The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Approval
2.2. Experimental Animals
2.3. Surgical Procedures
2.4. Cerebral Surgery
2.5. Monitoring and Measurements
2.6. Fluid Management
2.7. Cerebral Microcirculation, Temperature, Oxygen and Metabolism Assessment
2.8. Experimental Protocol
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. New Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest with Induced Hypothermia. New Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef]
- Marion, D.W.; Penrod, L.E.; Kelsey, S.F.; Obrist, W.D.; Kochanek, P.M.; Palmer, A.M.; Wisniewski, S.R.; DeKosky, S.T. Treatment of Traumatic Brain Injury with Moderate Hypothermia. New Engl. J. Med. 1997, 336, 540–546. [Google Scholar] [CrossRef]
- Kiyatkin, E.A. Brain temperature fluctuations during physiological and pathological conditions. Eur. J. Appl. Physiol. 2007, 101, 3–17. [Google Scholar] [CrossRef]
- Eugene, A. Kiyatkin. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermore-cording. Temperature 2019, 4, 271–333. [Google Scholar]
- Polderman, K.H.; Herold, I. therapeutic hypothermia and controlled normothermia in the intensive care unit: Practical consid-erations, side effects and cooling methods. Crit. Care Med. 2009, 37, 1101–1120. [Google Scholar] [CrossRef]
- Andrews, P.J.; Sinclair, H.L.; Rodriguez, A.; Harris, B.A.; Battison, C.G.; Rhodes, J.K.; Murray, G.D. Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. New Engl. J. Med. 2015, 373, 2403–2412. [Google Scholar] [CrossRef]
- Nielsen, N.; Watterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Target Temperature Management at 33 °C versus 36 °C after Cardiac Arrest. New Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [Green Version]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A.; et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef]
- Elbadawi, A.; Sedhom, A.; Baig, B.; Mahana, I.; Thakker, R.; Gad, M.; Eid, M.; Nair, A.; Kayani, W.; Denktas, A.; et al. Targeted Hypothermia vs Targeted Normothermia in Survivors of Cardiac Arrest: A Systematic Review and Meta-Analysis of Randomized Trials. Am. J. Med. 2021, 135, 626–633. [Google Scholar] [CrossRef]
- Casamento, A.; Minson, A.; Radford, S.; Mårtensson, J.; Ridgeon, E.; Young, P.; Bellomo, R. A comparison of therapeutic hypothermia and strict therapeutic normothermia after cardia arrest. Resuscitation 2016, 106, 83–88. [Google Scholar] [CrossRef]
- Bray, J.E.; Stub, D.; Bloom, J.E.; Segan, L.; Mitra, B.; Smith, K.; Finn, J.; Bernard, S. Changing target temperature from 33 °C to 36 °C in the ICU management of out-of-hospital cardiac arrest: A before and after study. Resuscitation 2017, 113, 39–43. [Google Scholar] [CrossRef]
- Polderman, K.H.; Varon, J. Interpreting the Results of the Targeted Temperature Management Trial in Cardiac Arrest. Ther. Hypothermia Temp. Manag. 2015, 5, 73–76. [Google Scholar] [CrossRef]
- Ashton, H. Critical closing pressure in human peripheral vascular beds. Clin. Sci. 1962, 22, 79–87. [Google Scholar]
- Fröhlich, D.; Wittmann, S.; Rothe, G.; Sessler, D.I.; Vogel, P.; Taeger, K. Mild Hyperthermia Down-Regulates Receptor-Dependent Neutrophil Function. Anesth. Analg. 2004, 99, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Kurz, A.; Sessler, D.I.; Lenhardt, R. Perioperative Normothermia to Reduce the Incidence of Surgical-Wound Infection and Shorten Hospitalization. New Engl. J. Med. 1996, 334, 1209–1216. [Google Scholar] [CrossRef]
- Jampel, H.D.; Duff, G.W.; Gershon, R.K.; Atkins, E.; Durum, S.K. Fever and immunoregulation. III. Hyperthermia augments the primary in vitro humoral immune response. J. Exp. Med. 1983, 157, 1229–1238. [Google Scholar] [CrossRef] [Green Version]
- Biggar, W.D.; Bohn, D.J.; Kent, G.; Barker, C.; Hamilton, G. Neutrophil migration in vitro and in vivo during hypothermia. Infect. Immun. 1984, 46, 857–859. [Google Scholar] [CrossRef] [Green Version]
- Donadello, K.; Favory, R.; Salgado-Ribeiro, D.; Vincent, J.-L.; Gottin, L.; Scolletta, S.; Creteur, J.; De Backer, D.; Taccone, F.S. Sublingual and muscular microcirculatory alterations after cardiac arrest: A pilot study. Resuscitation 2011, 82, 690–695. [Google Scholar] [CrossRef]
- Wan, Z.; Ristagno, G.; Sun, S.; Li, Y.; Weil, M.H.; Tang, W. Preserved cerebral microcirculation during cardiogenic shock. Crit. Care Med. 2009, 37, 2333–2338. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, S.; Ristagno, G.; Weil, M.H.; Tang, W. The cerebral microcirculation is protected during experimental hemorrhagic shock. Crit. Care Med. 2010, 38, 928–932. [Google Scholar] [CrossRef] [Green Version]
- Taccone, F.S.; Su, F.; Pierrakos, C.; He, X.; James, S.; Dewitte, O.; Vincent, J.L.; De Backer, D. Cerebral microcirculation is impaired during sepsis: An ex-perimental study. Crit. Care 2010, 14, R140. [Google Scholar] [CrossRef]
- Taccone, F.S.; Su, F.; De Deyne, C.; Abdellhai, A.; Pierrakos, C.; He, X.; Donadello, K.; Dewitte, O.; Vincent, J.L.; De Backer, D. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit. Care Med. 2014, 42, e114–e122. [Google Scholar] [CrossRef]
- He, X.; Taccone, F.S.; Maciel, L.K.; Vincent, J.L. Cardiovascular responses to mild hypothermia in an ovine model. Resuscitation 2012, 83, 760–766. [Google Scholar] [CrossRef]
- Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235–249. [Google Scholar] [CrossRef]
- Hollyer, T.R.; Bordoni, L.; Kousholt, B.S.; Van Luijk, J.; Ritskes-Hoitinga, M.; Østergaard, L. The evidence for the physiological effects of lactate on the cerebral microcirculation: A systematic review. J. Neurochem. 2018, 148, 712–730. [Google Scholar] [CrossRef] [Green Version]
- Larach, D.B.; Kofke, W.A.; Le Roux, P. Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature. Neurocritical Care 2011, 15, 609–622. [Google Scholar] [CrossRef]
- Askalan, R.; Wang, C.; Shi, H.; Armstrong, E.; Yager, J.Y. The Effect of Postischemic Hypothermia on Apoptotic Cell Death in the Neonatal Rat Brain. Dev. Neurosci. 2011, 33, 320–329. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, Y.; Feng, J.-F.; Jia, F.; Gao, G.-Y.; Jiang, J.-Y. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1090–1100. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Guillamon, M.; Ortega, L.; Merino-Zamorano, C.; Campos-Martorell, M.; Rosell, A.; Montaner, J. Mild hypothermia protects against oxygen glucose deprivation (OGD)-induced cell death in brain slices from adult mice. J. Neural Transm. 2013, 121, 113–117. [Google Scholar] [CrossRef]
- Gong, P.; Zhao, S.; Wang, J.; Yang, Z.; Qian, J.; Wu, X.; Cahoon, J.; Tang, W. Mild hyypothermia preserves cerebral cortex microcirculation after resuscitation in a rat model of cardiac arrest. Resuscitation 2015, 97, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, L.; Zhang, H.; Wei, W.; Chen, Y.; Tang, W.; Wan, Z. Effect of mild hypothermia on cerebral microcirculation in a murine cardiopulmonary resuscitation model. Microcirculation 2019, 26, e12537. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, Y.; Li, J.; Yuan, W. Effects of Mild Hypothermia on Cerebral Large and Small Microvessels Blood Flow in a Porcine Model of Cardiac Arrest. Neurocritical Care 2017, 81, 297–303. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Zhang, Y.; Zhou, Y.; Wei, W.; Wan, Z. The Effect of Therapeutic Mild Hypothermia on Brain Microvascular Endothelial Cells During Ischemia–Reperfusion Injury. Neurocritical Care 2018, 28, 379–387. [Google Scholar] [CrossRef] [PubMed]
- DuBois, D.; DuBois, E.F. A formula to estimate the appropriate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Hollenberg, S.; Boerma, C.; Goedahart, P.; Büchele, G.; Ospina-Tascon, G.; Dobbe, I.; Ince, C. How to evaluate the microcirculation: Report of a raund table con-ference. Crit. Care 2007, 11, R101. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Creteur, J.; Preiser, J.C.; Dubois, M.J.; Vincent, J.L. Microvascular blood flow is altered in patients with sepsis. Am. J. Respir Crit. Care Med. 2002, 166, 98–104. [Google Scholar] [CrossRef]
- Boerma, E.C.; Van Der Voort, P.H.J.; Spronk, P.E.; Ince, C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit. Care Med. 2007, 35, 1055–1060. [Google Scholar] [CrossRef]
- Bell, D.R. The Microcirculation and Lymphatic System, in Medical Physiology: Principles for Clinical Medicine; Rhoades, R.A., Bell, D.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; pp. 216–274. [Google Scholar]
- Chierego, M.; Verdant, C.; De Backer, D. Microcirculatory alterations in critically ill patients. Minerva Anestesiol. 2006, 72, 199–205. [Google Scholar]
- De Backer, D.; Ortiz, J.A.; Salgado, D. Coupling microcirculation to systemic hemodynamics. Curr. Opin. Crit. Care 2010, 16, 250–254. [Google Scholar] [CrossRef]
- Bakker, J.; Coffernis, M.; Leon, M.; Gris, P.; Vincent, J.L. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991, 99, 956–962. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Su, F.; Xie, K.; Taccone, F.S.; Donadello, K.; Vincent, J.-L. Should Hyperoxia Be Avoided During Sepsis? An Experimental Study in Ovine Peritonitis. Crit. Care Med. 2017, 45, e1060–e1067. [Google Scholar] [CrossRef] [PubMed]
- Waisman, D.; Brod, V.; Rahat, M.A.; Amit-Cohen, B.-C.; Lahat, N.; Rimar, D.; Menn-Josephy, H.; David, M.; Lavon, O.; Cavari, Y.; et al. Dose-Related Effects of Hyperoxia on the Lung Inflammatory Response in Septic Rats. Shock 2012, 37, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Waisman, D.; Brod, V.; Wolff, R.; Sabo, E.; Chernin, M.; Weintraub, Z.; Rotschild, A.; Bitterman, R.H. Effects of hyperoxia on local and remote microcirculatory inflammatory response after splanchnic ischemia and reperfusion. Am. J. Physiol. Circ. Physiol. 2003, 285, H643–H652. [Google Scholar] [CrossRef] [PubMed]
- Lindbom, L.; Arfors, K.E. Mechanisms and site of control for variation in the number of perfused capillaries in skeletal muscle. Int. J. Microcirc. 1985, 4, 19–30. [Google Scholar]
- Kamler, M.; Wendt, D.; Pizanis, N.; Milekhin, V.; Schade, U.; Jakob, H. Deleterious effects of oxygen during extracorporeal circulation for the mi-crocirculation in vivo. Eur. J. Cardiothorac. Surg. 2004, 26, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.G.; Cabrales, P.; Winslow, R.M.; Intaglietta, M. Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia. Am. J. Physiol. Circ. Physiol. 2003, 285, H1537–H1545. [Google Scholar] [CrossRef] [Green Version]
- Orbegozo Cortez, D.; Puflea, F.; De Backer, D.; Creteur, J.; Vincent, J.L. Near infrared spettroscopy (NIRS) to assess the effects of local is-chemic preconditioning in the muscle of healthy volunteers and critically ill patients. Microvasc. Res. 2015, 102, 25–32. [Google Scholar] [CrossRef]
- Sheng, N.; Liu, P.; Mao, D.; Ge, Y.; Lu, H. The impact of hyperoxia on brain activity: A resting-state and task-evoked elettroenceph-alograpy (EEG) study. PLoS ONE 2017, 12, e0176610. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.K.; Kim, L.H.-Y.; Young, P.J.; Zamiri, N.; Almenawer, S.A.; Jaeschke, R.; Szczeklik, W.; Schünemann, H.J.; Neary, J.D.; Alhazzani, W. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): A systematic review and meta-analysis. Lancet 2018, 391, 1693–1705. [Google Scholar] [CrossRef]
- Young, P.; Mackle, D.; Bellomo, R.; Bailey, M.; Beasley, R.; Deane, A.; Eastwood, G.; Finfer, S.; Freebairn, R.; King, V.; et al. Conservative oxygen therapy for mechanically ventilated adults with suspected hypoxic ischaemic encephalopathy. Intensiv. Care Med. 2020, 46, 2411–2422. [Google Scholar] [CrossRef] [PubMed]
- Jakkula, P.; Hästbacka, J.; Reinikainen, M.; Pettilä, V.; Loisa, P.; Tiainen, M.; Wilkman, E.; Bendel, S.; Birkelund, T.; Pulkkinen, A.; et al. Near-infrared spectroscopy after out-of-hospital cardiac arrest. Crit. Care 2019, 23, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LA Via, L.; Astuto, M.; Bignami, E.G.; Busalacchi, D.; Dezio, V.; Girardis, M.; Lanzafame, B.; Ristagno, G.; Pelosi, P.; Sanfilippo, F. The effects of exposure to severe hyperoxemia on neurological outcome and mortality after cardiac arrest. Minerva Anestesiol. 2022, 88, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Zonta, M.; Angulo, M.C.; Gobbo, S.; Rosengarten, B.; Hossmann, K.-A.; Pozzan, T.; Carmignoto, P. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 2002, 6, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Panerai, R.B. Assessment of cerebral pressure autoregulation in humans—A review of measurement methods. Physiol. Meas. 1998, 19, 305–338. [Google Scholar] [CrossRef]
- Vespa, P.; Prins, M.; Ronne-Engstrom, E.; Caron, M.; Shalmon, E.; Hovda, D.A.; Martin, N.; Becker, D.P. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: A microdialysis study. J. Neurosurg. 1998, 89, 971–982. [Google Scholar] [CrossRef]
- Sarrafzadeh, A.; Haux, D.; Küchler, I.; Lanksch, W.R.; Unterberg, A.W. Poor-grade aneurysmal subarachnoid hemorrhage: Relationship of cerebral metabolism to outcome. J. Neurosurg. 2004, 100, 400–406. [Google Scholar] [CrossRef]
- Nordström, C.-H.; Reinstrup, P.; Xu, W.; Gärdenfors, A.; Ungerstedt, U. Assessment of the Lower Limit for Cerebral Perfusion Pressure in Severe Head Injuries by Bedside Monitoring of Regional Energy Metabolism. Anesthesiology 2003, 98, 809–814. [Google Scholar] [CrossRef]
- Vespa, P.M.; O’Phelan, K.; McArthur, D.; Miller, C.; Eliseo, M.; Hirt, D.; Glenn, T.; Hovda, D.A. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit. Care Med. 2007, 35, 1153–1160. [Google Scholar] [CrossRef]
- Hifumi, T.; Kawakita, K.; Yoda, T.; Okazaki, T.; Kuroda, Y. Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: A preliminary microdialysis study. Resuscitation 2017, 110, 26–31. [Google Scholar] [CrossRef]
- Timofeev, I.; Czosnyka, M.; Carpenter, K.L.; Nortje, J.; Kirkpatrick, P.J.; Al-Rawi, P.G.; Menon, D.K.; Pickard, J.D.; Gupta, A.K.; Hutchinson, P.J. Interaction between Brain Chemistry and Physiology after Traumatic Brain Injury: Impact of Autoregulation and Microdialysis Catheter Location. J. Neurotrauma 2011, 28, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmark, J.; Emblad, P.; Rubertsson, S. Cerebral energy failure following experimental cardiac arrest Hypothermia treatment reduces secondary lactate/pyryvate-ratio increase. Resuscitation 2009, 80, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.; Rothman, D.L.; Nordström, C.-H. Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. J. Cereb. Blood Flow Metab. 2016, 36, 1844–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, T.H.; Bindslev, T.T.; Pedersen, S.M.; Toft, P.; Olsen, N.V.; Nordström, C.H. Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesthesiol. Scand. 2012, 57, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Oddo, M.; Levine, J.M.; Frangos, S.; Maloney-Wilensky, E.; Carrera, E.; Daniel, R.T.; Levivier, M.; Magistretti, P.J.; LeRoux, P.D. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke 2012, 43, 1418–1421. [Google Scholar] [CrossRef] [Green Version]
- Magnoni, S.; Ghisoni, L.; Locatelli, M.; Caimi, M.; Colombo, A.; Valeriani, V.; Stocchetti, N. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: A microdialysis study. J. Neurosurg. 2003, 98, 952–958. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadello, K.; Su, F.; Annoni, F.; Scolletta, S.; He, X.; Peluso, L.; Gottin, L.; Polati, E.; Creteur, J.; De Witte, O.; et al. The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism. Brain Sci. 2022, 12, 1422. https://doi.org/10.3390/brainsci12101422
Donadello K, Su F, Annoni F, Scolletta S, He X, Peluso L, Gottin L, Polati E, Creteur J, De Witte O, et al. The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism. Brain Sciences. 2022; 12(10):1422. https://doi.org/10.3390/brainsci12101422
Chicago/Turabian StyleDonadello, Katia, Fuhong Su, Filippo Annoni, Sabino Scolletta, Xinrong He, Lorenzo Peluso, Leonardo Gottin, Enrico Polati, Jacques Creteur, Olivier De Witte, and et al. 2022. "The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism" Brain Sciences 12, no. 10: 1422. https://doi.org/10.3390/brainsci12101422
APA StyleDonadello, K., Su, F., Annoni, F., Scolletta, S., He, X., Peluso, L., Gottin, L., Polati, E., Creteur, J., De Witte, O., Vincent, J. -L., De Backer, D., & Taccone, F. S. (2022). The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism. Brain Sciences, 12(10), 1422. https://doi.org/10.3390/brainsci12101422