No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Flanker Task
2.3. ERP Recording
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Flanker Performance
3.1.1. RT
3.1.2. Accuracy
3.2. ERP P3
3.2.1. Latency
3.2.2. Amplitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, D.; Chou, E. The Acute Effect of High-Intensity Exercise on Executive Function: A Meta-Analysis. Perspect. Psychol. Sci. 2019, 14, 734–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMorris, T.; Hale, B.J. Is there an acute exercise-induced physiological/biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic investigation. J. Sport Health Sci. 2015, 4, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Tessaro, V.H.; Teixeira, L.A.C.; Murakava, K.; Roschel, H.; Gualano, B.; Takito, M. Influence of Acute High-Intensity Aerobic Interval Exercise Bout on Selective Attention and Short-Term Memory Tasks. Percept. Mot. Ski. 2014, 118, 63–72. [Google Scholar] [CrossRef]
- Hwang, J.; Brothers, R.M.; Castelli, D.M.; Glowacki, E.M.; Chen, Y.T.; Salinas, M.M.; Kim, J.; Jung, Y.; Calvert, H.G. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neurosci. Lett. 2016, 630, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.-C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef]
- Kao, S.-C.; Drollette, E.S.; Ritondale, J.P.; Khan, N.; Hillman, C.H. The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol. Sport Exerc. 2018, 38, 90–99. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Suga, T.; Takenaka, S.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 2016, 155, 224–230. [Google Scholar] [CrossRef]
- Walsh, J.J.; Dunlap, C.; Miranda, J. Brief, high-intensity interval exercise improves selective attention in university students. Int. J. Exerc. Sci. 2018, 11, 152–167. [Google Scholar]
- Gibala, M.J.; McGee, S.L. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J. High-intensity interval training: A time-efficient strategy for health promotion? Curr. Sports Med. Rep. 2007, 6, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Currie, K.D.; Dubberley, J.B.; McKelvie, R.S.; MacDonald, M. Low-Volume, High-Intensity Interval Training in Patients with CAD. Med. Sci. Sports Exerc. 2013, 45, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Gillen, J.B.; Martin, B.J.; MacInnis, M.; Skelly, L.E.; Tarnopolsky, M.A.; Gibala, M.J. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS ONE 2016, 11, e0154075. [Google Scholar] [CrossRef]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Norman, D.A.; Shallice, T. Attention to Action: Willed and Automatic Control of Behavior. In Consciousness and Self-Regulation; Davidson, R.J., Schwartz, G.E., Shapiro, D., Eds.; Plenum Press: New York, NY, USA, 1986; pp. 1–18. [Google Scholar]
- Rogers, R.D.; Monsell, S. Cost of a predicatable switch between simple cognitive tasks. Am. Psychol. Assoc. 1995, 124, 207–231. [Google Scholar]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Aly, M.; Kojima, H. Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: A randomized controlled ERP study. Ment. Health Phys. Act. 2020, 19, 100363. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Alderman, B.; Chu, C.-H.; Wang, C.-C.; Song, T.-F.; Chen, F.-T. Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology 2016, 54, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Moore, R.D.; Saliba, B.J.; Pontifex, M.B.; Hillman, C.H. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Dev. Cogn. Neurosci. 2014, 7, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Snook, E.M.; Jerome, G. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. 2003, 48, 307–314. [Google Scholar] [CrossRef]
- Hsieh, S.-S.; Huang, C.-J.; Wu, C.-T.; Chang, Y.-K.; Hung, T.-M. Acute Exercise Facilitates the N450 Inhibition Marker and P3 Attention Marker during Stroop Test in Young and Older Adults. J. Clin. Med. 2018, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Lind, R.R.; Beck, M.M.; Wikman, J.; Malarski, K.; Krustrup, P.; Lundbye-Jensen, J.; Geertsen, S. Acute high-intensity football games can improve children’s inhibitory control and neurophysiological measures of attention. Scand. J. Med. Sci. Sports 2019, 29, 1546–1562. [Google Scholar] [CrossRef]
- Eather, N.; Babic, M.; Riley, N. Integrating high-intensity interval training into the workplace: The Work-HIIT pilot RCT. Scand. J. Med. Sci. Sports 2020, 30, 2445–2455. [Google Scholar] [CrossRef]
- Eather, N.; Riley, N.; Miller, A.; Smith, V.; Poole, A.; Vincze, L.; Morgan, P.J.; Lubans, D. Efficacy and feasibility of HIIT training for university students: The Uni-HIIT RCT. J. Sci. Med. Sport 2019, 22, 596–601. [Google Scholar] [CrossRef]
- Brush, C.J.; Olson, R.L.; Ehmann, P.J.; Osovsky, S.; Alderman, B.L. Dose–Response and Time Course Effects of Acute Resistance Exercise on Executive Function. J. Sport Exerc. Psychol. 2016, 38, 396–408. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Hillman, C.H.; Fernhall, B.; Thompson, K.M.; Valentini, T.A. The Effect of Acute Aerobic and Resistance Exercise on Working Memory. Med. Sci. Sports Exerc. 2009, 41, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-L.; Wang, C.-H.; Pan, C.-Y.; Chen, F.-C.; Huang, T.-H.; Chou, F.-Y. Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci. 2014, 8, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Chatrian, G.E.; Lettich, E.; Nelson, P.L. Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities. Am. J. EEG Technol. 1985, 25, 83–92. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Li, W.; Liu, J.; Li, X.; Fu, Y.; Ma, X. Bibliometric Review to Explore Emerging High-Intensity Interval Training in Health Promotion: A New Century Picture. Front. Public Health 2021, 9, 7633. [Google Scholar] [CrossRef]
- Sibley, B.A.; Beilock, S.L. Exercise and working memory: An individual differences investigation. J. Sport Exerc. Psychol. 2007, 29, 783–791. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Sato, D.; Yamashiro, K.; Tsubaki, A.; Takehara, N.; Uetake, Y.; Nakano, S.; Maruyama, A. Inter-individual differences in working memory improvement after acute mild and moderate aerobic exercise. PLoS ONE 2018, 13, e0210053. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Drollette, E.S.; Ludyga, S.; Hillman, C.H.; Kamijo, K. The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neurosci. Biobehav. Rev. 2021, 128, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.N.; Maher, J.P.; Meadows, C.C.; Bittel, K.M.; Hevel, D.J.; Drollette, E.S. Positive affect moderates inhibitory control and positive affect following a single bout of self-select aerobic exercise. Psychol. Sport Exerc. 2022; in press. [Google Scholar]
Seated Rest | HIIE-Aerobic/Resistance | HIIE-Aerobic | ||||
---|---|---|---|---|---|---|
Measure | 30 min | 85 min | 30 min | 85 min | 30 min | 85 min |
Flanker Accuracy (%) | ||||||
Congruent | 98.3 ± 2.3 | 96.6 ± 3.5 | 98.1 ± 2.8 | 97.2 ± 2.8 | 98.3 ± 1.9 | 96.0 ± 5.6 |
Incongruent | 90.0 ± 9.9 | 88.8 ± 7.6 | 91.3 ± 5.9 | 90.5 ± 6.2 | 91.1 ± 7.2 | 88.6 ± 8.2 |
Interference | 8.4 ± 9.4 | 7.4 ± 6.6 | 6.8 ± 5.3 | 6.5 ± 6.4 | 6.8 ± 6.8 | 7.0 ± 5.5 |
Flanker RT (ms) | ||||||
Congruent | 401.3 ± 39.6 | 390.9 ± 32.9 | 392.3 ± 40.3 | 397.2 ± 41.0 | 398.8 ± 35.4 | 401.5 ± 39.3 |
Incongruent | 447.3 ± 42.9 | 431.9 ± 39.8 | 439.6 ± 45.9 | 440.0 ± 42.7 | 445.9 ± 44.2 | 442.8 ±46.3 |
Interference | 46.0 ± 17.7 | 41.0 ± 20.0 | 47.4 ± 18.8 | 42.8 ± 19.6 | 47.1 ± 17.3 | 41.3 ± 18.9 |
P3 congruent amplitude (µV) | ||||||
Cz | 6.4 ± 4.0 | 5.1 ± 2.9 | 5.4 ± 3.1 | 5.4 ± 2.4 | 4.9 ± 3.3 | 5.3 ± 3.4 |
CPz | 6.3 ±3.8 | 5.1 ± 2.8 | 4.7 ± 3.2 | 4.8 ± 2.2 | 4.8 ± 3.2 | 5.2 ± 3.2 |
Pz | 4.5 ± 3.9 | 3.3 ± 2.6 | 3.2 ± 3.6 | 3.0 ± 2.7 | 3.4 ± 3.2 | 4.0 ± 3.0 |
POz | 3.3 ± 3.7 | 3.7 ± 7.6 | 2.1 ± 3.5 | 2.5 ± 2.9 | 2.5 ± 3.6 | 2.9 ± 4.0 |
Oz | 2.5 ± 2.5 | 1.9 ± 2.4 | 1.2 ± 3.2 | 2.9 ± 4.2 | 1.9 ± 2.5 | 2.8 ± 2.9 |
P3 congruent latency (ms) | ||||||
Cz | 368.8 ± 61.4 | 357.3 ± 37.0 | 365.3 ± 57.4 | 366.0 ± 61.7 | 361.2 ± 63.6 | 361.5 ± 44.2 |
CPz | 371.4 ± 61.2 | 354.7 ± 37.6 | 359.3 ± 56.9 | 355.7 ± 52.3 | 355.7 ± 39.2 | 359.8 ± 43.3 |
Pz | 365.1 ± 57.8 | 344.0 ± 36.5 | 358.3 ± 51.3 | 345.8 ± 34.8 | 341.0 ± 37.6 | 351.6 ± 43.5 |
POz | 365.2 ± 68.5 | 347.6 ± 36.7 | 352.3 ± 47.0 | 343.7 ± 34.0 | 332.8 ± 21.7 | 350.0 ± 44.0 |
Oz | 359.0 ± 59.6 | 344.8 ± 33.6 | 344.0 ± 41.4 | 350.9 ± 47.9 | 328.6 ± 17.6 | 344.4 ± 41.1 |
P3 incongruent amplitude (µV) | ||||||
Cz | 7.7 ± 4.3 | 6.7 ± 3.1 | 7.5 ± 3.4 | 6.7 ± 3.3 | 7.7 ± 3.5 | 7.1 ± 3.3 |
CPz | 7.7 ± 4.2 | 6.9 ± 3.2 | 6.8 ± 3.4 | 6.2 ± 2.9 | 7.6 ± 3.5 | 7.0 ± 3.2 |
Pz | 5.9 ± 4.2 | 5.1 ± 3.1 | 5.0 ± 3.7 | 4.3 ± 3.2 | 6.1 ± 3.5 | 6.1 ± 3.4 |
POz | 4.5 ± 4.0 | 4.6 ± 4.8 | 4.0 ± 3.3 | 3.6 ± 3.1 | 4.8 ± 3.6 | 4.8 ± 3.9 |
Oz | 3.3 ± 2.7 | 2.7 ± 2.2 | 2.7 ± 3.2 | 3.5 ± 4.0 | 3.6 ± 2.4 | 4.1 ± 3.0 |
P3 incongruent latency (ms) | ||||||
Cz | 407.8 ± 50.2 | 406.1 ± 45.0 | 410.5 ± 48.5 | 413.9 ± 58.6 | 409.5 ± 43.4 | 404.7 ± 40.8 |
CPz | 405.6 ± 51.9 | 401.5 ± 44.9 | 403.3 ± 46.9 | 403.9 ± 59.5 | 408.2 ± 43.3 | 400.3 ± 47.3 |
Pz | 392.4 ± 57.3 | 379.4 ± 44.7 | 404.3 ± 53.3 | 383.9 ± 53.6 | 386.8 ± 40.5 | 392.0 ± 45.2 |
POz | 387.2 ± 58.6 | 368.3 ± 48.5 | 383.6 ± 56.0 | 368.1 ± 50.8 | 379.0 ± 40.7 | 379.1 ± 52.7 |
Oz | 384.9 ± 57.8 | 367.3 ± 37.0 | 368.0 ± 43.6 | 369.7 ± 43.3 | 371.8 ± 45.5 | 374.0 ± 49.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drollette, E.S.; Johnson, M.N.; Meadows, C.C. No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities. Brain Sci. 2022, 12, 185. https://doi.org/10.3390/brainsci12020185
Drollette ES, Johnson MN, Meadows CC. No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities. Brain Sciences. 2022; 12(2):185. https://doi.org/10.3390/brainsci12020185
Chicago/Turabian StyleDrollette, Eric S., Megan N. Johnson, and Caroline C. Meadows. 2022. "No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities" Brain Sciences 12, no. 2: 185. https://doi.org/10.3390/brainsci12020185
APA StyleDrollette, E. S., Johnson, M. N., & Meadows, C. C. (2022). No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities. Brain Sciences, 12(2), 185. https://doi.org/10.3390/brainsci12020185