Utilizing Cognitive Training to Improve Working Memory, Attention, and Impulsivity in School-Aged Children with ADHD and SLD
Abstract
:1. Introduction
1.1. Working Memory and Academic Skills
1.2. Working Memory Deficits
1.3. Working Memory and Clinical Populations
1.4. Cognitive Training: An Approach for Enhancing Working Memory
1.5. The Use of Cognitive Training in Schools
1.6. The Current Study
2. Method
2.1. Research Design and Participants
2.2. Measures
- Overall Working Memory
- Working Memory Index from the WISC-V which is comprised of Digit Span and Picture Span subtests
- Verbal Working Memory
- Verbal Working Memory subtest from the WRAML-2
- Visuospatial Working Memory
- Symbolic Working Memory subtest from the WRAML-2
- Attention
- Attention Index from the IVA-2
- Inhibition
- Response Inhibition Index from the IVA-2
2.3. Procedures
2.4. Data Analysis
3. Results
Network Model Results
4. Discussion
4.1. Pre- to Post-Training Improvement in Cognitive Abilities
4.2. Underlying Structure of Cognitive Abilities Prior to and following Training
4.3. Limitations
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baddeley, A. Working Memory, Thought, and Action; Oxford University Press: Oxford, UK, 2007; ISBN 9780198528012. [Google Scholar]
- Gathercole, S.E.; Alloway, T.P. Working memory and classroom learning. In Applied Cognitive Research in K-3 Classrooms; Thurman, S.K., Ed.; Routledge/Taylor & Francis Group: New York, NY, USA, 2014; pp. 17–40. ISBN 9780805858228. [Google Scholar]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenburg, J.; Klesczewski, J.; Fischbach, A.; Schuchardt, K.; Büttner, G.; Hasselhorn, M. Working memory in children with learning disabilities in reading versus spelling: Searching for overlapping and specific cognitive factors. J. Learn. Disabil. 2015, 48, 622–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gathercole, S.E.; Lamont, E.; Alloway, T.P. Working memory in the classroom. In Working Memory and Education; Pickering, S., Ed.; Academic Press: London, UK, 2006; pp. 220–241. ISBN 9780125544658. [Google Scholar]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C.Y. A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. J. Educ. Psychol. 2015, 108, 455–473. [Google Scholar] [CrossRef]
- Peng, P.; Barnes, M.; Wang, C.; Wang, W.; Li, S.; Swanson, H.L.; Dardick, W.; Tao, S. A meta-analysis on the relation between reading and working memory. Psychol. Bull. 2018, 144, 48–76. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.A.; Ramirez, G.; Beilock, S.L.; Levine, S.C. The relation between spatial skill and early number knowledge: The role of the linear number line. Dev. Psychol. 2012, 48, 1229–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Swanson, H.L.; Marcoulides, G.A. Working memory components as predictors of children’s mathematical word problem solving. J. Exp. Child Psychol. 2011, 110, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Noel, M.-P. Counting on working memory when learning to count and to add: A preschool study. Dev. Psychol. 2009, 45, 1630–1643. [Google Scholar] [CrossRef]
- Swanson, H.L. Reading comprehension and working memory in learning-disabled readers: Is the phonological loop more important than the executive system? J. Exp. Child Psychol. 1999, 72, 1–31. [Google Scholar] [CrossRef]
- Chall, J.S. Stages of Reading Development; McGraw-Hill: New York, NY, USA, 1983; ISBN 9780070103801. [Google Scholar]
- Gathercole, S.E. Working memory in the classroom. Psychologist 2008, 21, 382–385. [Google Scholar]
- Kyttala, M.; Kanerva, K.; Munter, I.; Bjorn, P.M. Working memory resources in children: Stability and relation to subsequent academic skills. Educ. Psychol. 2019, 39, 709–728. [Google Scholar] [CrossRef]
- Maehler, C.; Schuchardt, K. The importance of working memory for school achievement in primary school children with intellectual or learning disabilities. Res. Dev. Disabil. 2016, 58, 1–8. [Google Scholar] [CrossRef]
- Pickering, S.J. The development of visuo-spatial working memory. Memory 2001, 9, 423–432. [Google Scholar] [CrossRef]
- Andersson, U.; Lyxell, B. Working memory deficit in children with mathematical difficulties: A general or specific deficit? J. Exp. Child Psychol. 2007, 96, 197–228. [Google Scholar] [CrossRef]
- Stipeck, D.; Valentino, R.A. Early childhood memory and attention as predictors of academic growth trajectories. J. Educ. Psychol. 2015, 107, 771–788. [Google Scholar] [CrossRef]
- Alloway, T.P.; Gathercole, S.E.; Elliott, J. Examining the link between working memory behaviour and academic attainment in children with ADHD. Dev. Med. Child Neurol. 2010, 52, 632–636. [Google Scholar] [CrossRef]
- Alloway, T.P.; Gathercole, S.E. How does working memory work in the classroom? Educ. Res. Rev. 2006, 1, 134–139. [Google Scholar]
- Gathercole, S.E.; Alloway, T.P.; Kirkwood, H.J.; Elliott, J.G.; Holmes, J.; Hilton, K.A. Attentional and executive function behaviours in children with poor working memory. Learn. Individ. Differ. 2008, 18, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Joffe, V.L.; Black, E. Social, emotional, and behavioral functioning of secondary school students with low academic and language performance: Perspectives from students, teachers, and parents. Lang. Speech Hear. Serv. Sch. 2012, 43, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Munzar, B.; Muis, K.R.; Denton, C.A.; Losenno, K. Elementary students’ cognitive and affective responses to impasses during mathematics problem solving. J. Educ. Psychol. 2021, 113, 104–124. [Google Scholar] [CrossRef]
- Silinksas, G.; Dietrich, J.; Pakarinen, E.; Kiuru, N.; Aunola, K.; Lerkkanen, M.-K.; Hirvonen, R.; Muotka, J.; Nurmi, J.-E. Children evoke similar affective and instructional responses from their teachers and mothers. Int. J. Behav. Dev. 2015, 39, 432–444. [Google Scholar] [CrossRef]
- Simone, A.N.; Marks, D.J.; Bedard, A.-C.; Halperin, J.M. Low working memory rather than ADHD symptoms predicts poor academic achievement in school-aged children. J. Abnorm. Child Psychol. 2018, 46, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, S.E.; Pickering, S.J. Working memory deficits in children with low achievements in the national curriculum at seven years of age. Br. J. Educ. Psychol. 2000, 70, 177–194. [Google Scholar] [CrossRef]
- Geary, D.C.; Hoard, M.K.; Byrd-Craven, J.; DeSoto, M.C. Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. J. Exp. Child Psychol. 2004, 88, 121–151. [Google Scholar] [CrossRef] [PubMed]
- Swanson, E.; Barnes, M.; Fall, A.-M.; Roberts, G. Predictors of reading comprehension among struggling readers who exhibit differing levels of inattention and hyperactivity. Read. Writ. Q. 2018, 34, 132–146. [Google Scholar] [CrossRef]
- Soto, E.F.; Irwin, L.N.; Chan, E.S.M.; Spiegel, J.A.; Kofler, M.J. Executive functions and writing skills in children with and without ADHD. Neuropsychology 2021, 35, 792–808. [Google Scholar] [CrossRef]
- Alloway, T.P.; Gathercole, S.E.; Kirkwood, H.J.; Elliott, J.E. The cognitive and behavioural characteristics of children with low working memory. Child. Dev. 2009, 80, 606–621. [Google Scholar] [CrossRef]
- Kofler, M.J.; Harmon, S.L.; Aduen, P.A.; Day, T.N.; Austin, K.E.; Spiegel, J.A.; Sarver, D.E. Neurocognitive and behavioral predictors of social problems in ADHD: A Bayesian framework. Neuropsychology 2018, 32, 344–355. [Google Scholar] [CrossRef]
- Kofler, M.J.; Soto, E.F.; Fosco, W.D.; Irwin, L.N.; Wells, E.L.; Sarver, D.E. Working memory and information processing in ADHD: Evidence for directionality of effects. Neuropsychology 2019, 34, 127–143. [Google Scholar] [CrossRef]
- Kane, M.J.; Bleckley, M.K.; Conway, A.R.A.; Engle, R.W. A controlled-attention view of working memory capacity. J. Exp. Psychol. 2001, 130, 169–183. [Google Scholar] [CrossRef]
- Unsworth, N.; Miller, A.L.; Robison, M.K. Are individual differences in attention control related to working memory capacity? A latent variable mega-analysis. J. Exp. Psychol. 2021, 150, 1332–1357. [Google Scholar] [CrossRef]
- Holmes, J.; Hilton, K.A.; Place, M.; Alloway, T.P.; Elliott, J.; Gathercole, S.E. Children with low working memory and children with ADHD: Same or different? Front. Hum. Neurosci. 2014, 8, 976. [Google Scholar] [CrossRef] [Green Version]
- Karalunas, S.L.; Gustafsson, H.C.; Dieckmann, N.F.; Tipsord, J.; Mitchell, S.H.; Nigg, J.T. Heterogeneity in development of aspects of working memory predicts longitudinal attention deficit hyperactivity disorder symptom change. J. Abnorm. Psychol. 2017, 126, 774–792. [Google Scholar] [CrossRef]
- Kasper, L.J.; Alderson, R.M.; Hudeck, K.L. Moderators of working memory deficits in children with attention-deficit/hyperactivity disorder (ADHD): A meta-analytic review. Clin. Psychol. Rev. 2012, 32, 605–617. [Google Scholar] [CrossRef]
- Kofler, M.J.; Sarver, D.E.; Harmon, S.L.; Moltisanti, A.; Aduen, P.A.; Soto, E.F.; Ferretti, N. Working memory and organizational skills problems in ADHD. J. Child Psychol. Psychiatry 2018, 59, 57–67. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5 ®); American Psychiatric Pub.: Washington, DC, USA, 2013; ISBN 9780890425558. [Google Scholar]
- Barkley, R.A. Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment; Guilford Publications: New York, NY, USA, 1994; ISBN 9781462517725. [Google Scholar]
- McConaughy, S.H.; Volpe, R.J.; Antshel, K.M.; Gordon, M.; Eiraldi, R.B. Academic and social impairments of elementary school children with attention deficit hyperactivity disorder. Sch. Psychol. Rev. 2011, 40, 200–225. [Google Scholar] [CrossRef]
- Maehler, C.; Schuchardt, K. Working memory in children with specific learning disorders and/or attention deficits. Learn. Individ. Differ. 2016, 49, 341–347. [Google Scholar] [CrossRef]
- Landerl, K.; Bevan, A.; Butterworth, B. Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition 2004, 93, 99–125. [Google Scholar] [CrossRef]
- Sterr, A.M. Attention performance in young adults with learning disabilities. Learn. Individ. Differ. 2004, 14, 125–133. [Google Scholar] [CrossRef]
- Toll, S.W.M.; Van der Ven, S.H.G.; Kroesbergen, E.H.; Van Luit, J.E.H. Executive functions as predictors of math learning disabilities. J. Learn. Disabil. 2011, 44, 521–532. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E.; Place, M.; Dunning, D.L.; Hilton, K.A.; Elliott, J.G. Working memory deficits can be overcome: Impacts of training and medication on working memory in children with ADHD. Appl. Cogn. Psychol. 2010, 24, 827–836. [Google Scholar] [CrossRef]
- de Oliveira Rosa, V.; Franco, A.R.; Salum, G.A., Jr.; Moreira-Maia, C.R.; Wagner, F.; Simioni, A.; de Fraga Bassotto, C.; Moritz, G.R.; Aguzzoli, C.S.; Buchweitz, A.; et al. Effects of computerized cognitive training as add-on treatment to stimulants in ADHD: A pilot fMRI study. Brain Imaging Behav. 2020, 14, 1933–1944. [Google Scholar] [CrossRef]
- Gray, S.A.; Chaban, P.; Martinussen, R.; Goldberg, R.; Gotlieb, H.; Kronitz, R.; Hockenberry, M.; Tannock, R. Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: A randomized controlled trial. J. Child Psychol. Psychiatry 2012, 53, 1277–1284. [Google Scholar] [CrossRef]
- Jones, M.R.; Katz, B.; Buschkuehl, M.; Jaeggi, S.M.; Shah, P. Exploring n-back cognitive training for children with ADHD. J. Atten. Disord. 2020, 24, 704–719. [Google Scholar] [CrossRef] [Green Version]
- Weist, D.J.; Wong, E.H.; Bacon, J.M.; Rosales, K.P.; Wiest, G.M. The effectiveness of computerized cognitive training on working memory in a school setting. Appl. Cogn. Psychol. 2020, 34, 465–471. [Google Scholar] [CrossRef]
- Wiest, D.J.; Wong, E.H.; Minero, L.P.; Pumaccahua, T.T. Utilizing computerized cognitive training to improve working memory and encoding: Piloting a school-based intervention. Education 2014, 135, 264–270. [Google Scholar]
- Gathercole, S.E.; Dunning, D.L.; Holmes, J.; Norris, D. Working memory training involves learning new skills. J. Mem. Lang. 2019, 105, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Rabiner, D.L.; Murray, D.W.; Skinner, A.T.; Malone, P.S. A randomized trial of two promising computer-based interventions for students with attention difficulties. J. Abnorm. Child Psychol. 2010, 38, 131–142. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E. Taking working memory training from the laboratory into schools. Educ. Psychol. 2014, 34, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Johann, V.E.; Karbach, J. Effects of game-based and standard executive control training on cognitive and academic abilities in elementary school children. Dev. Sci. 2020, 23, e12866. [Google Scholar] [CrossRef]
- Dahlin, K.I.E. Working memory training and the effect on mathematical achievement in children with attention deficits and special needs. J. Educ. Learn. 2013, 2, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Schwaighofer, M.; Fischer, F.; Buhner, M. Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ. Psychol. 2015, 50, 138–166. [Google Scholar] [CrossRef]
- Barnett, W.S. Effectiveness of early educational intervention. Science 2011, 333, 975–978. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Want to optimize executive functions and academic outcomes? Simple, just nourish the human spirit. Minn. Symp. Child Psychol. Ser. 2014, 37, 205–232. [Google Scholar]
- Holmes, J.; Gathercole, S.E.; Dunning, D.L. Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 2009, 12, F9–F15. [Google Scholar] [CrossRef]
- Kan, K.J.; van der Maas, H.L.; Levine, S.Z. Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? Intelligence 2019, 73, 52–62. [Google Scholar] [CrossRef]
- Sandford, J.A. Integrated Visual and Auditory Continuous Performance Test Manual; Braintrain Inc.: Richmond, VA, USA, 2000. [Google Scholar]
- Moreno-García, I.; Delgado-Pardo, G.; Roldán-Blasco, C. Attention and response control in ADHD. Evaluation through integrated visual and auditory continuous performance test. Span. J. Psychol. 2015, 18, E1. [Google Scholar] [CrossRef] [Green Version]
- Sheslow, D.; Adams, W. Wide Range Assessment of Memory and Learning–Second Edition (WRAML2); Wide Range Inc.: Wilmington, DE, USA, 2010. [Google Scholar]
- Wechsler, D. WISC-V: Technical and Interpretive Manual; NCS Pearson, Incorporated: Bloomington, MA, USA, 2014; ISBN 9780158978482. [Google Scholar]
- Rossignoli, T. Brain Training in children and adolescents: Is it scientifically valid? Front. Psychol. 2018, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Wuensch, K.L. Nonparametric Effect Size Estimators. Available online: http://core.ecu.edu/psyc/wuenschk/docs30/Nonparam.metric-Effect-Size.pdf (accessed on 16 June 2015).
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Cortese, S.; Ferrin, M.; Brandeis, D.; Buitelaar, J.; Daley, D.; Dittman, R.W.; Holtmann, M.; Santosh, P.; Stevenson, J.; European ADHD Guidelines Group; et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Schmank, C.J.; Goring, S.A.; Kovacs, K.; Conway, A.R. Psychometric network analysis of the Hungarian WAIS. J. Intell. 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.W. Working memory capacity as executive attention. Curr. Dir. Psychol. Sci. 2002, 11, 19–23. [Google Scholar] [CrossRef]
- Schwartz, C.E.; Chesney, M.A.; Irvine, M.J.; Keefe, F.J. The control group dilemma in clinical research: Applications for psychosocial and behavioral medicine trials. Psychosom. Med. 1997, 59, 362–371. [Google Scholar] [CrossRef]
- Calamia, M.; Markon, K.; Tranel, D. Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. Clin. Neuropsychol. 2012, 26, 543–570. [Google Scholar] [CrossRef]
Assessment | N | Mean | Std. Deviation |
---|---|---|---|
IVA-2 Response Inhibition Pre-Test | 40 | 71.6 | 38.64 |
IVA-2 Response Inhibition Post-Test | 40 | 93.25 | 26.76 |
IVA-2 Attention Pre-Test | 41 | 68.39 | 40.70 |
IVA-2 Attention Post-Test | 41 | 86.37 | 26.43 |
WISC-V Working Memory Index Pre-Test | 31 | 86.55 | 8.17 |
WISC-V Working Memory Index Post-Test | 31 | 101.10 | 9.11 |
WRAML-2 Verbal Working Memory Pre-Test | 27 | 10.11 | 1.80 |
WRAML-2 Verbal Working Memory Post-Test | 27 | 11.11 | 2.28 |
WRAML-2 Symbolic Working Memory Pre-Test | 28 | 9.35 | 1.89 |
WRAML-2 Symbolic Working Memory Post-Test | 28 | 10.03 | 1.48 |
Measure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VWM (1) | - | |||||||||||
SWM (2) | 0.46 | - | ||||||||||
Digit Span (3) | 0.22 | 0.28 | - | |||||||||
Picture Span (4) | 0.17 | 0.10 | −0.22 | - | ||||||||
Response Control (5) | 0.09 | −0.29 | −0.20 | −0.14 | - | |||||||
Auditory Response Control (6) | 0.10 | −0.35 | 0.00 | −0.02 | 0.75 | - | ||||||
Visual Response Control (7) | 0.07 | −0.28 | −0.15 | −0.20 | 0.97 | 0.62 | - | |||||
Full Attention (8) | 0.15 | −0.07 | −0.20 | 0.01 | 0.88 | 0.64 | 0.83 | - | ||||
Auditory Attention (9) | 0.15 | −0.15 | 0.00 | −0.04 | 0.66 | 0.81 | 0.61 | 0.80 | - | |||
Visual Attention (10) | 0.10 | −0.06 | −0.17 | −0.01 | 0.88 | 0.63 | 0.84 | 0.97 | 0.71 | - | ||
Auditory Sustained Attention (11) | 0.12 | −0.13 | −0.03 | 0.16 | 0.70 | 0.76 | 0.64 | 0.81 | 0.89 | 0.75 | - | |
Visual Sustained Attention (12) | 0.25 | 0.05 | −0.09 | 0.01 | 0.87 | 0.63 | 0.84 | 0.90 | 0.65 | 0.94 | 0.75 | - |
Measure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VWM (1) | - | |||||||||||
SWM (2) | 0.48 | - | ||||||||||
Digit Span (3) | 0.70 | 0.32 | - | |||||||||
Picture Span (4) | 0.29 | 0.28 | −0.21 | - | ||||||||
Response Control (5) | −0.10 | −0.20 | 0.01 | −0.01 | - | |||||||
Auditory Response Control (6) | −0.10 | −0.09 | −0.08 | −0.02 | 0.65 | - | ||||||
Visual Response Control (7) | 0.05 | −0.25 | 0.14 | −0.03 | 0.91 | 0.43 | - | |||||
Full Attention (8) | 0.07 | 0.10 | 0.14 | 0.04 | 0.49 | 0.38 | 0.34 | - | ||||
Auditory Attention (9) | 0.03 | 0.08 | 0.08 | −0.01 | 0.38 | 0.45 | 0.21 | 0.93 | - | |||
Visual Attention (10) | 0.09 | 0.12 | 0.20 | 0.09 | 0.51 | 0.27 | 0.42 | 0.94 | 0.77 | - | ||
Auditory Sustained Attention (11) | 0.20 | 0.16 | 0.13 | 0.11 | 0.47 | 0.49 | 0.31 | 0.89 | 0.91 | 0.78 | - | |
Visual Sustained Attention (12) | 0.11 | 0.00 | 0.26 | 0.06 | 0.61 | 0.36 | 0.64 | 0.72 | 0.58 | 0.79 | 0.71 | - |
Model | χ2 | df | CFI (TLI) | RMSEA | AIC(BIC) |
---|---|---|---|---|---|
Network | 156.76 *** | 42 | 0.81 (0.70) | 0.25 | 1084 (228) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiest, G.M.; Rosales, K.P.; Looney, L.; Wong, E.H.; Wiest, D.J. Utilizing Cognitive Training to Improve Working Memory, Attention, and Impulsivity in School-Aged Children with ADHD and SLD. Brain Sci. 2022, 12, 141. https://doi.org/10.3390/brainsci12020141
Wiest GM, Rosales KP, Looney L, Wong EH, Wiest DJ. Utilizing Cognitive Training to Improve Working Memory, Attention, and Impulsivity in School-Aged Children with ADHD and SLD. Brain Sciences. 2022; 12(2):141. https://doi.org/10.3390/brainsci12020141
Chicago/Turabian StyleWiest, Grahamm M., Kevin P. Rosales, Lisa Looney, Eugene H. Wong, and Dudley J. Wiest. 2022. "Utilizing Cognitive Training to Improve Working Memory, Attention, and Impulsivity in School-Aged Children with ADHD and SLD" Brain Sciences 12, no. 2: 141. https://doi.org/10.3390/brainsci12020141
APA StyleWiest, G. M., Rosales, K. P., Looney, L., Wong, E. H., & Wiest, D. J. (2022). Utilizing Cognitive Training to Improve Working Memory, Attention, and Impulsivity in School-Aged Children with ADHD and SLD. Brain Sciences, 12(2), 141. https://doi.org/10.3390/brainsci12020141