Immediate Temporal Information Modulates the Target Identification in the Attentional Blink
Abstract
:1. Introduction
2. Experiment 1: Effect of Interval Cues
2.1. Method
2.1.1. Participants
2.1.2. Apparatus, Stimuli, and Procedure
2.1.3. Data Analysis
2.2. Results and Discussion
2.2.1. T1 Accuracy
2.2.2. T2 Accuracy
2.2.3. Rating of Perceived Inter-Target Interval
3. Experiment 2: Effect of Rhythmic Cues
3.1. Method
3.1.1. Participants
3.1.2. Apparatus, Stimuli, and Procedure
3.1.3. Data Analysis
3.2. Results and Discussion
3.2.1. T1 Accuracy
3.2.2. T2 Accuracy
3.2.3. Rating of Perceived Presentation Rate
4. General Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holcombe, A.O. Seeing slow and seeing fast: Two limits on perception. Trends Cogn. Sci. 2009, 13, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.E.; Shapiro, K.L.; Arnell, K.M. Temporary suppression of visual processing in an RSVP task: An attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Dux, P.E.; Marois, R. The attentional blink: A review of data and theory. Atten. Percept. Psychophys. 2009, 71, 1683–1700. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.M.; Potter, M.C. A two-stage model for multiple target detection in rapid serial visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Jolicoeur, P. Concurrent response-selection demands modulate the attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 1999, 25, 1097. [Google Scholar] [CrossRef]
- Vul, E.; Nieuwenstein, M.; Kanwisher, N. Temporal Selection is Suppressed, Delayed, and Diffused During the Attentional Blink. Psychol. Sci. 2008, 19, 55–61. [Google Scholar] [CrossRef]
- Taatgen, N.A.; Juvina, I.; Schipper, M.; Borst, J.P.; Martens, S. Too much control can hurt: A threaded cognition model of the attentional blink. Cogn. Psychol. 2009, 59, 1–29. [Google Scholar] [CrossRef]
- Nieuwenstein, M.R.; Chun, M.M.; van der Lubbe, R.H.; Hooge, I.T. Delayed attentional engagement in the attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Hommel, B.; Akyurek, E.G. Lag-1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. Q. J. Exp. Psychol. A 2005, 58, 1415–1433. [Google Scholar] [CrossRef]
- Pecchinenda, A.; De Luca, F.; Monachesi, B.; Petrucci, M.; Pazzaglia, M.; Doricchi, F.; Lavidor, M. Contributions of the Right Prefrontal and Parietal Cortices to the Attentional Blink: A tDCS Study. Symmetry 2021, 13, 1208. [Google Scholar] [CrossRef]
- Sdoia, S.; Conversi, D.; Pecchinenda, A.; Ferlazzo, F. Access to consciousness of briefly presented visual events is modulated by transcranial direct current stimulation of left dorsolateral prefrontal cortex. Sci. Rep. 2019, 9, 10950. [Google Scholar] [CrossRef]
- Petrucci, M.; Pecchinenda, A. Sparing and impairing: Emotion modulation of the attentional blink and the spread of sparing in a 3-target RSVP task. Atten. Percept. Psychophys. 2018, 80, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Pecchinenda, A.; Monachesi, B.; Laeng, B. Fearful expressions of rapidly presented hybrid-faces modulate the lag 1 sparing in the attentional blink. Acta Psychol. 2020, 209, 103124. [Google Scholar] [CrossRef] [PubMed]
- Dux, P.E.; Wyble, B.; Jolicoeur, P.; Dell’Acqua, R. On the costs of lag-1 sparing. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Lasaponara, S.; Dragone, A.; Lecce, F.; Di Russo, F.; Doricchi, F. The “serendipitous brain”: Low expectancy and timing uncertainty of conscious events improve awareness of unconscious ones (evidence from the Attentional Blink). Cortex 2015, 71, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Alain, C. Implicit temporal expectation attenuates auditory attentional blink. PLoS ONE 2012, 7, e36031. [Google Scholar] [CrossRef] [PubMed]
- Visser, T.A.; Ohan, J.L.; Enns, J.T. Temporal cues derived from statistical patterns can overcome resource limitations in the attentional blink. Atten. Percept. Psychophys. 2015, 77, 1585–1595. [Google Scholar] [CrossRef]
- Choi, H.; Chang, L.-H.; Shibata, K.; Sasaki, Y.; Watanabe, T. Resetting capacity limitations revealed by long-lasting elimination of attentional blink through training. Proc. Natl. Acad. Sci. USA 2012, 109, 12242–12247. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.F.; Badcock, D.R.; Visser, T.A. Training and the attentional blink: Limits overcome or expectations raised? Psychon. Bull. Rev. 2014, 21, 406–411. [Google Scholar] [CrossRef]
- Willems, C.; Damsma, A.; Wierda, S.M.; Taatgen, N.; Martens, S. Training-induced Changes in the Dynamics of Attention as Reflected in Pupil Dilation. J. Cogn. Neurosci. 2015, 27, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Martens, S.; Johnson, A. Timing attention: Cuing target onset interval attenuates the attentional blink. Mem. Cogn. 2005, 33, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Visser, T.A.W.; Tang, M.F.; Badcock, D.R.; Enns, J.T. Temporal cues and the attentional blink: A further examination of the role of expectancy in sequential object perception. Atten. Percept. Psychophys. 2014, 76, 2212–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilkenmeier, F.; Scharlau, I. Rapid allocation of temporal attention in the attentional blink paradigm. Eur. J. Cogn. Psychol. 2010, 22, 1222–1234. [Google Scholar] [CrossRef]
- Martin, E.W.; Enns, J.T.; Shapiro, K.L. Turning the attentional blink on and off: Opposing effects of spatial and temporal noise. Psychon. Bull. Rev. 2011, 18, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, K.L.; Hanslmayr, S.; Enns, J.T.; Lleras, A. Alpha, beta: The rhythm of the attentional blink. Psychon. Bull. Rev. 2017, 24, 1862–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronconi, L.; Pincham, H.L.; Cristoforetti, G.; Facoetti, A.; Szucs, D. Shaping prestimulus neural activity with auditory rhythmic stimulation improves the temporal allocation of attention. Neuroreport 2016, 27, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Ronconi, L.; Pincham, H.L.; Szucs, D.; Facoetti, A. Inducing attention not to blink: Auditory entrainment improves conscious visual processing. Psychol. Res. 2016, 80, 774–784. [Google Scholar] [CrossRef]
- Yuan, P.; Hu, R.; Zhang, X.; Wang, Y.; Jiang, Y. Cortical entrainment to hierarchical contextual rhythms recomposes dynamic attending in visual perception. eLife 2021, 10, e65118. [Google Scholar] [CrossRef]
- Reedijk, S.A.; Bolders, A.; Colzato, L.S.; Hommel, B. Eliminating the attentional blink through binaural beats: A case for tailored cognitive enhancement. Front. Psychiatry 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Los, S.A.; Van Den Heuvel, C.E. Intentional and unintentional contributions to nonspecific preparation during reaction time foreperiods. J. Exp. Psychol. Hum. Percept. Perform. 2001, 27, 370–386. [Google Scholar] [CrossRef]
- Steinborn, M.B.; Rolke, B.; Bratzke, D.; Ulrich, R. Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychol. 2008, 129, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.C.; van Ede, F. Anticipated moments: Temporal structure in attention. Nat. Rev. Neurosci. 2018, 19, 34–48. [Google Scholar] [CrossRef]
- Mathewson, K.E.; Fabiani, M.; Gratton, G.; Beck, D.M.; Lleras, A. Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition 2010, 115, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ren, Y.; Guo, T.; Wang, A.; Nakao, T.; Ejima, Y.; Yang, J.; Takahashi, S.; Wu, J.; Wu, Q.; et al. Temporal expectation driven by rhythmic cues compared to that driven by symbolic cues provides a more precise attentional focus in time. Atten. Percept. Psychophys. 2021, 83, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Morillon, B.; Schroeder, C.E.; Wyart, V.; Arnal, L.H. Temporal Prediction in lieu of Periodic Stimulation. J. Neurosci. 2016, 36, 2342–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breska, A.; Ivry, R.B. The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. eLife 2021, 10, e66743. [Google Scholar] [CrossRef]
- Breska, A.; Ivry, R.B. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2018, 115, 12283–12288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breska, A.; Deouell, L.Y. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J. Cogn. Neurosci. 2014, 26, 1555–1571. [Google Scholar] [CrossRef]
- Breska, A.; Deouell, L.Y. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol. 2017, 15, e2001665. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D.H. The psychophysics toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, E.K.; Luck, S.J.; Shapiro, K.L. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 1656–1674. [Google Scholar] [CrossRef] [PubMed]
- Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 2009, 16, 225–237. [Google Scholar] [CrossRef] [PubMed]
- MacLean, M.H.; Arnell, K.M. A conceptual and methodological framework for measuring and modulating the attentional blink. Atten. Percept. Psychophys. 2012, 74, 1080–1097. [Google Scholar] [CrossRef] [Green Version]
- Visser, T.A.W.; Bischof, W.F.; Di Lollo, V. Attentional switching in spatial and nonspatial domains: Evidence from the attentional blink. Psychol. Bull. 1999, 125, 458–469. [Google Scholar] [CrossRef]
- Livesey, E.J.; Harris, I.M. Target sparing effects in the attentional blink depend on type of stimulus. Atten. Percept. Psychophys. 2011, 73, 2104–2123. [Google Scholar] [CrossRef]
- Olivers, C.N.L.; Nieuwenhuis, S. The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychol. Sci. 2005, 16, 265–269. [Google Scholar] [CrossRef]
- Martens, S.; Elmallah, K.; London, R.; Johnson, A. Cuing and stimulus probability effects on the P3 and the AB. Acta Psychol. 2006, 123, 204–218. [Google Scholar] [CrossRef]
- Niemi, P.; Näätänen, R. Foreperiod and simple reaction time. Psychol. Bull. 1981, 89, 133. [Google Scholar] [CrossRef]
- Los, S.A.; Kruijne, W.; Meeter, M. Hazard versus history: Temporal preparation is driven by past experience. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Langner, R.; Steinborn, M.B.; Eickhoff, S.B.; Huestegge, L. When specific action biases meet nonspecific preparation: Event repetition modulates the variable-foreperiod effect. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 1313–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.R.; Boltz, M. Dynamic attending and responses to time. Psychol. Rev. 1989, 96, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.R.; Moynihan, H.; MacKenzie, N.; Puente, J. Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol. Sci. 2002, 13, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Spaak, E.; de Lange, F.P.; Jensen, O. Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J. Neurosci. 2014, 34, 3536–3544. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, M.; Jensen, O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr. Biol. 2012, 22, 1969–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kösem, A.; Bosker, H.R.; Takashima, A.; Meyer, A.; Jensen, O.; Hagoort, P. Neural entrainment determines the words we hear. Curr. Biol. 2018, 28, 2867–2875. [Google Scholar] [CrossRef] [Green Version]
- Ronconi, L.; Busch, N.A.; Melcher, D. Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Sci. Rep. 2018, 8, 11810. [Google Scholar] [CrossRef]
- Sergent, C.; Baillet, S.; Dehaene, S. Timing of the brain events underlying access to consciousness during the attentional blink. Nat. Neurosci. 2005, 8, 1391. [Google Scholar] [CrossRef] [PubMed]
- Hanslmayr, S.; Gross, J.; Klimesch, W.; Shapiro, K.L. The role of alpha oscillations in temporal attention. Brain Res. Rev. 2011, 67, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.; Schmitz, F.; Schnitzler, I.; Kessler, K.; Shapiro, K.; Hommel, B.; Schnitzler, A. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 13050–13055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, T.; Nobre, A.C. Perceiving the passage of time: Neural possibilities. Ann. N. Y. Acad. Sci. 2014, 1326, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.; Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 2005, 8, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coull, J.; Nobre, A. Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol. 2008, 18, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Coull, J.T.; Vidal, F.; Nazarian, B.; Macar, F. Functional anatomy of the attentional modulation of time estimation. Science 2004, 303, 1506–1508. [Google Scholar] [CrossRef] [Green Version]
- Ravizza, S.M.; Ivry, R.B. Comparison of the basal ganglia and cerebellum in shifting attention. J. Cogn. Neurosci. 2001, 13, 285–297. [Google Scholar] [CrossRef]
- Dreher, J.C.; Grafman, J. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur. J. Neurosci. 2002, 16, 1609–1619. [Google Scholar] [CrossRef]
- Coull, J.T.; Cotti, J.; Vidal, F. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: Dissociating prior from posterior temporal probabilities with fMRI. Neuroimage 2016, 141, 40–51. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Zhou, B.; Zhuang, Y.; Wang, X. Immediate Temporal Information Modulates the Target Identification in the Attentional Blink. Brain Sci. 2022, 12, 278. https://doi.org/10.3390/brainsci12020278
Yao F, Zhou B, Zhuang Y, Wang X. Immediate Temporal Information Modulates the Target Identification in the Attentional Blink. Brain Sciences. 2022; 12(2):278. https://doi.org/10.3390/brainsci12020278
Chicago/Turabian StyleYao, Fangshu, Bin Zhou, Yiyun Zhuang, and Xiaochun Wang. 2022. "Immediate Temporal Information Modulates the Target Identification in the Attentional Blink" Brain Sciences 12, no. 2: 278. https://doi.org/10.3390/brainsci12020278
APA StyleYao, F., Zhou, B., Zhuang, Y., & Wang, X. (2022). Immediate Temporal Information Modulates the Target Identification in the Attentional Blink. Brain Sciences, 12(2), 278. https://doi.org/10.3390/brainsci12020278