Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Behavioral Tests
2.3.1. Locomotor Activity Measurement
2.3.2. Rotarod Test
2.3.3. Chimney Test
2.3.4. Elevated plus Maze (EPM) Test
2.3.5. Modified Elevated Plus-Maze (mEPM) Test
2.3.6. Novel Object Recognition (NOR) Test
2.3.7. Pentylenetetrazole (PTZ)-Induced Seizures
2.4. Statistical Analysis
3. Results
3.1. Effects of Mephedrone on the Spontaneous Locomotor Activity in Mice
3.2. Tolerance to the Mephedrone-Induced Hyperlocomotion in Mice
3.3. Effects of Mephedrone in the Rotarod Test and in the Chimney Test in Mice
3.4. Effects of Mephedrone in the EPM Test in Mice
3.5. Effects of Mephedrone on the PTZ-Induced Seizures in Mice
3.6. Effects of Mephedrone in the mEMP Test in Mice
3.7. Effects of Mephedrone in the NOR Test in Mice
4. Discussion
4.1. Effects of Mephedrone on the Spontaneous Locomotor Activity and Tolerance to the Mephedrone-Induced Hyperlocomotion
4.2. Effects of Mephedrone on Motor Coordination
4.3. Effects of Mephedrone in the EPM Test
4.4. Effects of Mephedrone in the PTZ Seizure Model
4.5. Effects of Mephedrone on Various Aspects of Learning and Memory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mead, J.; Parrott, A. Mephedrone and MDMA: A comparative review. Brain Res. 2020, 1735, 146740. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.; da Silva, D.D.; Carvalho, F.; Bastos, M.D.L.; Carmo, H. The novel psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone): A review. Forensic Sci. Int. 2019, 295, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kapitány-Fövény, M.; Kertész, M.; Winstock, A.; Deluca, P.; Corazza, O.; Farkas, J.; Zacher, G.; Urbán, R.; Demetrovics, Z. Substitutional potential of mephedrone: An analysis of the subjective effects. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pantano, F.; Tittarelli, R.; Mannocchi, G.; Pacifici, R.; Di Luca, A.; Busardò, F.P.; Marinelli, E. Neurotoxicity Induced by Mephedrone: An up-to-date Review. Curr. Neuropharmacol. 2017, 15, 738–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angoa-Pérez, M.; Zagorac, B.; Winters, A.D.; Greenberg, J.M.; Ahmad, M.; Theis, K.R.; Kuhn, D.M. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS ONE 2020, 15, e0227774. [Google Scholar] [CrossRef]
- Motbey, C.P.; Hunt, G.E.; Bowen, M.T.; Artiss, S.; McGregor, I.S. Mephedrone (4-methylmethcathinone, ‘meow’): Acute behavioural effects and distribution of Fos expression in adolescent rats. Addict. Biol. 2012, 17, 409–422. [Google Scholar] [CrossRef]
- Winstock, A.; Mitcheson, L.; Ramsey, J.; Davies, S.; Puchnarewicz, M.; Marsden, J. Mephedrone: Use, subjective effects and health risks. Addiction 2011, 106, 1991–1996. [Google Scholar] [CrossRef]
- Green, A.R.; King, M.V.; Shortall, S.E.; Fone, K.C.F. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br. J. Pharmacol. 2014, 171, 2251–2268. [Google Scholar] [CrossRef] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Report on the Risk Assessment of Mephedrone in the Framework of the Council Decision on New Psychoactive Substances; Publications Office of the European Union: Lisbon, Portugal, 2011. [Google Scholar]
- Simmler, L.D.; Buser, T.A.; Donzelli, M.; Schramm, Y.; Dieu, L.H.; Huwyler, J.; Chaboz, S.; Hoener, M.C.; Liechti, M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013, 168, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Pifl, C.; Reither, H.; Hornykiewicz, O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur. J. Pharmacol. 2015, 755, 119–126. [Google Scholar] [CrossRef]
- Martínez-Clemente, J.; López-Arnau, R.; Carbó, M.; Pubill, D.; Camarasa, J.; Escubedo, E. Mephedrone pharmacokinetics after intravenous and oral administration in rats: Relation to pharmacodynamics. Psychopharmacology 2013, 229, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schifano, F.; Mapping, P.W.; Albanese, A.; Fergus, S.; Stair, J.; Deluca, P.; Corazza, O.; Davey, Z.; Corkery, J.M.; Siemann, H.; et al. Mephedrone (4-methylmethcathinone; ‘meow meow’): Chemical, pharmacological and clinical issues. Psychopharmacology 2011, 214, 593–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope, V.; Cullen, K.J.; Smith, J.; Jessop, L.; Parry, J.; Ncube, F. Is the recent emergence of mephedrone injecting in the United Kingdom associated with elevated risk behaviours and blood borne virus infection? Eurosurveillance 2016, 21, 30225. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Europol–EMCDDA Joint Report on a New Psychoactive Substance: 4-Methylmethcathinone (Mephedrone). 2010. Available online: https://www.europol.europa.eu/publications-events/publications/europol%e2%80%93emcdda-joint-report-new-psychoactive-substance-4-methylmethcathinone-mephedrone (accessed on 27 January 2021).
- Eshleman, A.J.; Wolfrum, K.M.; Hatfield, M.G.; Johnson, R.A.; Murphy, K.V.; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol. 2013, 85, 1803–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, M.H.; Ayestas, M.A.; Partilla, J.S.; Sink, J.R.; Shulgin, A.T.; Daley, P.F.; Brandt, S.D.; Rothman, R.B.; Ruoho, A.E.; Cozzi, N.V. The Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue. Neuropsychopharmacology 2011, 37, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, G.C.; Webb, K.M.; McFadden, L.M.; Chu, P.W.; Ellis, J.D.; Allen, S.C.; Andrenyak, D.M.; Vieira-Brock, P.L.; German, C.L.; Conrad, K.M.; et al. 4-Methylmethcathinone (Mephedrone): Neuropharmacological Effects of a Designer Stimulant of Abuse. J. Pharmacol. Exp. Ther. 2011, 339, 530–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmler, L.; Rickli, A.; Hoener, M.; Liechti, M. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 2014, 79, 152–160. [Google Scholar] [CrossRef]
- Kehr, J.; Ichinose, F.; Yoshitake, S.; Goiny, M.; Sievertsson, T.; Nyberg, F.; Yoshitake, T. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br. J. Pharmacol. 2011, 164, 1949–1958. [Google Scholar] [CrossRef] [Green Version]
- Gołembiowska, K.; Jurczak, A.; Kamińska, K.; Noworyta, K.; Górska, A.M. Effect of Some Psychoactive Drugs Used as ‘Legal Highs’ on Brain Neurotransmitters. Neurotox. Res. 2016, 29, 394–407. [Google Scholar] [CrossRef] [Green Version]
- López-Arnau, R.; Martínez-Clemente, J.; Pubill, D.; Escubedo, E.; Camarasa, J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: Butylone, mephedrone and methylone. Br. J. Pharmacol. 2012, 167, 407–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortall, S.E.; Green, A.R.; Swift, K.M.; Fone, K.C.; King, M.V. Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia. Br. J. Pharmacol. 2013, 168, 966–977. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, K.; Noworyta-Sokołowska, K.; Górska, A.; Rzemieniec, J.; Wnuk, A.; Wojtas, A.; Kreiner, G.; Kajta, M.; Gołembiowska, K. The effects of exposure to mephedrone during adolescence on brain neurotransmission and neurotoxicity in adult rats. Neurotox. Res. 2018, 34, 525–537. [Google Scholar] [CrossRef]
- Wright, M.J., Jr.; Angrish, D.; Aarde, S.M.; Barlow, D.J.; Buczynski, M.W.; Creehan, K.M.; Vandewater, S.A.; Parsons, L.H.; Houseknecht, K.L.; Dickerson, T.J.; et al. Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats. PLoS ONE 2012, 7, e44652. [Google Scholar] [CrossRef] [PubMed]
- Grochecki, P.; Smaga, I.; Lopatynska-Mazurek, M.; Gibula-Tarlowska, E.; Kedzierska, E.; Listos, J.; Talarek, S.; Marszalek-Grabska, M.; Hubalewska-Mazgaj, M.; Korga-Plewko, A.; et al. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int. J. Mol. Sci. 2021, 22, 589. [Google Scholar] [CrossRef] [PubMed]
- Naseri, G.; Fazel, A.; Golalipour, M.J.; Haghir, H.; Sadeghian, H.; Mojarrad, M.; Hosseini, M.; Sabzevar, S.S.; Beheshti, F.; Ghorbani, A. Exposure to mephedrone during gestation increases the risk of stillbirth and induces hippocampal neurotoxicity in mice offspring. Neurotoxicology Teratol. 2018, 67, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Angoa-Pérez, M.; Kane, M.J.; Herrera-Mundo, N.; Francescutti, D.M.; Kuhn, D.M. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci. 2014, 97, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Clemente, J.; López-Arnau, R.; Abad, S.; Pubill, D.; Escubedo, E.; Camarasa, J. Dose and Time-Dependent Selective Neurotoxicity Induced by Mephedrone in Mice. PLoS ONE 2014, 9, e9900. [Google Scholar] [CrossRef] [Green Version]
- Shortall, S.E.; Macerola, A.E.; Swaby, R.T.; Jayson, R.; Korsah, C.; Pillidge, K.E.; Wigmore, P.M.; Ebling, F.; Green, A.R.; Fone, K.C.; et al. Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur. Neuropsychopharmacol. 2013, 23, 1085–1095. [Google Scholar] [CrossRef]
- Budzynska, B.; Michalak, A.; Frankowska, M.; Kaszubska, K.; Biała, G. Acute behavioral effects of co-administration of mephedrone and MDMA in mice. Pharmacol. Rep. 2016, 69, 199–205. [Google Scholar] [CrossRef]
- Pail, P.B.; Costa, K.M.; Leite, C.E.; Campos, M.M. Comparative pharmacological evaluation of the cathinone derivatives, mephedrone and methedrone, in mice. Neurotoxicology 2015, 50, 71–80. [Google Scholar] [CrossRef]
- Marusich, J.A.; Grant, K.R.; Blough, B.E.; Wiley, J. Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology 2012, 33, 1305–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, M.J., Jr.; Vandewater, S.A.; Angrish, D.; Dickerson, T.J.; Taffe, M.A. Mephedrone (4-methylmethcathinone) and d-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. Br. J. Pharmacol. 2012, 167, 1342–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Hollander, B.; Rozov, S.; Linden, A.M.; Uusi-Oukari, M.; Ojanperä, I.; Korpi, E.R. Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacol. Biochem. Behav. 2013, 103, 501–509. [Google Scholar] [CrossRef] [PubMed]
- López-Arnau, R.; Martínez-Clemente, J.; Rodrigo, T.; Pubill, D.; Camarasa, J.; Escubedo, E. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol. Appl. Pharmacol. 2015, 286, 27–35. [Google Scholar] [CrossRef]
- Shortall, S.E.; Spicer, C.H.; Ebling, F.J.P.; Green, A.R.; Fone, K.C.F.; King, M.V. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict. Biol. 2015, 21, 1127–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muskiewicz, D.E.; Resendiz-Gutierrez, F.; Issa, O.; Hall, F.S. Synthetic psychoactive cathinones: Hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine. Pharmacol. Biochem. Behav. 2020, 191, 172871. [Google Scholar] [CrossRef] [PubMed]
- Motbey, C.P.; Karanges, E.; Li, K.M.; Wilkinson, S.; Winstock, A.R.; Ramsay, J.; Hicks, C.; Kendig, M.D.; Wyatt, N.; Callaghan, P.D.; et al. Mephedrone in Adolescent Rats: Residual Memory Impairment and Acute but Not Lasting 5-HT Depletion. PLoS ONE 2012, 7, e45473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, R.A.; Tallarida, C.S.; Reitz, A.; McCurdy, C.; Rawls, S.M. Mephedrone (4-methylmethcathinone), a principal constituent of psychoactive bath salts, produces behavioral sensitization in rats. Drug Alcohol Depend. 2013, 133, 746–750. [Google Scholar] [CrossRef] [Green Version]
- Lisek, R.; Xu, W.; Yuvasheva, E.; Chiu, Y.-T.; Reitz, A.B.; Liu-Chen, L.-Y.; Rawls, S.M. Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend. 2012, 126, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.E.; Agoglia, A.E.; Fish, E.W.; Krouse, M.C.; Malanga, C. Mephedrone (4-methylmethcathinone) and intracranial self-stimulation in C57BL/6J mice: Comparison to cocaine. Behav. Brain Res. 2012, 234, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Ramoz, L.; Lodi, S.; Bhatt, P.; Reitz, A.B.; Tallarida, C.; Tallarida, R.J.; Raffa, R.B.; Rawls, S.M. Mephedrone (“bath salt”) pharmacology: Insights from invertebrates. Neuroscience 2012, 208, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carhart-Harris, R.; King, L.; Nutt, D. A web-based survey on mephedrone. Drug Alcohol Depend. 2011, 118, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Joanna, L.; Talarek, S.; Orzelska-Gorka, J.; Fidecka, S.; Wujec, M.; Plech, T. The antinociceptive effect of 4-substituted derivatives of 5-(4-chlorophenyl)-2-(morpholin-4-ylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Orzelska, J.; Talarek, S.; Listos, J.; Fidecka, S. Effects of NOS inhibitors on the benzodiazepines-induced memory impairment of mice in the modified elevated plus-maze task. Behav. Brain Res. 2013, 244, 100–106. [Google Scholar] [CrossRef]
- Kamei, H.; Nagai, T.; Nakano, H.; Togan, Y.; Takayanagi, M.; Takahashi, K.; Kobayashi, K.; Yoshida, S.; Maeda, K.; Takuma, K.; et al. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol. Psychiatry 2006, 59, 75–84. [Google Scholar] [CrossRef]
- Pochwat, B.; Szewczyk, B.; Kotarska, K.; Rafało-Ulińska, A.; Siwiec, M.; Sowa, J.E.; Tokarski, K.; Siwek, A.; Bouron, A.; Friedland, K.; et al. Hyperforin Potentiates Antidepressant-Like Activity of Lanicemine in Mice. Front. Mol. Neurosci. 2018, 11, 456. [Google Scholar] [CrossRef]
- Loscher, W. Comparative assay of anticonvulsant and toxic potencies of sixteen GABAmimetic drugs. Neuropharmacology 1982, 21, 803–810. [Google Scholar] [CrossRef]
- Cuadrado, A.; de las Cuevas, I.; Valdizán, E.M.; Armijo, J.A. Synergistic interaction between felbamate and lamotrigine against seizures induced by 4-aminopyridine and pentylenetetrazole in mice. Eur. J. Pharmacol. 2003, 465, 43–52. [Google Scholar] [CrossRef]
- Angoa-Pérez, M.; Kane, M.J.; Francescutti, D.M.; Sykes, K.E.; Shah, M.M.; Mohammed, A.M.; Thomas, D.M.; Kuhn, N.M. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J. Neurochem. 2011, 120, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-K.; Aarde, S.M.; Angrish, D.; Dickerson, T.J.; Taffe, M.A.; Houseknecht, K. Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats. Drug Alcohol Depend. 2012, 126, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.; Creehan, K.; Angrish, D.; Barlow, D.; Houseknecht, K.; Dickerson, T.; Taffe, M. Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend. 2013, 127, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcombe, R. Mephedrone: The Use of M-Cat (Meow) in Middlesbrough; Lifeline Publications and Research: Manchester, UK, 2009. [Google Scholar]
- Jones, L.; Reed, P.; Parrott, A. Mephedrone and 3,4-methylenedioxy-methamphetamine: Comparative psychobiological effects as reported by recreational polydrug users. J. Psychopharmacol. 2016, 30, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.D.; Aarde, S.M.; Cole, M.; Vandewater, S.A.; Grant, Y.; Taffe, M.A. Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology. Neuropsychopharmacology 2016, 41, 2759–2771. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Wimmer, L.; Dillon-Carter, O.; Partilla, J.S.; Burchardt, N.V.; Mihovilovic, M.D.; Baumann, M.; Sitte, H.H. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br. J. Pharmacol. 2016, 173, 2657–2668. [Google Scholar] [CrossRef] [PubMed]
- Peper, A. A theory of drug tolerance and dependence I: A conceptual analysis. J. Theor. Biol. 2004, 229, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Suyama, J.A.; Banks, M.L.; Negus, S.S. Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats. Psychopharmacology 2018, 236, 1057–1066. [Google Scholar] [CrossRef]
- Bajaj, N.; Mullen, D.; Wylie, S. Dependence and psychosis with 4-methylmethcathinone (mephedrone) use. BMJ Case Rep. 2010. [Google Scholar] [CrossRef] [Green Version]
- Ball, K.T.; Slane, M. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats. Behav. Brain Res. 2014, 274, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; Brennan, K.A.; Colussi-Mas, J.; Schenk, S. Tolerance to 3,4-methylenedioxymethamphetamine is associated with impaired serotonin release. Addict. Biol. 2010, 15, 289–298. [Google Scholar] [CrossRef]
- Valladares, D.T.; Kudumala, S.; Hossain, M.; Carvelli, L. Caenorhabditis elegans as an in vivo Model to Assess Amphetamine Tolerance. Brain, Behav. Evol. 2020, 95, 247–255. [Google Scholar] [CrossRef]
- Siciliano, C.A.; Saha, K.; Calipari, E.; Fordahl, S.C.; Chen, R.; Khoshbouei, H.; Jones, S.R. Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J. Neurosci. 2018, 38, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Wabe, N.T. Chemistry, Pharmacology, and Toxicology of Khat (Catha Edulis Forsk): A Review. Addict. Health 2011, 3, 137–149. [Google Scholar] [PubMed]
- Goldsmith, R.; Pachhain, S.; Choudhury, S.R.; Phuntumart, V.; Larsen, R.; Sprague, J.E. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone. Temperature 2019, 6, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Atehortua-Martinez, L.A.; Masniere, C.; Campolongo, P.; Chasseigneaux, S.; Callebert, J.; Zwergel, C.; Mai, A.; Laplanche, J.-L.; Chen, H.; Etheve-Quelquejeu, M.; et al. Acute and chronic neurobehavioral effects of the designer drug and bath salt constituent 3,4-methylenedioxypyrovalerone in the rat. J. Psychopharmacol. 2019, 33, 392–405. [Google Scholar] [CrossRef]
- Nencini, P.; Johanson, C.E.; Schuster, C.R. Sensitization to kappa opioid mechanisms associated with tolerance to the anorectic effects of cathinone. J. Pharmacol. Exp. Ther. 1988, 245, 147–154. [Google Scholar]
- Hamm, R.J.; Pike, B.R.; O’Dell, D.M.; Lyeth, B.G.; Jenkins, L.W. The Rotarod Test: An Evaluation of Its Effectiveness in Assessing Motor Deficits Following Traumatic Brain Injury. J. Neurotrauma 1994, 11, 187–196. [Google Scholar] [CrossRef]
- Vogel, H.G. Psychotropic and neurotropic activity. In Drug Discovery and Evaluation: Pharma-Cological Assays; Vogel, G.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 579–580. [Google Scholar]
- Listos, J.; Baranowska-Bosiacka, I.; Talarek, S.; Listos, P.; Orzelska-Gorka, J.; Fidecka, S.; Gutowska, I.; Kolasa-Wołosiuk, A.; Rybicka, M.; Chlubek, D. The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 2013, 310, 73–83. [Google Scholar] [CrossRef]
- Talarek, S.; Orzelska, J.; Listos, J.; Mazur, A.; Fidecka, S. Effects of chronic flunitrazepam treatment schedule on therapy-induced sedation and motor impairment in mice. Pharmacol. Rep. 2013, 65, 50–58. [Google Scholar] [CrossRef]
- Šíchová, K.; Pinterová, N.; Židková, M.; Horsley, R.R.; Lhotková, E.; Štefková, K.; Vejmola, Č.; Uttl, L.; Balíková, M.; Kuchař, M.; et al. Mephedrone (4-Methylmethcathinone): Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats. Front. Psychiatry 2017, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- James, D.; Adams, R.D.; Spears, R.; Cooper, G.; Lupton, D.J.; Thompson, J.P.; Thomas, S.H. Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emerg. Med. J. 2011, 28, 686–689. [Google Scholar] [CrossRef]
- Kandratavicius, L.; Balista, P.A.; Lopes-Aguiar, C.; Ruggiero, R.N.; Umeoka, E.H.; Garcia-Cairasco, N.; Bueno-Junior, L.S.; Leite, J.P. Animal models of epilepsy: Use and limitations. Neuropsychiatr. Dis. Treat. 2014, 10, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, O.; Ulak, G.; Celikyurt, I.K.; Tanyeri, P.; Akar, F.Y.; Erden, F. Effects of olanzapine and clozapine on memory acquisition, consolidation and retrieval in mice using the elevated plus maze test. Neurosci. Lett. 2011, 501, 143–147. [Google Scholar] [CrossRef]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2011, 13, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Itoh, J.; Nabeshima, T.; Kameyama, T. Utility of an elevated plus-maze for the evaluation of memory in mice: Effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 1990, 101, 27–33. [Google Scholar] [CrossRef]
- Lueptow, L.M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J. Vis. Exp. 2017, 2017, e55718. [Google Scholar] [CrossRef]
- Freeman, T.P.; Morgan, C.J.A.; Vaughn-Jones, J.; Hussain, N.; Karimi, K.; Curran, H.V. Cognitive and subjective effects of mephedrone and factors influencing use of a ‘new legal high’. Addiction 2012, 107, 792–800. [Google Scholar] [CrossRef]
- Herzig, D.A.; Brooks, R.; Mohr, C. Inferring about individual drug and schizotypy effects on cognitive functioning in polydrug using mephedrone users before and after clubbing. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Boguszewska-Czubara, A.; Kurzepa, J.; Biała, G.; Kaszubska, K.; Grot, K.; Tarkowski, P.; Kowalczyk, J.; Silvestro, S.; Faggio, C.; Budzyńska, B. Mephedrone impact on matrix metalloproteinases activity—Do they influence the memory processes? Curr. Mol. Pharmacol. 2019, 12, 115–121. [Google Scholar] [CrossRef]
Substance (mg/kg) | Time on the Rotarod (s) | Time in the Chimney (s) |
---|---|---|
Saline | 55.05 ± 4.500 | 6.580 ± 1.050 |
Mephedrone 0.05 | 53.10 ± 3.600 | 6.530 ± 1.400 |
Mephedrone 0.125 | 46.60 ± 5.600 | 7.780 ± 1.700 |
Mephedrone 0.25 | 43.68 ± 5.600 | 5.990 ± 0.960 |
Mephedrone 0.5 | 53.83 ± 4.300 | 7.420 ± 1.300 |
Mephedrone 1.0 | 55.16 ± 3.800 | 5.970 ± 1.010 |
Substance (mg/kg) | Number of Mice with Clonic Seizures | Number of Mice with Tonic Seizures | Mortality |
---|---|---|---|
Saline | 0/10 | 0/10 | 0/10 |
Saline + PTZ 110 | 10/10 | 8/10 | 8/10 |
Mephedrone 1.25 + PTZ 110 | 10/10 | 8/10 | 7/10 |
Mephedrone 2.5 + PTZ 110 | 9/10 | 8/10 | 7/10 |
Mephedrone 5.0 + PTZ 110 | 9/10 | 7/10 | 7/10 |
Substance (mg/kg) | Preference Index (PI) |
---|---|
Saline | 41.42 ± 2.358 |
Mephedrone 0.125 | 39.81 ± 1.747 |
Mephedrone 0.25 | 39.34 ± 3.359 |
Mephedrone 0.5 | 36.17 ± 3.404 |
Mephedrone 1.0 | 37.62 ± 2.514 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serefko, A.; Bielecka-Papierz, G.; Talarek, S.; Szopa, A.; Skałecki, P.; Szewczyk, B.; Radziwoń-Zaleska, M.; Poleszak, E. Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies. Brain Sci. 2022, 12, 189. https://doi.org/10.3390/brainsci12020189
Serefko A, Bielecka-Papierz G, Talarek S, Szopa A, Skałecki P, Szewczyk B, Radziwoń-Zaleska M, Poleszak E. Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies. Brain Sciences. 2022; 12(2):189. https://doi.org/10.3390/brainsci12020189
Chicago/Turabian StyleSerefko, Anna, Gabriela Bielecka-Papierz, Sylwia Talarek, Aleksandra Szopa, Piotr Skałecki, Bernadeta Szewczyk, Maria Radziwoń-Zaleska, and Ewa Poleszak. 2022. "Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies" Brain Sciences 12, no. 2: 189. https://doi.org/10.3390/brainsci12020189
APA StyleSerefko, A., Bielecka-Papierz, G., Talarek, S., Szopa, A., Skałecki, P., Szewczyk, B., Radziwoń-Zaleska, M., & Poleszak, E. (2022). Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies. Brain Sciences, 12(2), 189. https://doi.org/10.3390/brainsci12020189