A Glycemia-Based Nomogram for Predicting Outcome in Stroke Patients after Endovascular Treatment
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rinkel, L.A.; Nguyen, T.T.M.; Guglielmi, V.; Groot, A.E.; Posthuma, L.; Roos, Y.B.; Majoie, C.B.; Nijeholt, G.J.L.; Emmer, B.J.; van der Worp, H.B.; et al. High Admission Glucose Is Associated with Poor Outcome After Endovascular Treatment for Ischemic Stroke. Stroke 2020, 51, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vega, C.; A Domingo, R.; Tripathi, S.; Ramos-Fresnedo, A.; Kashyap, S.; Quinones-Hinojosa, A.; Lin, M.P.; Fox, W.C.; Tawk, R.G. Influence of glucose levels on clinical outcome after mechanical thrombectomy for large-vessel occlusion: A systematic review and meta-analysis. J. NeuroInterventional Surg. 2022, 14, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Tsivgoulis, G.; Pandhi, A.; Dillard, K.; Katsanos, A.H.; Magoufis, G.; Chang, J.J.; Zand, R.; Hoit, D.; Safouris, A.; et al. Admission hyperglycemia and outcomes in large vessel occlusion strokes treated with mechanical thrombectomy. J. NeuroInterventional Surg. 2018, 10, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Liu, R.; Gao, F.; Ma, N.; Mo, D.; Liao, X.; Wang, C.; Sun, X.; Song, L.; Jia, B.; et al. Effect of Hyperglycemia at Presentation on Outcomes in Acute Large Artery Occlusion Patients Treated with Solitaire Stent Thrombectomy. Front. Neurol. 2019, 10, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osei, E.; Hertog, H.M.D.; Berkhemer, O.A.; Fransen, P.S.; Roos, Y.B.; Beumer, D.; van Oostenbrugge, R.J.; Schonewille, W.J.; Boiten, J.; Zandbergen, A.A.; et al. Admission Glucose and Effect of Intra-Arterial Treatment in Patients with Acute Ischemic Stroke. Stroke 2017, 48, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.; Kaste, M. Dynamic of Hyperglycemia as a Predictor of Stroke Outcome in the ECASS-II Trial. Stroke 2008, 39, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Osei, E.; Hertog, H.D.; Berkhemer, O.; Fransen, P.; Roos, Y.; Beumer, D.; van Oostenbrugge, R.; Schonewille, W.; Boiten, J.; Zandbergen, A.; et al. Increased admission and fasting glucose are associated with unfavorable short-term outcome after intra-arterial treatment of ischemic stroke in the MR CLEAN pretrial cohort. J. Neurol. Sci. 2016, 371, 1–5. [Google Scholar] [CrossRef]
- Wnuk, M.; Popiela, T.; Drabik, L.; Brzegowy, P.; Lasocha, B.; Wloch-Kopec, D.; Pulyk, R.; Jagiella, J.; Wiacek, M.; Kaczorowski, R.; et al. Fasting Hyperglycemia and Long-term Outcome in Patients with Acute Ischemic Stroke Treated with Mechanical Thrombectomy. J. Stroke Cerebrovasc. Dis. 2020, 29, 104774. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, Y.; Huang, X.; Xu, X.; Xu, J.; Xu, Y.; Yang, Q.; Zhu, Y.; Zhou, Z. Fasting Blood-Glucose Level and Clinical Outcome in Anterior Circulation Ischemic Stroke of Different Age Groups After Endovascular Treatment. Neuropsychiatr. Dis. Treat. 2022, 18, 575–583. [Google Scholar] [CrossRef]
- Nathan, D.M.; Kuenen, J.; Borg, R.; Zheng, H.; Schoenfeld, D.; Heine, R.J.; for the A1c-Derived Average Glucose (ADAG) Study Group. Translating the A1C Assay into Estimated Average Glucose Values. Diabetes Care 2008, 31, 1473–1478. [Google Scholar] [CrossRef]
- Chang, J.Y.; Kim, W.-J.; Kwon, J.H.; Kim, B.J.; Kim, J.-T.; Lee, J.; Cha, J.K.; Kim, D.-H.; Cho, Y.-J.; Hong, K.-S.; et al. Prestroke Glucose Control and Functional Outcome in Patients with Acute Large Vessel Occlusive Stroke and Diabetes After Thrombectomy. Diabetes Care 2021, 44, 2140–2148. [Google Scholar] [CrossRef]
- Merlino, G.; Pez, S.; Gigli, G.L.; Sponza, M.; Lorenzut, S.; Surcinelli, A.; Smeralda, C.; Valente, M. Stress Hyperglycemia in Patients with Acute Ischemic Stroke Due to Large Vessel Occlusion Undergoing Mechanical Thrombectomy. Front. Neurol. 2021, 12, 725002. [Google Scholar] [CrossRef]
- Chen, G.; Ren, J.; Huang, H.; Shen, J.; Yang, C.; Hu, J.; Pan, W.; Sun, F.; Zhou, X.; Zeng, T.; et al. Admission Random Blood Glucose, Fasting Blood Glucose, Stress Hyperglycemia Ratio, and Functional Outcomes in Patients with Acute Ischemic Stroke Treated with Intravenous Thrombolysis. Front. Aging Neurosci. 2022, 14, 782282. [Google Scholar] [CrossRef]
- Yang, C.-J.; Liao, W.-I.; Wang, J.-C.; Tsai, C.-L.; Lee, J.-T.; Peng, G.-S.; Lee, C.-H.; Hsu, C.-W.; Tsai, S.-H. Usefulness of glycated hemoglobin A1c-based adjusted glycemic variables in diabetic patients presenting with acute ischemic stroke. Am. J. Emerg. Med. 2017, 35, 1240–1246. [Google Scholar] [CrossRef]
- Roberts, G.; Sires, J.; Chen, A.; Thynne, T.; Sullivan, C.; Quinn, S.; Chen, W.S.; Meyer, E. A comparison of the stress hyperglycemia ratio, glycemic gap, and glucose to assess the impact of stress-induced hyperglycemia on ischemic stroke outcome. J. Diabetes 2021, 13, 1034–1042. [Google Scholar] [CrossRef]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Wang, H.; Yang, H.; Zhang, X.; Zhang, Q.; Dong, Q.; Shu, Z.; Chen, L.; Gong, L.; Zhao, Y. Nomogram to Predict Poor Outcome after Mechanical Thrombectomy at Older Age and Histological Analysis of Thrombus Composition. Oxidative Med. Cell. Longev. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Cappellari, M.; Mangiafico, S.; Saia, V.; Pracucci, G.; Nappini, S.; Nencini, P.; Konda, D.; Sallustio, F.; Vallone, S.; Zini, A.; et al. IER-START nomogram for prediction of three-month unfavorable outcome after thrombectomy for stroke. Int. J. Stroke 2020, 15, 412–420. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Wang, J.-H.; Yang, W.-H.; Zhu, X.-Q.; Xue, J.; Li, Z.-Z.; Kong, Y.-M.; Hu, L.; Jiang, S.-S.; Xu, X.-S.; et al. Nomogram to predict 3-month unfavorable outcome after thrombectomy for stroke. BMC Neurol. 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Zou, Y.; Hu, J.; Li, X.M.; Huang, C.P.; Shan, Y.J.; Nyame, L.; Zhao, Z.; Sun, C.; Ibrahim, M.; et al. A NAC nomogram to predict the probability of three-month unfavorable outcome in Chinese acute ischemic stroke patients treated with mechanical thrombectomy. Int. J. Neurosci. 2021, 131, 163–169. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, D.; Wang, H.; Zi, W.; Zhang, M.; Geng, Y.; Zhou, Z.; Wang, W.; Xu, H.; Tian, X.; et al. Predictors for Symptomatic Intracranial Hemorrhage After Endovascular Treatment of Acute Ischemic Stroke. Stroke 2017, 48, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418, Correction in Stroke 2019, 50, e440–e441. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, Y.; Ohira, T.; Itabashi, R.; Uchida, K.; Sakai, N.; Yamagami, H.; Morimoto, T.; Yoshimura, S. Association of Admission Hyperglycemia with Clinical Outcomes in Japanese Patients with Acute Large Vessel Occlusion Stroke: A post hoc Analysis of the Recovery by Endovascular Salvage for Cerebral Ultra-Acute Embolism Japan Registry 2. Cerebrovasc. Dis. 2021, 50, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ren, Y.; Cui, X.; Liu, P.; Chen, F.; Zhao, H.; Han, Z.; Huang, Y.; Ma, Q.; Luo, Y. Postoperative hyperglycemia predicts symptomatic intracranial hemorrhage after endovascular treatment in patients with acute anterior circulation large artery occlusion. J. Neurol. Sci. 2020, 409, 116588. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Guo, S.; Pan, J.; Xu, C.; Geng, Y.; Zheng, S. Increased Postoperative Fasting Glucose Is Associated with Unfavorable Outcomes in Patients Treated With Mechanical Thrombectomy Treatment. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Miao, J.; Zheng, W.; Yang, Q.; Ye, X.; Zhuang, X.; Peng, F. High Stress Hyperglycemia Ratio Predicts Poor Outcome after Mechanical Thrombectomy for Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 1668–1673. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, J.H.; Kang, K.W.; Kim, J.T.; Choi, S.-M.; Lee, S.-H.; Park, M.-S.; Kim, B.-C.; Kim, M.-K.; Cho, K.-H. HbA1c (Glycated Hemoglobin) Levels and Clinical Outcome Post-Mechanical Thrombectomy in Patients with Large Vessel Occlusion. Stroke 2018, 50, 119–126. [Google Scholar] [CrossRef]
- Diprose, W.K.; Wang, M.T.M.; McFetridge, A.; Sutcliffe, J.; Barber, P.A. Glycated hemoglobin (HbA1c) and outcome following endovascular thrombectomy for ischemic stroke. J. NeuroInterventional Surg. 2020, 12, 30–32. [Google Scholar] [CrossRef]
- Yue, F.; Wang, Z.; Pu, J.; Zhang, M.; Liu, Y.; Han, H.; Liu, W.; Wang, X.; Li, R.; Xue, D.; et al. HbA1c and clinical outcomes after endovascular treatment in patients with posterior circulation large vessel occlusion: A subgroup analysis of a nationwide registry (BASILAR). Ther. Adv. Neurol. Disord. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Shi, M.; Qu, Y.; Huo, L.; Hao, Z.; Yue, F.; Gan, L.; Wang, S. Which glucose parameter best predicts poor outcome after mechanical thrombectomy for acute large vessel occlusion stroke? Intern. Med. J. 2021, 52, 1374–1380. [Google Scholar] [CrossRef]
- Lu, G.-D.; Ren, Z.-Q.; Zhang, J.-X.; Zu, Q.-Q.; Shi, H.-B. Effects of Diabetes Mellitus and Admission Glucose in Patients Receiving Mechanical Thrombectomy: A Systematic Review and Meta-analysis. Neurocritical Care 2018, 29, 426–434. [Google Scholar] [CrossRef]
- Merlino, G.; Smeralda, C.; Sponza, M.; Gigli, G.L.; Lorenzut, S.; Marini, A.; Surcinelli, A.; Pez, S.; Vit, A.; Gavrilovic, V.; et al. Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. J. Clin. Med. 2020, 9, 1932. [Google Scholar] [CrossRef]
- Robbins, N.M.; Swanson, R.A. Opposing effects of glucose on stroke and reperfusion injury: Acidosis, oxidative stress, and energy metabolism. Stroke 2014, 45, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Linfante, I.; Starosciak, A.K.; Walker, G.R.; Dabus, G.; Castonguay, A.C.; Gupta, R.; Sun, C.-H.J.; Martin, C.; E Holloway, W.; Mueller-Kronast, N.; et al. Predictors of poor outcome despite recanalization: A multiple regression analysis of the NASA registry. J. NeuroInterventional Surg. 2016, 8, 224–229. [Google Scholar] [CrossRef]
- Seker, F.; Pfaff, J.; Wolf, M.; Ringleb, P.; Nagel, S.; Schönenberger, S.; Herweh, C.; Möhlenbruch, M.; Bendszus, M.; Pham, M. Correlation of Thrombectomy Maneuver Count with Recanalization Success and Clinical Outcome in Patients with Ischemic Stroke. Am. J. Neuroradiol. 2017, 38, 1368–1371. [Google Scholar] [CrossRef] [Green Version]
- Asaithambi, G.; Tipps, M.E. Effect of Intensive Glucose Control on Outcomes of Hyperglycemic Stroke Patients Receiving Mechanical Thrombectomy: Secondary Analysis of the SHINE Trial. J. Neurosurg. Anesthesiol. 2022, 34, 415–418. [Google Scholar] [CrossRef]
- Bains, N.K.; Huang, W.; French, B.R.; Siddiq, F.; Gomez, C.R.; Qureshi, A.I. Hyperglycemic control in acute ischemic stroke patients undergoing endovascular treatment: Post hoc analysis of the Stroke Hyperglycemia Insulin Network Effort trial. J. Neurointerv. Surg. 2022, 1–6. [Google Scholar]
Total (739) | mRS 0–2 (n = 291) | mRS 3–6 (n = 448) | p | |
---|---|---|---|---|
Age (years), mean ± SD | 70.0 ± 12.2 | 65.5 ± 12.7 | 72.9 ± 10.9 | <0.001 |
Sex, male, n (%) | 471 (63.7%) | 208 (71.5%) | 263 (58.7%) | <0.001 |
Medical history, n (%) | ||||
Hypertension | 547 (74.0%) | 205 (70.4%) | 342 (76.3%) | 0.074 |
Diabetes | 234 (31.7%) | 80 (27.5%) | 154 (34.4%) | 0.049 |
Atrial fibrillation | 334 (45.2%) | 99 (34.0%) | 235 (52.5%) | <0.001 |
Prior stroke | 152 (20.6%) | 49 (17.0%) | 103 (23.0%) | 0.048 |
Laboratory examination, mean ± SD | ||||
FBG, mg/dL | 128 ± 45 | 112 ± 36 | 138 ± 48 | <0.001 |
HbA1c, % | 6.3 ± 1.4 | 6.2 ± 1.2 | 6.4 ± 1.5 | 0.013 |
Average chronic glycemia, mg/dL | 135 ± 40 | 130 ± 35 | 138 ± 43 | 0.013 |
A/C glycemic ratio | 0.97 ± 0.28 | 0.88 ± 0.22 | 1.03 ± 0.30 | <0.001 |
ΔA-C, mg/dL | −6 ± 43 | −18 ± 36 | 1 ± 46 | <0.001 |
Serum creatinine, μmol/L | 77.2 ± 32.6 | 75 ± 33 | 78 ± 32 | 0.245 |
Total cholesterol, mg/dL | 76 ± 21 | 77 ± 20 | 76 ± 22 | 0.489 |
Triglycerides, mg/dL | 23 ± 16 | 23 ± 14 | 23 ± 17 | 0.932 |
HDL, mg/dL | 20 ± 6 | 20 ± 5 | 20 ± 7 | 0.077 |
LDL, mg/dL | 46 ± 17 | 47 ± 17 | 46 ± 17 | 0.275 |
Baseline NIHSS score, median (IQR) | 14 (10–18) | 12 (7–16) | 16 (12–20) | <0.001 |
Infarct circulation, n (%) | 0.464 | |||
Anterior | 626 (84.7%) | 243 (83.5%) | 383 (85.5%) | |
Posterior | 113 (15.3%) | 48 (16.5%) | 65 (14.5%) | |
Stroke subtypes, n (%) | <0.001 | |||
LAA | 332 (44.9%) | 152 (52.2%) | 180 (40.2%) | |
CE | 349 (47.2%) | 106 (36.4%) | 243 (54.2%) | |
SOE | 22 (3.0%) | 17 (5.8%) | 5 (1.1%) | |
SUE | 36 (4.9%) | 16 (5.5%) | 20 (4.5%) | |
ASITN/SIR, median (IQR) | 2 (1-2) | 2(2-2) | 1 (1-2) | <0.001 |
Interval time, min, median (IQR) | ||||
Onset to door | 175 (86–308) | 175 (85–305) | 175 (81–300) | 0.924 |
Door to groin puncture | 107 (80–140) | 108 (80–138) | 104 (78–140) | 0.283 |
Door to first recanalization | 184 (149–228) | 170 (144–214) | 190 (150–230) | 0.003 |
Intravenous thrombolysis, n (%) | 309 (41.8%) | 132 (45.3%) | 177 (39.5%) | 0.119 |
Number of devices passed, median (IQR) | 2 (1-3) | 1 (1-2) | 2 (1-3) | <0.001 |
mTICI score, n (%) | <0.001 | |||
2b-3 | 644(87.1%) | 276(94.8%) | 368(82.1%) | |
0-2a | 95(12.9%) | 15(5.2%) | 80(17.9%) |
Crude OR (95% CI) | p | Adjusted OR (95% CI) | p | |
---|---|---|---|---|
FBG | 1.017 (1.012–1.022) | <0.001 | 1.012 (1.006–1.018) | <0.001 |
Chronic glycemia | 1.005 (1.001–1.009) | 0.019 | 1.005 (0.999–1.011) | 0.122 |
A/C glycemic ratio | 10.720 (5.559–20.671) | <0.001 | 4.783 (2.183–10.478) | <0.001 |
ΔA-C | 1.011 (1.007–1.015) | <0.001 | 1.007 (1.002–1.011) | 0.006 |
Age | 1.055 (1.040–1.069) | <0.001 | 1.041 (1.022–1.060) | <0.001 |
Sex | 0.567 (0.413–0.778) | <0.001 | 0.792 (0.533–1.177) | 0.249 |
Hypertension | 1.354 (0.970–1.888) | 0.075 | ||
Diabetes | 1.382 (1.000–1.908) | 0.050 | ||
Atrial fibrillation | 2.140 (1.577–2.904) | <0.001 | 0.823 (0.538–1.259) | 0.369 |
Prior stroke | 1.462 (1.002–2.134) | 0.049 | 0.970 (0.609–1.544) | 0.896 |
HDL | 1.024 (0.997–1.051) | 0.079 | ||
Baseline NIHSS score | 1.122 (1.093–1.151) | <0.001 | 1.098 (1.067–1.130) | <0.001 |
Stroke subtypes | 0.995 (0.855–1.157) | 0.946 | ||
ASITN/SIR | 0.253 (0.189–0.339) | <0.001 | 0.289 (0.208–0.402) | <0.001 |
Door to first recanalization | 1.001 (0.999–1.003) | 0.213 | ||
Number of devices passed | 1.507 (1.317–1.724) | <0.001 | 1.352 (1.147–1.594) | <0.001 |
mTICI score | 0.250 (0.141–0.443) | <0.001 | 0.334 (0.169–0.660) | 0.002 |
Patients with Diabetes (n = 234) | Patients without Diabetes (n = 505) | P-Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Crude OR (95% CI) | P | Adjusted OR (95% CI) | P | Crude OR (95% CI) | P | Adjusted OR (95% CI) | P | Diabetes and glycemia | |
FBG | 1.008 (1.002–1.014) | 0.004 | 1.006 (0.999–1.012) | 0.091 | 1.035 (1.026–1.044) | <0.001 | 1.025 (1.014–1.035) | <0.001 | 0.004 |
Chronic glycemia | 1.002 (0.996–1.008) | 0.495 | 1.011 (1.000–1.023) | 0.056 | 0.039 | ||||
A/C glycemic ratio | 3.092 (1.299–7.359) | 0.011 | 1.656 (0.590–4.649) | 0.339 | 46.832 (16.923–129.602) | <0.001 | 15.735 (4.588–53.969) | <0.001 | 0.005 |
ΔA-C | 1.004 (1.000–1.009) | 0.046 | 1.001 (0.996–1.006) | 0.753 | 1.033 (1.024–1.041) | <0.001 | 1.024 (1.014–1.035) | <0.001 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, Y.; Li, X.; Liu, Y.; Jiang, T.; Wang, M.; Deng, Q.; Zhou, J. A Glycemia-Based Nomogram for Predicting Outcome in Stroke Patients after Endovascular Treatment. Brain Sci. 2022, 12, 1576. https://doi.org/10.3390/brainsci12111576
Liu C, Zhang Y, Li X, Liu Y, Jiang T, Wang M, Deng Q, Zhou J. A Glycemia-Based Nomogram for Predicting Outcome in Stroke Patients after Endovascular Treatment. Brain Sciences. 2022; 12(11):1576. https://doi.org/10.3390/brainsci12111576
Chicago/Turabian StyleLiu, Chengfang, Yuqiao Zhang, Xiaohui Li, Yukai Liu, Teng Jiang, Meng Wang, Qiwen Deng, and Junshan Zhou. 2022. "A Glycemia-Based Nomogram for Predicting Outcome in Stroke Patients after Endovascular Treatment" Brain Sciences 12, no. 11: 1576. https://doi.org/10.3390/brainsci12111576
APA StyleLiu, C., Zhang, Y., Li, X., Liu, Y., Jiang, T., Wang, M., Deng, Q., & Zhou, J. (2022). A Glycemia-Based Nomogram for Predicting Outcome in Stroke Patients after Endovascular Treatment. Brain Sciences, 12(11), 1576. https://doi.org/10.3390/brainsci12111576