The Role of Walking Experience in the Emergence of Gait Harmony in Typically Developing Toddlers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sessions
2.2. Procedure
2.3. Walking Conditions
2.4. Data Recording
2.5. Gait Analysis
2.6. Statistical Analysis
3. Results
3.1. Preliminary Analysis
3.2. Fitting Analysis
3.3. Longitudinal Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
ID Subject | Gender | Age (mo) | Body Mass (kg) | WO (mo) | WA (mo) | Speed (km/h) |
---|---|---|---|---|---|---|
P01S1 | M | 1.3 | 4.8 | 10.6 | −9.3 | 0.3 |
P02S1 | M | 1.3 | 4.5 | 11.7 | −10.5 | 0.3 |
P03S1 | F | 1.3 | 4.5 | 12.4 | −11.0 | 0.3 |
P04S1 | F | 1.4 | 4.3 | 13.0 | −11.6 | 0.2 |
P05S1 | F | 1.5 | 4.1 | 11.9 | −10.4 | 0.3 |
P06S1 | M | 1.8 | 5.0 | 15.0 | −13.2 | 0.3 |
P07S1 | F | 1.9 | 4.8 | 11.3 | −9.4 | 0.2 |
P08S1 | F | 2.0 | 5.9 | 11.3 | −9.3 | 0.5 |
P09S1 | F | 2.4 | 6.1 | 13.1 | −10.6 | 0.4 |
P10S1 | F | 3.7 | 8.0 | 13.7 | −10.1 | 0.3 |
P11S1 | F | 4.0 | 5.9 | 13.1 | −9.1 | 0.4 |
P04S2 | F | 4.5 | 7.4 | 13.0 | −8.5 | 0.3 |
P12S1 | F | 4.5 | 6.5 | 14.0 | −9.5 | 0.5 |
P02S2 | M | 4.6 | 6.3 | 11.7 | −7.1 | 0.8 |
P01S2 | M | 4.9 | 7.8 | 10.6 | −5.7 | 0.4 |
P05S2 | F | 5.7 | 6.9 | 11.9 | −6.2 | 0.4 |
P13S1 | M | 5.8 | 7.1 | 14.7 | −8.9 | 0.9 |
P08S2 | F | 6.0 | 6.6 | 11.3 | −5.3 | 0.5 |
P14S1 | M | 6.1 | 7.4 | 14.2 | -8.1 | 0.3 |
P15S1 | M | 6.2 | 8.2 | 12.9 | −6.7 | 0.3 |
P03S2 | F | 6.3 | 6.8 | 12.4 | −6.1 | 0.4 |
P22S4 | M | 6.4 | 7.2 | 12.9 | −6.5 | 0.5 |
P16S1 | M | 6.6 | 7.1 | 12.7 | −6.1 | 0.6 |
P11S2 | F | 6.7 | 6.8 | 13.1 | −6.4 | 0.6 |
P17S1 | F | 6.7 | 6.8 | 16.7 | −10.0 | 0.5 |
P09S2 | F | 7.5 | 12.6 | 13.1 | −5.6 | 0.4 |
P01S3 | M | 7.8 | 9.4 | 10.6 | −2.8 | 0.9 |
P05S3 | F | 8.4 | 7.5 | 11.9 | −3.5 | 0.5 |
P18S1 | F | 9.2 | 8.5 | 10.5 | −1.3 | 0.7 |
P14S2 | M | 9.7 | 9.7 | 14.2 | −4.5 | 0.5 |
P09S3 | F | 9.8 | 9.8 | 13.1 | −3.3 | 0.7 |
P19S1 | M | 9.8 | 9.2 | 11.7 | −1.9 | 0.3 |
P02S3 | M | 9.8 | 8.5 | 11.7 | −1.9 | 0.6 |
P17S2 | F | 10.0 | 8.9 | 16.7 | −6.8 | 0.7 |
P16S2 | M | 10.0 | 7.9 | 12.7 | −2.7 | 0.8 |
P15S2 | M | 10.1 | 10.0 | 12.9 | −2.8 | 0.8 |
P20S1 | M | 10.2 | 10.5 | 15.3 | −5.1 | 0.5 |
P12S2 | F | 10.2 | 9.0 | 14.0 | −3.8 | 0.7 |
P13S2 | M | 10.2 | 10.2 | 14.7 | −4.5 | 0.5 |
P03S3 | F | 10.3 | 8.0 | 12.4 | −2.1 | 0.9 |
P18S2 | F | 10.4 | 8.8 | 10.5 | −0.2 | 1.5 |
P21S1 | M | 10.4 | 9.3 | 12.9 | −2.5 | 0.7 |
P04S3 | F | 10.5 | 9.5 | 13.0 | −2.5 | 0.8 |
P01S4 | M | 10.5 | 10.3 | 10.6 | −0.1 | 1.2 |
P22S1 | F | 10.6 | 9.0 | 14.8 | −4.2 | 0.7 |
P05S4 | F | 10.7 | 8.7 | 11.9 | −1.2 | 0.7 |
P07S2 | F | 10.8 | 8.8 | 11.3 | −0.5 | 2.1 |
P18S3 | F | 10.8 | 9.1 | 10.5 | 0.3 | 1.1 |
P01S5 | M | 10.9 | 10.3 | 10.6 | 0.3 | 1.0 |
P23S1 | M | 11.2 | 9.6 | 14.1 | −2.9 | 0.9 |
P24S1 | M | 11.4 | 8.5 | 16.7 | −5.2 | 0.5 |
P07S3 | F | 11.7 | 9.4 | 11.3 | 0.4 | 2.0 |
P05S5 | F | 12.1 | 9.2 | 11.9 | 0.2 | 1.0 |
P02S4 | M | 12.1 | 8.7 | 11.7 | 0.4 | 0.7 |
P25S1 | M | 12.2 | 11.0 | 15.7 | −3.5 | 0.7 |
P20S2 | M | 12.5 | 10.9 | 15.3 | −2.8 | 0.4 |
P16S3 | M | 12.7 | 9.1 | 12.7 | 0.1 | 1.0 |
P18S4 | F | 12.8 | 9.4 | 10.5 | 2.2 | 2.7 |
P01S6 | M | 13.1 | 10.1 | 10.6 | 2.4 | 2.4 |
P04S4 | F | 13.1 | 10.5 | 13.0 | 0.2 | 1.4 |
P10S2 | F | 13.9 | 11.2 | 13.7 | 0.2 | 0.8 |
P05S6 | F | 14.0 | 9.3 | 11.9 | 2.1 | 2.2 |
P15S3 | M | 14.3 | 10.3 | 12.9 | 1.4 | 1.6 |
P23S2 | M | 14.4 | 10.2 | 14.1 | 0.2 | 1.0 |
P12S3 | F | 14.6 | 8.7 | 14.0 | 0.6 | 2.5 |
P03S4 | F | 14.7 | 9.2 | 12.4 | 2.3 | 2.3 |
P14S3 | M | 14.8 | 10.7 | 14.2 | 0.6 | 1.9 |
P22S2 | F | 15.1 | 10.2 | 14.8 | 0.3 | 0.9 |
P13S3 | M | 15.1 | 11.2 | 14.7 | 0.3 | 1.1 |
P06S2 | M | 15.3 | 9.9 | 15.0 | 0.4 | 0.8 |
P24S2 | M | 15.6 | 9.4 | 16.7 | −1.1 | 1.3 |
P17S3 | F | 15.7 | 10.9 | 16.7 | −1.0 | 0.7 |
P18S5 | F | 16.1 | 10.2 | 10.5 | 5.6 | 3.5 |
P01S7 | M | 16.5 | 11.3 | 10.6 | 5.8 | 3.1 |
P17S4 | F | 17.1 | 12.0 | 16.7 | 0.4 | 2.1 |
P24S3 | M | 17.2 | 10.0 | 16.7 | 0.5 | 1.3 |
P20S3 | M | 17.3 | 12.7 | 15.3 | 2.0 | 2.3 |
P02S5 | M | 17.4 | 10.5 | 11.7 | 5.7 | 1.8 |
P07S4 | F | 17.5 | 10.7 | 11.3 | 6.2 | 3.0 |
P05S7 | F | 18.2 | 10.3 | 11.9 | 6.3 | 2.8 |
P21S2 | M | 18.6 | 12.4 | 12.9 | 5.7 | 2.9 |
P03S5 | F | 19.0 | 10.4 | 12.4 | 6.7 | 3.4 |
P09S4 | F | 19.3 | 12.5 | 13.1 | 6.2 | 1.8 |
P16S1 | F | 19.3 | 12.0 | 13.0 | 6.4 | 1.8 |
P22S3 | F | 19.4 | 11.6 | 14.8 | 4.5 | 3.2 |
P15S4 | M | 19.4 | 12.9 | 12.9 | 6.4 | 2.6 |
P04S5 | F | 19.8 | 11.2 | 13.0 | 6.8 | 3.2 |
P27S1 | F | 19.8 | 10.4 | 13.1 | 6.8 | 2.5 |
P12S4 | F | 20.1 | 10.3 | 14.0 | 6.2 | 3.0 |
P13S4 | M | 20.3 | 12.0 | 14.7 | 5.6 | 2.2 |
P20S4 | M | 20.8 | 13.0 | 15.3 | 5.5 | 3.4 |
P06S3 | M | 21.1 | 11.4 | 15.0 | 6.1 | 2.6 |
P17S5 | F | 23.1 | 13.5 | 16.7 | 6.4 | 2.6 |
References
- Martorell, R.; Onis, M.; Martines, J.; Black, M.; Onyango, A.; Dewey, K.G. WHO motor development study: Windows of achievement for six gross motor development milestones. Acta Paediatr. 2006, 95, 86–95. [Google Scholar]
- Adolph, K.E.; Robinson, S.R. The road to walking: What learning to walk tells us about development. In Oxford Handbook of Developmental Psychology; Zelazo, P.D., Ed.; Oxford University Press: Oxford, UK, 2013; Volume 1, pp. 403–443. [Google Scholar]
- Sutherland, D.H.; Olshen, R.; Cooper, L.; Woo, S. The development of mature gait. J. Bone Jt. Surg. 1980, 62, 336–353. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Dominici, N.; Cappellini, G.; Dan, B.; Cheron, G.; Lacquaniti, F. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers. J. Exp. Biol. 2004, 207, 3797–3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Dominici, N.; Lacquaniti, F. Development of independent walking in toddlers. Exerc. Sport Sci. Rev. 2007, 35, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.E.; Adolph, K.E. Learning and development in infant locomotion. Prog. Brain 2007, 164, 237–255. [Google Scholar]
- Forssberg, H. Ontongeny of human locomotor control. I. Infant stepping, supported locomotion, and transition to independent locomotion. Exp. Brain Res. 1985, 57, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Bril, B.; Breniere, Y. Steady-state velocity and temporal structure of gait during the first six months of autonomous walking. Hum. Mov. Sci. 1989, 8, 99–122. [Google Scholar] [CrossRef]
- Breniere, Y.; Bril, B.; Fontaine, R. Analysis of the transition from upright stance to steady state locomotion in children with under 200 days of autonomous walking. J. Mot. Behav. 1989, 21, 20–37. [Google Scholar] [CrossRef]
- Gesell, A. Maturation and the patterning of behavior. In A Handbook of Child Psychology, 2nd ed.; Murchison, C., Ed.; Clark University Press: Worcester, MA, USA, 1933; pp. 209–235. [Google Scholar]
- Dominici, N.; Ivanenko, Y.P.; Cappellini, G.; d’Avella, A.; Mondì, V.; Cicchese, M.; Fabiano, A.; Silei, T.; Di Paolo, A.; Giannini, C.; et al. Locomotor primitives in newborn babies and their development. Science 2011, 334, 997–999. [Google Scholar] [CrossRef]
- Sylos-Labini, F.; La Scaleia, V.; Cappellini, G.; Fabiano, A.; Picone, S.; Keshishian, E.S.; Zhvansky, D.S.; Paolillo, P.; Solopova, I.A.; d’Avella, A.; et al. Distinct locomotor precursors in newborn babies. Proc. Natl. Acad. Sci. USA 2020, 117, 9604–9612. [Google Scholar] [CrossRef]
- Adolph, K.E.; Robinson, S.R.; Young, J.W.; Gill-Alvarez, F. What is the shape of developmental change? Psychol. Rev. 2008, 115, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.S.; Silva, A.; Tavares, J.M.R. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: A review. Somatosens. Mot. Res. 2012, 29, 131–143. [Google Scholar] [CrossRef]
- Lacquaniti, F.; Ivanenko, Y.P.; Zago, M. Patterned control of human locomotion. J. Physiol. 2012, 590, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Fusco, A.; Morone, G.; Paolucci, S. Development and decline of upright gait stability. Front. Aging Neurosci. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Marro, T.; Paolucci, S.; Morelli, D. Stability and harmony of gait in children with cerebral palsy. Res. Dev. Disabil. 2012, 33, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Perry, J. Gait Analysis: Normal and Pathological Function; Slack Incorporated: Thorofare, NJ, USA, 1992. [Google Scholar]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef]
- Lythgo, N.; Wilson, C.; Galea, M. Basic gait and symmetry measures for primary school-aged children and young adults. II: Walking at slow, free and fast speed. Gait Posture 2011, 33, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef]
- Iosa, M.; De Bartolo, D.; Morone, G.; Boffi, T.; Mammucari, E.; Vannozzi, G.; Bini, F.; Marinozzi, F.; Antonucci, G.; Paolucci, S. Gait phase proportions in different locomotion tasks: The pivot role of golden ratio. Neurosci. Lett. 2019, 699, 127–133. [Google Scholar] [CrossRef]
- Iosa, M.; Fusco, A.; Marchetti, F.; Morone, G.; Caltagirone, C.; Paolucci, S.; Peppe, A. The golden ratio of gait harmony: Repetitive proportions of repetitive gait phases. BioMed Res. Int. 2013, 2013, 918642. [Google Scholar] [CrossRef] [Green Version]
- Iosa, M.; Morone, G.; Paolucci, S. Phi in physiology, psychology and biomechanics: The golden ratio between myth and science. Biosystems 2018, 165, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G.A.; Thys, H.; Zamboni, A. The sources of external work in level walking and running. J. Physiol. 1976, 262, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Morone, G.; Bini, F.; Fusco, A.; Paolucci, S.; Marinozzi, F. The connection between anthropometry and gait harmony unveiled through the lens of the golden ratio. Neurosci. Lett. 2016, 612, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Serrao, M.; Chini, G.; Iosa, M.; Casali, C.; Morone, G.; Conte, C.; Bini, F.; Marinozzi, F.; Coppola, G.; Pierelli, F.; et al. Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia. Clin. Biomech. 2017, 48, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Dominici, N.; Cappellini, G.; Lacquaniti, F. Kinematics in newly walking toddlers does not depend upon postural stability. J. Neurophysiol. 2005, 94, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Dominici, N.; Ivanenko, Y.P.; Lacquaniti, F. Control of foot trajectory in walking toddlers: Adaptation to load changes. J. Neurophysiol. 2007, 97, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, C.; Morrison, S.C.; Hashmi, F.; Phethean, J.; Nester, C. Biomechanics of the infant foot during the transition to independent walking: A narrative review. Gait Posture 2018, 59, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Iosa, M.; Morone, G.; Fusco, A.; Marchetti, F.; Caltagirone, C.; Paolucci, S.; Peppe, A. Loss of fractal gait harmony in Parkinson’s Disease. Clin. Neurophysiol. 2016, 127, 1540–1546. [Google Scholar] [CrossRef]
- Iosa, M.; Bini, F.; Marinozzi, F.; Fusco, A.; Morone, G.; Koch, G.; Cinnera, A.M.; Bonnì, S.; Paolucci, S. Stability and harmony of gait in patients with subacute stroke. J. Med. Biol. Eng. 2016, 36, 635–643. [Google Scholar] [CrossRef]
- Bril, B.; Breniere, Y. Postural requirements and progression velocity in young walkers. J. Mot. Behav. 1992, 24, 105–116. [Google Scholar] [CrossRef]
- Oliveira, H.B.; da Rosa, R.G.; Gomeñuka, N.A.; Carvalho, A.R.; Costa, R.F.D.; Peyré-Tartaruga, L.A. When mechanical work meets energetics: Obese versus non-obese children walking. Exp. Physiol. 2020, 105, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, A.F.; Saubade, M.; Hans, D.; Millet, G.P.; Malatesta, D. The determinants of the preferred walking speed in individuals with obesity. Obes. Facts 2019, 12, 543–553. [Google Scholar]
- Siekerman, K.; Barbu-Roth, M.; Anderson, D.I.; Donnelly, A.; Goffinet, F.; Teulier, C. Treadmill stimulation improves newborn stepping. Dev. Psychobiol. 2015, 57, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, T.; Yang, J.F. Could different directions of infant stepping be controlled by the same locomotor central pattern generator? J. Neurophysiol. 2000, 83, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Stephens, M.J.; Vishram, R. Infant stepping: A method to study the sensory control of human walking. J. Physiol. 1998, 507, 927–937. [Google Scholar] [CrossRef]
- Adolph, K.E.; Vereijken, B.; Shrout, P.E. What changes in infant walking and why. Child Dev. 2003, 74, 475–497. [Google Scholar] [CrossRef]
- Adolph, K.E.; Cole, W.G.; Komati, M.; Garciaguirre, J.S.; Badaly, D.; Lingeman, J.M.; Chan, G.L.; Sotsky, R.B. How do you learn to walk? Thousands of steps and dozens of falls per day. Psychol. Sci. 2012, 23, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- McGraw, M.B. The Neuromuscular Maturation of the Human Infant; Columbia University Press: New York, NY, USA, 1945. [Google Scholar]
- McGraw, M.B. Growth: A Study of Johnny and Jimmy; Appleton-Century Co.: New York, NY, USA, 1935. [Google Scholar]
- Newell, K.M.; Wade, M.G. Physical growth, body scale, and perceptual-motor development. Adv. Child Dev. Behav. 2018, 55, 205–243. [Google Scholar]
- Plumert, J.M.; Kearney, J.K. Timing is almost everything: How children perceive and act on dynamic affordances. Adv. Child Dev. Behav. 2018, 55, 173–204. [Google Scholar]
Time | Gait Ratios | a | τ (Months) | b | R2 |
---|---|---|---|---|---|
Before first steps | GR0 | −0.022 | −7.067 | 1.451 | 0.15 |
GR1 | −102.9 | 15,762.93 | 105.4 | 0.06 | |
GR2 | 248.2 | 32,092.43 | −247.4 | 0.06 | |
From first steps and after them | GR0 | −0.446 | 0.218 | 1.618 | 0.89 |
GR1 | 0.841 | 0.882 | 1.629 | 0.90 | |
GR2 | −0.960 | 1.369 | 1.515 | 0.75 |
Pearson’s Correlations | Stages of Motor Development | Age | Walking Age | Walking Speed | Froude Number |
---|---|---|---|---|---|
GR0 | All stages | 0.487 ** | 0.496 ** | 0.694 ** | 0.678 ** |
Before first steps | −0.162 | −0.113 | 0.137 | 0.176 | |
First steps and after | 0.660 ** | 0.697 ** | 0.852 ** | 0.738 ** | |
Walking Speed | All stages | 0.828 ** | 0.865 ** | - | 0.968 ** |
Before first steps | 0.542 ** | 0.662 ** | - | 0.944 ** | |
First steps and after | 0.637 ** | 0.746 ** | - | 0.966 ** | |
Froude Number | All stages | 0.727 ** | 0.775 ** | 0.968 ** | - |
Before first steps | 0.364 * | 0.492 * | 0.944 ** | - | |
First steps and after | 0.510 * | 0.684 ** | 0.966 ** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bartolo, D.; Zandvoort, C.S.; Goudriaan, M.; Kerkman, J.N.; Iosa, M.; Dominici, N. The Role of Walking Experience in the Emergence of Gait Harmony in Typically Developing Toddlers. Brain Sci. 2022, 12, 155. https://doi.org/10.3390/brainsci12020155
De Bartolo D, Zandvoort CS, Goudriaan M, Kerkman JN, Iosa M, Dominici N. The Role of Walking Experience in the Emergence of Gait Harmony in Typically Developing Toddlers. Brain Sciences. 2022; 12(2):155. https://doi.org/10.3390/brainsci12020155
Chicago/Turabian StyleDe Bartolo, Daniela, Coen S. Zandvoort, Marije Goudriaan, Jennifer N. Kerkman, Marco Iosa, and Nadia Dominici. 2022. "The Role of Walking Experience in the Emergence of Gait Harmony in Typically Developing Toddlers" Brain Sciences 12, no. 2: 155. https://doi.org/10.3390/brainsci12020155
APA StyleDe Bartolo, D., Zandvoort, C. S., Goudriaan, M., Kerkman, J. N., Iosa, M., & Dominici, N. (2022). The Role of Walking Experience in the Emergence of Gait Harmony in Typically Developing Toddlers. Brain Sciences, 12(2), 155. https://doi.org/10.3390/brainsci12020155