Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Population and Assessments
2.2. Proteomic Abundance Analysis
2.3. Statistical Analysis
2.4. Bioinformatics/Pathway Analysis
3. Results
3.1. Description of Clinical Population
3.2. Protein Abundance Analyses
3.3. Bioinformatics/Pathway Analysis
4. Discussion
4.1. Pathway Analysis
4.2. Proteomic Changes Depend on Protein Location and Function
4.3. Individual Protein Abundance Differences between Treatment Groups
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusumi, I.; Boku, S.; Takahashi, Y. Psychopharmacology of atypical antipsychotic drugs: From the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin. Neurosci. 2015, 69, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.A.; Rosenheck, R. Compliance with medication regimens for mental and physical disorders. Psychiatr. Serv. 1998, 49, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Kampman, O.; Laippala, P.; Vaananen, J.; Koivisto, E.; Kiviniemi, P.; Kilkku, N.; Lehtinen, K. Indicators of medication compliance in first-episode psychosis. Psychiatry Res. 2002, 110, 39–48. [Google Scholar] [CrossRef]
- Correll, C.U.; Solmi, M.; Veronese, N.; Bortolato, B.; Rosson, S.; Santonastaso, P.; Thapa-Chhetri, N.; Fornaro, M.; Gallicchio, D.; Collantoni, E.; et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2017, 16, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Vancampfort, D.; Vansteelandt, K.; Correll, C.U.; Mitchell, A.J.; De Herdt, A.; Sienaert, P.; Probst, M.; De Hert, M. Metabolic syndrome and metabolic abnormalities in bipolar disorder: A meta-analysis of prevalence rates and moderators. Am. J. Psychiatry 2013, 170, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2015, 14, 119–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.; Skadhede, S.; Correll, C.U. Antipsychotics associated with the development of type 2 diabetes in antipsychotic-naive schizophrenia patients. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010, 35, 1997–2004. [Google Scholar] [CrossRef] [Green Version]
- Greenhalgh, A.M.; Gonzalez-Blanco, L.; Garcia-Rizo, C.; Fernandez-Egea, E.; Miller, B.; Arroyo, M.B.; Kirkpatrick, B. Meta-analysis of glucose tolerance, insulin, and insulin resistance in antipsychotic-naive patients with nonaffective psychosis. Schizophr. Res. 2017, 179, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Seyoum, B.; Mallisho, A.; Burghardt, P.R.; Kowluru, R.A.; Yi, Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 83, 55–63. [Google Scholar] [CrossRef]
- Malhotra, A.K.; Correll, C.U.; Chowdhury, N.I.; Muller, D.J.; Gregersen, P.K.; Lee, A.T.; Tiwari, A.K.; Kane, J.M.; Fleischhacker, W.W.; Kahn, R.S.; et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch. Gen. Psychiatry 2012, 69, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghardt, K.J.; Gardner, K.N.; Johnson, J.W.; Ellingrod, V.L. Fatty Acid desaturase gene polymorphisms and metabolic measures in schizophrenia and bipolar patients taking antipsychotics. Cardiovasc. Psychiatry Neurol. 2013, 2013, 596945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaddurah-Daouk, R.; McEvoy, J.; Baillie, R.; Lee, D.; Yao, J.; Doraiswamy, P.; Krishnan, K. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry 2007, 12, 934–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghardt, K.J.; Evans, S.J.; Wiese, K.M.; Ellingrod, V.L. An Untargeted Metabolomics Analysis of Antipsychotic Use in Bipolar Disorder. Clin. Transl. Sci. 2015, 8, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghardt, K.J.; Goodrich, J.M.; Dolinoy, D.C.; Ellingrod, V.L. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord. 2016, 18, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Thiebaud, D.; Jacot, E.; DeFronzo, R.A.; Maeder, E.; Jequier, E.; Felber, J.P. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 1982, 31, 957–963. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32 (Suppl. 2), S157–S163. [Google Scholar] [CrossRef] [Green Version]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Jaros, J.A.; Martins-de-Souza, D.; Rahmoune, H.; Rothermundt, M.; Leweke, F.M.; Guest, P.C.; Bahn, S. Protein phosphorylation patterns in serum from schizophrenia patients and healthy controls. J. Proteom. 2012, 76, 43–55. [Google Scholar] [CrossRef]
- Jaros, J.A.; Rahmoune, H.; Wesseling, H.; Leweke, F.M.; Ozcan, S.; Guest, P.C.; Bahn, S. Effects of olanzapine on serum protein phosphorylation patterns in patients with schizophrenia. Proteom. Clin. Appl. 2015, 9, 907–916. [Google Scholar] [CrossRef]
- Telford, J.E.; Bones, J.; McManus, C.; Saldova, R.; Manning, G.; Doherty, M.; Leweke, F.M.; Rothermundt, M.; Guest, P.C.; Rahmoune, H.; et al. Antipsychotic treatment of acute paranoid schizophrenia patients with olanzapine results in altered glycosylation of serum glycoproteins. J. Proteome Res. 2012, 11, 3743–3752. [Google Scholar] [CrossRef]
- Yang, B.H.; Son, H.; Kim, S.H.; Nam, J.H.; Choi, J.H.; Lee, J.S. Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration. Psychiatry Clin. Neurosci. 2004, 58, 262–267. [Google Scholar] [CrossRef]
- Ma, D.; Chan, M.K.; Lockstone, H.E.; Pietsch, S.R.; Jones, D.N.; Cilia, J.; Hill, M.D.; Robbins, M.J.; Benzel, I.M.; Umrania, Y.; et al. Antipsychotic treatment alters protein expression associated with presynaptic function and nervous system development in rat frontal cortex. J. Proteome Res. 2009, 8, 3284–3297. [Google Scholar] [CrossRef]
- Levin, Y.; Wang, L.; Schwarz, E.; Koethe, D.; Leweke, F.M.; Bahn, S. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol. Psychiatry 2010, 15, 1088–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.T.; Wang, L.; Prabakaran, S.; Wengenroth, M.; Lockstone, H.E.; Koethe, D.; Gerth, C.W.; Gross, S.; Schreiber, D.; Lilley, K.; et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol. Psychiatry 2008, 13, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Park, J.; Lee, S.Y.; Hwang, I.; Kim, J.B.; Park, T.S.; Lee, H.J.; Koo, S.H. Atypical antipsychotic drugs perturb AMPK-dependent regulation of hepatic lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E624–E632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engl, J.; Laimer, M.; Niederwanger, A.; Kranebitter, M.; Starzinger, M.; Pedrini, M.T.; Fleischhacker, W.W.; Patsch, J.R.; Ebenbichler, C.F. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol. Psychiatry 2005, 10, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panariello, F.; Perruolo, G.; Cassese, A.; Giacco, F.; Botta, G.; Barbagallo, A.P.; Muscettola, G.; Beguinot, F.; Formisano, P.; de Bartolomeis, A. Clozapine impairs insulin action by up-regulating Akt phosphorylation and Ped/Pea-15 protein abundance. J. Cell. Physiol. 2012, 227, 1485–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef] [PubMed]
- Shanely, R.A.; Zwetsloot, K.A.; Triplett, N.T.; Meaney, M.P.; Farris, G.E.; Nieman, D.C. Human skeletal muscle biopsy procedures using the modified Bergstrom technique. J. Vis. Exp. JoVE 2014, 91, e51812. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeni-Komshian, H.; Carantoni, M.; Abbasi, F.; Reaven, G.M. Relationship between several surrogate estimates of insulin resistance and quantification of insulin-mediated glucose disposal in 490 healthy nondiabetic volunteers. Diabetes Care 2000, 23, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Zhang, X.; Seyoum, B.; Msallaty, Z.; Mallisho, A.; Caruso, M.; Damacharla, D.; Ma, D.; Al-Janabi, W.; Tagett, R.; et al. Kinome Profiling Reveals Abnormal Activity of Kinases in Skeletal Muscle From Adults With Obesity and Insulin Resistance. J Clin. Endocrinol. Metab. 2020, 105, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Damacharla, D.; Thamilselvan, V.; Zhang, X.; Mestareehi, A.; Yi, Z.; Kowluru, A. Quantitative proteomics reveals novel interaction partners of Rac1 in pancreatic beta-cells: Evidence for increased interaction with Rac1 under hyperglycemic conditions. Mol. Cell. Endocrinol. 2019, 494, 110489. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, N.; Nagaraj, N.; McHardy, P.; Zanivan, S.; Scheltema, R.; Cox, J.; Mann, M. High performance computational analysis of large-scale proteome data sets to assess incremental contribution to coverage of the human genome. J. Proteome Res. 2013, 12, 2858–2868. [Google Scholar] [CrossRef] [PubMed]
- Weisser, H.; Nahnsen, S.; Grossmann, J.; Nilse, L.; Quandt, A.; Brauer, H.; Sturm, M.; Kenar, E.; Kohlbacher, O.; Aebersold, R.; et al. An Automated Pipeline for High-Throughput Label-Free Quantitative Proteomics. J. Proteome Res. 2013, 12, 1628–1644. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, D.; Caruso, M.; Lewis, M.; Qi, Y.; Yi, Z. Quantitative Phosphoproteomics Reveals Novel Phosphorylation Events in Insulin Signaling Regulated by Protein Phosphatase 1 Regulatory Subunit 12A. J. Proteom. 2014, 109, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, J.M.; Milloy, J.A.; Gerber, S.A. SILAC surrogates: Rescue of quantitative information for orphan analytes in spike-in SILAC experiments. Anal. Chem. 2013, 85, 10812–10819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcomer, J.W. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review. CNS Drugs 2005, 19 (Suppl. 1), 1–93. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Sase, K.; Yokokawa, T.; Fujita, S. Enhanced skeletal muscle insulin sensitivity after acute resistance-type exercise is upregulated by rapamycin-sensitive mTOR complex 1 inhibition. Sci. Rep. 2020, 10, 8509. [Google Scholar] [CrossRef] [PubMed]
- Gassaway, B.M.; Petersen, M.C.; Surovtseva, Y.V.; Barber, K.W.; Sheetz, J.B.; Aerni, H.R.; Merkel, J.S.; Samuel, V.T.; Shulman, G.I.; Rinehart, J. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc. Natl. Acad. Sci. USA 2018, 115, E8996–E9005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffolo, S.C.; Forsell, P.K.; Yuan, X.; Desmarais, S.; Himms-Hagen, J.; Cromlish, W.; Wong, K.K.; Kennedy, B.P. Basal activation of p70S6K results in adipose-specific insulin resistance in protein-tyrosine phosphatase 1B -/- mice. J. Biol. Chem. 2007, 282, 30423–30433. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.T.; Lauritzen, H.P.; Hirshman, M.F.; Smyth, G.; Goodyear, L.J.; Kahn, C.R. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis. Cell Rep. 2015, 11, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Sobkiw, C.L.; Hirshman, M.F.; Logsdon, M.N.; Li, T.Q.; Goodyear, L.J.; Cantley, L.C. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metab. 2006, 3, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Yuan, M.; Song, Y.; Ruderman, N.; Wen, R.; Luo, Z. 14-3-3 Facilitates Insulin-Stimulated Intracellular Trafficking of Insulin Receptor Substrate 1. Mol. Endocrinol. 2002, 16, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Kim, A.R.; Kim, K.M.; Il Park, J.; Oh, H.T.; Moon, S.A.; Byun, M.R.; Jeong, H.; Kim, H.K.; Yaffe, M.B.; et al. TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat. Commun. 2019, 10, 421. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Seyoum, B.; Dass, S.; Sanders, E.; Mallisho, A.; Yi, Z. Association of Protein Kinase B (AKT) DNA Hypermethylation with Maintenance Atypical Antipsychotic Treatment in Patients with Bipolar Disorder. Pharmacotherapy 2018, 38, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Bojesen, S.E. Telomeres and human health. J. Intern. Med. 2013, 274, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Astuti, Y.; Wardhana, A.; Watkins, J.; Wulaningsih, W. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017, 158, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Darrow, S.M.; Verhoeven, J.E.; Revesz, D.; Lindqvist, D.; Penninx, B.W.; Delucchi, K.L.; Wolkowitz, O.M.; Mathews, C.A. The Association between Psychiatric Disorders and Telomere Length: A Meta-Analysis Involving 14,827 Persons. Psychosom. Med. 2016, 78, 776–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundstock, E.; Sarria, E.E.; Zatti, H.; Mattos Louzada, F.; Kich Grun, L.; Herbert Jones, M.; Guma, F.T.; Mazzola (in Memoriam), J.; Epifanio, M.; Stein, R.T.; et al. Effect of obesity on telomere length: Systematic review and meta-analysis. Obesity 2015, 23, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Pare, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef]
- Tamura, Y.; Takubo, K.; Aida, J.; Araki, A.; Ito, H. Telomere attrition and diabetes mellitus. Geriatr. Gerontol. Int. 2016, 16 (Suppl. 1), 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.B.; Backlund, L.; Wegener, G.; Mathe, A.A.; Lavebratt, C. Telomerase dysregulation in the hippocampus of a rat model of depression: Normalization by lithium. Int. J. Neuropsychopharmacol./Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2015, 18, pyv002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinsson, L.; Wei, Y.; Xu, D.; Melas, P.A.; Mathe, A.A.; Schalling, M.; Lavebratt, C.; Backlund, L. Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl. Psychiatry 2013, 3, e261. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.Y.; Chang, H.W.; Lin, C.H.; Cho, C.L. Short telomeres in patients with chronic schizophrenia who show a poor response to treatment. J. Psychiatry Neurosci. Jpn. 2008, 33, 244–247. [Google Scholar]
- Bersani, F.S.; Lindqvist, D.; Mellon, S.H.; Penninx, B.W.; Verhoeven, J.E.; Revesz, D.; Reus, V.I.; Wolkowitz, O.M. Telomerase activation as a possible mechanism of action for psychopharmacological interventions. Drug Discov. Today 2015, 20, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Argüelles, S.; Camandola, S.; Cutler, R.G.; Ayala, A.; Mattson, M.P. Elongation factor 2 diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions. Free. Radic. Biol. Med. 2014, 67, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingrod, V.L.; Miller, D.D.; Taylor, S.F.; Moline, J.; Holman, T.; Kerr, J. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr. Res. 2008, 98, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingrod, V.L.; Grove, T.B.; Burghardt, K.J.; Taylor, S.F.; Dalack, G. The effect of folate supplementation and genotype on cardiovascular and epigenetic measures in schizophrenia subjects. NPJ Schizophr. 2015, 1, 15046. [Google Scholar] [CrossRef] [Green Version]
- Kao, A.C.; Rojnic Kuzman, M.; Tiwari, A.K.; Zivkovic, M.V.; Chowdhury, N.I.; Medved, V.; Kekin, I.; Zai, C.C.; Lieberman, J.A.; Meltzer, H.Y.; et al. Methylenetetrahydrofolate reductase gene variants and antipsychotic-induced weight gain and metabolic disturbances. J. Psychiatr. Res. 2014, 54, 36–42. [Google Scholar] [CrossRef]
- van Winkel, R.; Moons, T.; Peerbooms, O.; Rutten, B.; Peuskens, J.; Claes, S.; van Os, J.; De Hert, M. MTHFR genotype and differential evolution of metabolic parameters after initiation of a second generation antipsychotic: An observational study. Int. Clin. Psychopharmacol. 2010, 25, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, A.I.; Smeitink, J.A.; Rodenburg, R.J. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Carboni, L.; Domenici, E. Proteome effects of antipsychotic drugs: Learning from preclinical models. Proteom. Clin. Appl. 2016, 10, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Klingerman, C.M.; Stipanovic, M.E.; Bader, M.; Lynch, C.J. Second-generation antipsychotics cause a rapid switch to fat oxidation that is required for survival in C57BL/6J mice. Schizophr. Bull. 2014, 40, 327–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendouei, N.; Farnia, S.; Mohseni, F.; Salehi, A.; Bagheri, M.; Shadfar, F.; Barzegar, F.; Hoseini, S.D.; Charati, J.Y.; Shaki, F. Alterations in oxidative stress markers and its correlation with clinical findings in schizophrenic patients consuming perphenazine, clozapine and risperidone. Biomed. Pharmacother. 2018, 103, 965–972. [Google Scholar] [CrossRef]
- Maurer, I.C.; Schippel, P.; Volz, H.P. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009, 11, 515–522. [Google Scholar] [CrossRef]
- Berger, I.; Segal, I.; Shmueli, D.; Saada, A. The effect of antiepileptic drugs on mitochondrial activity: A pilot study. J. Child Neurol. 2010, 25, 541–545. [Google Scholar] [CrossRef]
- Abelaira, H.M.; Réus, G.Z.; Ribeiro, K.F.; Zappellini, G.; Ferreira, G.K.; Gomes, L.M.; Carvalho-Silva, M.; Luciano, T.F.; Marques, S.O.; Streck, E.L.; et al. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem. Int. 2011, 59, 1163–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.J.; Xu, Y.; Hajnal, A.; Salzberg, A.C.; Kawasawa, Y.I. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. PLoS ONE 2015, 10, e0123966. [Google Scholar] [CrossRef] [PubMed]
- Bortolasci, C.C.; Spolding, B.; Kidnapillai, S.; Connor, T.; Truong, T.T.T.; Liu, Z.S.J.; Panizzutti, B.; Richardson, M.F.; Gray, L.; Berk, M.; et al. Transcriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. Int. J. Mol. Sci. 2020, 21, 8333. [Google Scholar] [CrossRef] [PubMed]
- Geiger, P.C.; Gupte, A.A. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exerc. Sport Sci. Rev. 2011, 39, 34–42. [Google Scholar] [CrossRef]
- Literati-Nagy, Z.; Tory, K.; Literati-Nagy, B.; Kolonics, A.; Vigh, L., Jr.; Vigh, L.; Mandl, J.; Szilvassy, Z. A novel insulin sensitizer drug candidate-BGP-15-can prevent metabolic side effects of atypical antipsychotics. Pathol. Oncol. Res 2012, 18, 1071–1076. [Google Scholar] [CrossRef]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [Green Version]
- Pounds, S.B. Estimation and control of multiple testing error rates for microarray studies. Brief. Bioinform. 2006, 7, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Gayoso-Diz, P.; Otero-Gonzalez, A.; Rodriguez-Alvarez, M.X.; Gude, F.; Cadarso-Suarez, C.; Garcia, F.; De Francisco, A. Insulin resistance index (HOMA-IR) levels in a general adult population: Curves percentile by gender and age. The EPIRCE study. Diabetes Res. Clin. Pract. 2011, 94, 146–155. [Google Scholar] [CrossRef]
- Gayoso-Diz, P.; Otero-Gonzalez, A.; Rodriguez-Alvarez, M.X.; Gude, F.; Garcia, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Horáková, D.; Štěpánek, L.; Janout, V.; Janoutová, J.; Pastucha, D.; Kollárová, H.; Petráková, A.; Štěpánek, L.; Husár, R.; Martiník, K. Optimal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Cut-Offs: A Cross-Sectional Study in the Czech Population. Medicina 2019, 55, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soontornniyomkij, V.; Lee, E.E.; Jin, H.; Martin, A.S.; Daly, R.E.; Liu, J.; Tu, X.M.; Eyler, L.T.; Jeste, D.V. Clinical Correlates of Insulin Resistance in Chronic Schizophrenia: Relationship to Negative Symptoms. Front. Psychiatry 2019, 10, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliwa, J.K.; Fu, D.-J.; Bossie, C.A.; Turkoz, I.; Alphs, L. Body mass index and metabolic parameters in patients with schizophrenia during long-term treatment with paliperidone palmitate. BMC Psychiatry 2014, 14, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, K.E.; Tucker, L.A. Expanded Normal Weight Obesity and Insulin Resistance in US Adults of the National Health and Nutrition Examination Survey. J. Diabetes Res. 2017, 2017, 9502643. [Google Scholar] [CrossRef] [PubMed]
Atypical Antipsychotic (n = 8) | Mood Stabilizer (n = 8) | p-Value | |
---|---|---|---|
Age (years) | 45.5 ± 5.1 (26, 61) | 43.3 ± 3.6 (30, 58) | 0.7 |
Race (% Caucasian/% African American) | 50.0/37.5 | 75.0/12.5 | 0.3 |
Sex (% female) | 37.5 | 50 | 0.6 |
BMI (mg/kg2) | 29.7 ± 2.4 (19.6, 41.7) | 31.0 ± 1.4 (25.6, 35.5) | 0.6 |
Body fat % | 34.4 ± 2.3 (27.3, 43.8) | 34.6 ± 2.0 (27.0, 42.9) | 0.9 |
Fasting Glucose (mg/dL) | 91.3 ± 3.4 (75.3, 102) | 93.5 ± 3.1 (84, 109) | 0.8 |
Fasting Insulin (uU/mL) | 25.7 ± 12.3 (5.4, 103.3) | 12.9 ± 1.7 (7.5, 22.9) | 0.4 |
HOMA-IR | 6.5 ± 3.3 (1.2, 27.9) | 2.9 ± 0.4 (1.5, 5.1) | 0.5 |
Glucose AUC | 15,850.4 ± 560.0 (13,884.8, 17,905.5) | 17,088 ± 1336.1 (11,187.0, 21,712.5) | 0.4 |
Insulin AUC | 8505.8 ± 2386.3 (2863.5, 23,309.0) | 5612.2 ± 742.5 (2597.1, 8699.6) | 0.4 |
Duration of Current Antipsychotic or Mood Stabilizer Therapy (months) * | 94.1 ± 28.8 (3, 228) | 58.6 ± 21.6 (6, 180) | 0.3 |
Years Since First Psychopharmacologic Treatment | 23.1 ± 3.9 (7, 37) | 19.1 ± 3.2 (6, 33) | 0.4 |
Gene Name | Protein Name | AAP | MS | p-Value |
---|---|---|---|---|
ADSSL1 | Adenylosuccinate synthetase isozyme 1 | 1.00 ± 0.07 | 0.61 ± 0.05 | 0.0004 |
ALDH9A1 | 4-trimethylaminobutyraldehyde dehydrogenase | 1.00 ± 0.18 | 3.54 ± 0.34 | 0.0001 |
ANXA1 | Annexin A1 | 1.00 ± 0.10 | 0.47 ± 0.09 | 0.0012 |
ANXA11 | Annexin A11 | 1.00 ± 0.15 | 0.33 ± 0.15 | 0.0073 |
ANXA5 | Annexin A5 | 1.00 ± 0.10 | 0.62 ± 0.08 | 0.0091 |
ATP5D | ATP synthase subunit delta, mitochondrial | 1.00 ± 0.10 | 2.02 ± 0.30 | 0.0098 |
BTBD10 | BTB/POZ domain-containing protein 10 | 1.00 ± 0.24 | 1.87 ± 0.06 | 0.0084 |
C1QBP | Complement component 1 Q subcomponent-binding protein, mitochondrial | 1.00 ± 0.14 | 0.50 ± 0.06 | 0.0038 |
CAPNS1 | Calpain small subunit 1 | 1.00 ± 0.13 | 1.64 ± 0.15 | 0.0042 |
CKAP4 | Cytoskeleton-associated protein 4 | ND | 1.00 ± 0.15 | <0.01 # |
COL6A1 | Collagen alpha-1(VI) chain | ND | 1.00 ± 0.25 | <0.01 # |
COL6A3 | Collagen alpha-3(VI) chain | 1.00 ± 0.25 | ND | <0.01 # |
DDX1 | ATP-dependent RNA helicase DDX1 | 1.00 ± 0.09 | 0.57 ± 0.06 | 0.0032 |
ECHS1 | Enoyl-CoA hydratase, mitochondrial | 1.00 ± 0.23 | 0.36 ± 0.05 | 0.0009 |
EEF2 | Elongation factor 2 | 1.00 ± 0.11 | 0.63 ± 0.06 | 0.0088 |
FABP3 | Fatty acid-binding protein | 1.00 ± 0.14 | 1.71 ± 0.23 | 0.0088 |
FERMT2 | Fermitin family homolog 2 | 1.00 ± 0.16 | ND | <0.01 # |
FHL1 | Four and a half LIM domains protein 1 | 1.00 ± 0.08 | 1.66 ± 0.14 | 0.0012 |
GDI1 | Rab GDP dissociation inhibitor alpha | 1.00 ± 0.05 | 0.42 ± 0.03 | 0.0017 |
HNRNPDL | Heterogeneous nuclear ribonucleoprotein D-like | ND | 1.00 ± 0.24 | <0.01 # |
HSPA6/7 | Heat shock 70 kDa protein 6/7 | 1.00 ± 0.08 | 1.66 ± 0.18 | 0.0034 |
KPNB1 | Importin subunit beta-1 | 1.00 ± 0.17 | 0.46 ± 0.06 | 0.0052 |
LMNA | Lamin-A/C | 1.00 ± 0.07 | 1.88 ± 0.27 | 0.0077 |
MTHFD1 | Methylenetetrahydrofolate dehydrogenase | 1.00 ± 0.13 | 0.32 ± 0.04 | 0.0003 |
MYH3 | Myosin-3 | 1.00 ± 0.31 | 5.41 ± 1.07 | 0.0017 |
NME1/2 | Nucleoside diphosphate kinase A/B | 1.00 ± 0.21 | 2.81 ± 0.52 | 0.0035 |
PARK7 | Protein deglycase DJ-1 | 1.00 ± 0.08 | 0.61 ± 0.09 | 0.0045 |
PDIA6 | Protein disulfide-isomerase A6 | 1.00 ± 0.10 | 0.53 ± 0.08 | 0.0050 |
PLCL1 | Phosphoinositide phospholipase C | 1.00 ± 0.08 | 1.59 ± 0.20 | 0.0074 |
PLIN4 | Perilipin-4 | 1.00 ± 0.10 | 2.50 ± 0.46 | 0.0016 |
PRDX1 | Peroxiredoxin-1 | 1.00 ± 0.13 | 1.57 ± 0.14 | 0.0099 |
PRDX2 | Peroxiredoxin-2 | 1.00 ± 0.09 | 1.59 ± 0.12 | 0.0020 |
RPL13 | 60S ribosomal protein L13 | ND | 1.00 ± 0.13 | <0.01 # |
RPN2 | Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 | 1.00 ± 0.27 | 0.10 ± 0.02 | 0.0075 |
RPSA | 40S ribosomal protein SA | 1.00 ± 0.09 | 0.49 ± 0.04 | 0.0001 |
SRL | Sarcalumenin | 1.00 ± 0.09 | 0.60 ± 0.05 | 0.0025 |
YWHAG | 14-3-3 protein gamma | 1.00 ± 0.15 | 0.46 ± 0.09 | 0.0058 |
YWHAH | 14-3-3 protein eta | 1.00 ± 0.15 | 0.43 ± 0.07 | 0.0031 |
YWHAQ | 14-3-3 protein theta | 1.00 ± 0.18 | 0.41 ± 0.04 | 0.0044 |
YWHAZ | 14-3-3 protein zeta/delta | 1.00 ± 0.19 | 0.40 ± 0.08 | 0.0030 |
Ingenuity Canonical Pathways | FDR q-Value | Proteins Assigned to a Pathway |
---|---|---|
p70S6K Signaling | 0.000028 | YWHAQ, YWHAG, YWHAH, EEF2, YWHAZ, PLCL1 |
Cell Cycle: G2/M DNA Damage Checkpoint Regulation | 0.0001 | YWHAQ, YWHAG, YWHAH, YWHAZ |
14-3-3-mediated Signaling | 0.0002 | YWHAQ, YWHAG, YWHAH, YWHAZ, PLCL1 |
ERK5 Signaling | 0.0003 | YWHAQ, YWHAG, YWHAH, YWHAZ |
Myc Mediated Apoptosis Signaling | 0.0003 | YWHAQ, YWHAG, YWHAH, YWHAZ |
HIPPO signaling | 0.0003 | YWHAQ, YWHAG, YWHAH, YWHAZ |
IGF-1 Signaling | 0.001 | YWHAQ, YWHAG, YWHAH, YWHAZ |
PI3K/AKT Signaling | 0.001 | YWHAQ, YWHAG, YWHAH, YWHAZ |
ERK/MAPK Signaling | 0.007 | YWHAQ, YWHAG, YWHAH, YWHAZ |
Protein Kinase A Signaling | 0.008 | YWHAQ, YWHAG, YWHAH, YWHAZ, PLCL1 |
L-carnitine Biosynthesis | 0.05 | ALDH9A1 |
Diphthamide Biosynthesis | 0.05 | EEF2 |
Tetrahydrofolate Salvage from 5,10-methenyltetrahydrofolate | 0.07 | MTHFD1 |
Folate Polyglutamylation | 0.07 | MTHFD1 |
Apoptosis Signaling | 0.1 | CAPNS1, LMNA |
Histidine Degradation III | 0.1 | MTHFD1 |
Folate Transformations I | 0.1 | MTHFD1 |
Calcium Transport I | 0.1 | ANXA5 |
Purine Nucleotides De Novo Biosynthesis II | 0.1 | ADSSL1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burghardt, K.J.; Calme, G.; Caruso, M.; Howlett, B.H.; Sanders, E.; Msallaty, Z.; Mallisho, A.; Seyoum, B.; Qi, Y.A.; Zhang, X.; et al. Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers. Brain Sci. 2022, 12, 259. https://doi.org/10.3390/brainsci12020259
Burghardt KJ, Calme G, Caruso M, Howlett BH, Sanders E, Msallaty Z, Mallisho A, Seyoum B, Qi YA, Zhang X, et al. Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers. Brain Sciences. 2022; 12(2):259. https://doi.org/10.3390/brainsci12020259
Chicago/Turabian StyleBurghardt, Kyle J., Griffin Calme, Michael Caruso, Bradley H. Howlett, Elani Sanders, Zaher Msallaty, Abdullah Mallisho, Berhane Seyoum, Yue A. Qi, Xiangmin Zhang, and et al. 2022. "Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers" Brain Sciences 12, no. 2: 259. https://doi.org/10.3390/brainsci12020259
APA StyleBurghardt, K. J., Calme, G., Caruso, M., Howlett, B. H., Sanders, E., Msallaty, Z., Mallisho, A., Seyoum, B., Qi, Y. A., Zhang, X., & Yi, Z. (2022). Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers. Brain Sciences, 12(2), 259. https://doi.org/10.3390/brainsci12020259