholar] [CrossRef]
- Foss-Feig, J.H.; Kwakye, L.D.; Cascio, C.J.; Burnette, C.P.; Kadivar, H.; Stone, W.L.; Wallace, M.T. An Extended Multisensory Temporal Binding Window in Autism Spectrum Disorders. Exp. Brain Res. 2010, 203, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestemont, J.; Vandekerckhove, M.; Bulnes, L.C.; Matthys, F.; Van Overwalle, F. Causal Attribution in Individuals with Subclinical and Clinical Autism Spectrum Disorder: An FMRI Study. Soc. Neurosci. 2016, 11, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Kohls, G.; Schulte-Rüther, M.; Nehrkorn, B.; Müller, K.; Fink, G.R.; Kamp-Becker, I.; Herpertz-Dahlmann, B.; Schultz, R.T.; Konrad, K. Reward System Dysfunction in Autism Spectrum Disorders. Soc. Cogn. Affect. Neurosci. 2013, 8, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matyjek, M.; Bayer, M.; Dziobek, I. Autistic Traits Affect Reward Anticipation but Not Reception. Sci. Rep. 2020, 10, 8396. [Google Scholar] [CrossRef] [PubMed]
- Scott-Van Zeeland, A.A.; Dapretto, M.; Ghahremani, D.G.; Poldrack, R.A.; Bookheimer, S.Y. Reward Processing in Autism. Autism Res. 2010, 3, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Kishida, K.T.; De Asis-Cruz, J.; Treadwell-Deering, D.; Liebenow, B.; Beauchamp, M.S.; Montague, P.R. Diminished Single-Stimulus Response in VmPFC to Favorite People in Children Diagnosed with Autism Spectrum Disorder. Biol. Psychol. 2019, 145, 174–184. [Google Scholar] [CrossRef]
- Kohls, G.; Chevallier, C.; Troiani, V.; Schultz, R.T. Social ‘Wanting’Dysfunction in Autism: Neurobiological Underpinnings and Treatment Implications. J. Neurodev. Disord. 2012, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dichter, G.S.; Richey, J.A.; Rittenberg, A.M.; Sabatino, A.; Bodfish, J.W. Reward Circuitry Function in Autism during Face Anticipation and Outcomes. J. Autism Dev. Disord. 2012, 42, 147–160. [Google Scholar] [CrossRef]
- Bottini, S. Social Reward Processing in Individuals with Autism Spectrum Disorder: A Systematic Review of the Social Motivation Hypothesis. Res. Autism Spectr. Disord. 2018, 45, 9–26. [Google Scholar] [CrossRef]
- Carlisi, C.O.; Norman, L.; Murphy, C.M.; Christakou, A.; Chantiluke, K.; Giampietro, V.; Simmons, A.; Brammer, M.; Murphy, D.G.; Consortium, M.A.; et al. Comparison of Neural Substrates of Temporal Discounting between Youth with Autism Spectrum Disorder and with Obsessive-Compulsive Disorder. Psychol. Med. 2017, 47, 2513–2527. [Google Scholar] [CrossRef]
- Baum, S.H.; Stevenson, R.A.; Wallace, M.T. Behavioral, Perceptual, and Neural Alterations in Sensory and Multisensory Function in Autism Spectrum Disorder. Prog. Neurobiol. 2015, 134, 140–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, E.L.; Crane, L.; Bremner, A.J. Developmental Disorders and Multisensory Perception. In Multisensory Development; Oxford University Press: Oxford, UK, 2012; pp. 273–300. [Google Scholar]
- Collignon, O.; Charbonneau, G.; Peters, F.; Nassim, M.; Lassonde, M.; Lepore, F.; Mottron, L.; Bertone, A. Reduced Multisensory Facilitation in Persons with Autism. Cortex 2013, 49, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.I.; Dunham, K.; Cassidy, M.; Wallace, M.T.; Liu, Y.; Woynaroski, T.G. Audiovisual Multisensory Integration in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2018, 95, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Lytle, M.; Cascio, C.; Wallace, M.T. Disrupted Integration of Exteroceptive and Interoceptive Signaling in Autism Spectrum Disorder: Cardiovisual Temporal Binding Window in ASD. Autism Res. 2018, 11, 194–205. [Google Scholar] [CrossRef]
- Cascio, C.J.; Foss-Feig, J.H.; Burnette, C.P.; Heacock, J.L.; Cosby, A.A. The Rubber Hand Illusion in Children with Autism Spectrum Disorders: Delayed Influence of Combined Tactile and Visual Input on Proprioception. Autism 2012, 16, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, K.; Ropar, D.; Smith, A.D.; Carey, M.; Newport, R. Visuo-Tactile Integration in Autism: Atypical Temporal Binding May Underlie Greater Reliance on Proprioceptive Information. Mol. Autism 2015, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Paton, B.; Hohwy, J.; Enticott, P.G. The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders. J. Autism. Dev. Disord. 2012, 42, 1870–1883. [Google Scholar] [CrossRef]
- Ropar, D.; Greenfield, K.; Smith, A.D.; Carey, M.; Newport, R. Body Representation Difficulties in Children and Adolescents with Autism May Be Due to Delayed Development of Visuo-Tactile Temporal Binding. Dev. Cogn. Neurosci. 2018, 29, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, M.; Trumpp, N.M. Embodiment Theory and Education: The Foundations of Cognition in Perception and Action. Trends Neurosci. Educ. 2012, 1, 15–20. [Google Scholar] [CrossRef]
- West, K.L. Infant Motor Development in Autism Spectrum Disorder: A Synthesis and Meta-Analysis. Child Dev. 2019, 90, 2053–2070. [Google Scholar] [CrossRef]
- Kaur, M.; Srinivasan, M.S.; Bhat, N.A. Comparing Motor Performance, Praxis, Coordination, and Interpersonal Synchrony between Children with and without Autism Spectrum Disorder (ASD). Res. Dev. Disabil. 2018, 72, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Venuti, P.; Apicella, F.; Muratori, F. Analysis of Unsupported Gait in Toddlers with Autism. Brain Dev. 2011, 33, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Partridge, K.; Girdler, S.; Morris, S.L. Standing Postural Control in Individuals with Autism Spectrum Disorder: Systematic Review and Meta-Analysis. J. Autism. Dev. Disord. 2017, 47, 2238–2253. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Fabbri-Destro, M.; Boria, S.; Pieraccini, C.; Monti, A.; Cossu, G.; Rizzolatti, G. Impairment of Actions Chains in Autism and Its Possible Role in Intention Understanding. Proc. Natl. Acad. Sci. USA 2007, 104, 17825–17830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martineau, J.; Andersson, F.; Barthélémy, C.; Cottier, J.-P.; Destrieux, C. Atypical Activation of the Mirror Neuron System during Perception of Hand Motion in Autism. Brain Res. 2010, 1320, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Enticott, P.G.; Bradshaw, J.L.; Iansek, R.; Tonge, B.J.; Rinehart, N.J. Electrophysiological Signs of Supplementary-Motor-Area Deficits in High-Functioning Autism but Not Asperger Syndrome: An Examination of Internally Cued Movement-Related Potentials. Dev. Med. Child Neurol. 2009, 51, 787–791. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Polli, F.E.; Joseph, R.M.; Tuch, D.S.; Hadjikhani, N.; Barton, J.J.S.; Manoach, D.S. Response Monitoring, Repetitive Behaviour and Anterior Cingulate Abnormalities in Autism Spectrum Disorders (ASD). Brain 2008, 131, 2464–2478. [Google Scholar] [CrossRef] [Green Version]
- Henderson, H.; Schwartz, C.; Mundy, P.; Burnette, C.; Sutton, S.; Zahka, N.; Pradella, A. Response Monitoring, the Error-Related Negativity, and Differences in Social Behavior in Autism. Brain Cogn. 2006, 61, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Houdayer, E.; Walthall, J.; Belluscio, B.A.; Vorbach, S.; Singer, H.S.; Hallett, M. Absent Movement-Related Cortical Potentials in Children with Primary Motor Stereotypies: Premotor Potentials in Stereotypies. Mov. Disord. 2014, 29, 1134–1140. [Google Scholar] [CrossRef] [Green Version]
- Mahone, E.M.; Ryan, M.; Ferenc, L.; Morris-Berry, C.; Singer, H.S. Neuropsychological Function in Children with Primary Complex Motor Stereotypies. Dev. Med. Child Neurol. 2014, 56, 1001–1008. [Google Scholar] [CrossRef]
- Mahone, E.M.; Bridges, D.; Prahme, C.; Singer, H.S. Repetitive Arm and Hand Movements (Complex Motor Stereotypies) in Children. J. Pediatr. 2004, 145, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Rajan, P.V.; Erenberg, G. A Comparative Study of Primary and Secondary Stereotypies. J. Child Neurol. 2013, 28, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Brock, J. Alternative Bayesian Accounts of Autistic Perception: Comment on Pellicano and Burr. Trends Cogn. Sci. 2012, 16, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Frith, C.D. Active Inference, Communication and Hermeneutics. Cortex 2015, 68, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Koban, L.; Ramamoorthy, A.; Konvalinka, I. Why Do We Fall into Sync with Others? Interpersonal Synchronization and the Brain’s Optimization Principle. Soc. Neurosci. 2019, 14, 1–9. [Google Scholar] [CrossRef]
- Mayo, O.; Gordon, I. In and out of Synchrony—Behavioral and Physiological Dynamics of Dyadic Interpersonal Coordination. Psychophysiology 2020, 57, e13574. [Google Scholar] [CrossRef]
- Pellicano, E.; Burr, D. When the World Becomes ‘Too Real’: A Bayesian Explanation of Autistic Perception. Trends Cogn. Sci. 2012, 16, 504–510. [Google Scholar] [CrossRef]
- Palmer, C.J.; Lawson, R.P.; Hohwy, J. Bayesian Approaches to Autism: Towards Volatility, Action, and Behavior. Psychol. Bull. 2017, 143, 521–542. [Google Scholar] [CrossRef]
- Lawson, R.P.; Mathys, C.; Rees, G. Adults with Autism Overestimate the Volatility of the Sensory Environment. Nat. Neurosci. 2017, 20, 1293–1299. [Google Scholar] [CrossRef] [Green Version]
- Arthur, T.; Harris, D.; Buckingham, G.; Brosnan, M.; Wilson, M.; Williams, G.; Vine, S. An Examination of Active Inference in Autistic Adults Using Immersive Virtual Reality. Sci. Rep. 2021, 11, 20377. [Google Scholar] [CrossRef]
- Henco, L.; Diaconescu, A.O.; Lahnakoski, J.M.; Brandi, M.-L.; Hörmann, S.; Hennings, J.; Hasan, A.; Papazova, I.; Strube, W.; Bolis, D.; et al. Aberrant Computational Mechanisms of Social Learning and Decision-Making in Schizophrenia and Borderline Personality Disorder. PLOS Comput. Biol. 2020, 16, e1008162. [Google Scholar] [CrossRef] [PubMed]
- Unwin, K.L.; Powell, G.; Jones, C.R. The Use of Multi-Sensory Environments with Autistic Children: Exploring the Effect of Having Control of Sensory Changes. Autism 2021, 26, 13623613211050176. [Google Scholar] [CrossRef] [PubMed]
- Vivanti, G.; Zhong, H.N. Naturalistic Developmental Behavioral Interventions for Children with Autism. In Clinical Guide to Early Interventions for Children with Autism; Vivanti, G., Bottema-Beutel, K., Turner-Brown, L., Eds.; Best Practices in Child and Adolescent Behavioral Health Care; Springer International Publishing: Cham, Switzerland, 2020; pp. 93–130. ISBN 978-3-030-41160-2. [Google Scholar]
- Hartley, C.; Bird, L.-A.; Monaghan, P. Investigating the Relationship between Fast Mapping, Retention, and Generalisation of Words in Children with Autism Spectrum Disorder and Typical Development. Cognition 2019, 187, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Pares, N.; Masri, P.; van Wolferen, G.; Creed, C. Achieving Dialogue with Children with Severe Autism in an Adaptive Multisensory Interaction: The “MEDIATE” Project. IEEE Trans. Vis. Comput. Graph. 2005, 11, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Garzotto, F.; Gelsomini, M.; Gianotti, M.; Riccardi, F. Engaging Children with Neurodevelopmental Disorder Through Multisensory Interactive Experiences in a Smart Space. In Social Internet of Things; Soro, A., Brereton, M., Roe, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 167–184. ISBN 978-3-319-94657-3. [Google Scholar]
- Crowell, C.; Sayis, B.; Benitez, J.P.; Pares, N. Mixed Reality, Full-Body Interactive Experience to Encourage Social Initiation for Autism: Comparison with a Control Nondigital Intervention. Cyberpsychology Behav. Soc. Netw. 2020, 23, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Farroni, T.; Valori, I.; Carnevali, L. Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice. Brain Sci. 2022, 12, 147. [Google Scholar] [CrossRef]
- Malik, R.A.; Galang, C.M.; Finger, E. The Sense of Agency for Brain Disorders: A Comprehensive Review and Proposed Framework. Neurosci. Biobehav. Rev. 2022, 139, 104759. [Google Scholar] [CrossRef]
- Brandi, M.-L.; Kaifel, D.; Lahnakoski, J.M.; Schilbach, L. A Naturalistic Paradigm Simulating Gaze-Based Social Interactions for the Investigation of Social Agency. Behav. Res. 2020, 52, 1044–1055. [Google Scholar] [CrossRef]
- Johnson, M.H.; Senju, A.; Tomalski, P. The Two-Process Theory of Face Processing: Modifications Based on Two Decades of Data from Infants and Adults. Neurosci. Biobehav. Rev. 2015, 50, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, U.J.; Schilbach, L.; Timmermans, B.; Kuzmanovic, B.; Georgescu, A.L.; Bente, G.; Vogeley, K. Why We Interact: On the Functional Role of the Striatum in the Subjective Experience of Social Interaction. NeuroImage 2014, 101, 124–137. [Google Scholar] [CrossRef]
- Redcay, E.; Schilbach, L. Using Second-Person Neuroscience to Elucidate the Mechanisms of Social Interaction. Nat. Rev. Neurosci. 2019, 20, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.E.; DeBrabander, K.M.; Jones, D.R.; Ackerman, R.A.; Sasson, N.J. Social Cognition, Social Skill, and Social Motivation Minimally Predict Social Interaction Outcomes for Autistic and Non-Autistic Adults. Front. Psychol. 2020, 11, 3282. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, L.; Valori, I.; Mason, G.; Altoè, G.; Farroni, T. Do We Really Know Anything about Interpersonal Motor Synchrony in Autism? A Systematic Review and Meta-Analysis. PsyArXiv 2022. preprint. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valori, I.; Carnevali, L.; Mantovani, G.; Farroni, T. Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence. Brain Sci. 2022, 12, 1411. https://doi.org/10.3390/brainsci12101411
Valori I, Carnevali L, Mantovani G, Farroni T. Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence. Brain Sciences. 2022; 12(10):1411. https://doi.org/10.3390/brainsci12101411
Chicago/Turabian StyleValori, Irene, Laura Carnevali, Giulia Mantovani, and Teresa Farroni. 2022. "Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence" Brain Sciences 12, no. 10: 1411. https://doi.org/10.3390/brainsci12101411
APA StyleValori, I., Carnevali, L., Mantovani, G., & Farroni, T. (2022). Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence. Brain Sciences, 12(10), 1411. https://doi.org/10.3390/brainsci12101411