Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Maximum Tongue Pressure Measurement
2.3. Practice for MTP60%
2.4. NIRS Measurement Items
2.5. Task Paradigm
- (1)
- Task 1: resting tongue position for control.
- (2)
- Task 2: MTP60% against the anterior palatal mucosa (5 s, three times).
- (3)
- Task 3: insertion of the TPM probe.
- (4)
- Task 4: MTP60% via the TPM probe (5 s, three times).
2.6. Analysis of the NIRS Data
2.6.1. Wave Analysis
2.6.2. Activation Analysis
2.6.3. Comparison of Sex Correlations between Hemodynamic Parameters
2.6.4. Correlation Analysis
3. Results
3.1. Maximum Tongue Pressure
3.2. Waveforms Elicited by the Tasks
3.3. Activation Analysis between Tasks
3.4. Comparison of Sex Correlations between Hemodynamic Parameters
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.D.; Choi, J.B.; Yoo, S.J.; Chang, M.Y.; Lee, S.W.; Park, J.S. Tongue-to-palate resistance training improves tongue strength and oropharyngeal swallowing function in subacute stroke survivors with dysphagia. J. Oral Rehabil. 2017, 44, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Tsuga, K.; Yoshikawa, M.; Oue, H.; Okazaki, Y.; Tsuchioka, H.; Maruyama, M.; Yoshida, M.; Akagawa, Y. Maximal voluntary tongue pressure is decreased in Japanese frail elderly persons. Gerodontology 2012, 29, e1078–e1085. [Google Scholar] [CrossRef] [PubMed]
- Nakamori, M.; Hosomi, N.; Ishikawa, K.; Imamura, E.; Shishido, T.; Ohshita, T.; Yoshikawa, M.; Tsuga, K.; Wakabayashi, S.; Maruyama, H.; et al. Prediction of pneumonia in acute stroke patients using tongue pressure measurements. PLoS ONE 2016, 11, e0165837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momose, T.; Nishikawa, J.; Watanabe, T.; Sasaki, Y.; Senda, M.; Kubota, K.; Sato, Y.; Funakoshi, M.; Minakuchi, S. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with 15O-labelled water and magnetic resonance imaging. Arch. Oral Biol. 1997, 42, 57–61. [Google Scholar] [CrossRef]
- Sakuma, S.; Inamoto, K.; Higuchi, N.; Ariji, Y.; Nakayama, M.; Izumi, M. Experimental pain in the gingiva and its impact on prefrontal cortical hemodynamics: A functional near-infrared spectroscopy study. Neurosci. Lett. 2014, 575, 74–79. [Google Scholar] [CrossRef]
- Miyamoto, I.; Yoshida, K.; Tsuboi, Y.; Iizuka, T. Rehabilitation with dental prosthesis can increase cerebral regional blood volume. Clin. Oral Implant. Res. 2005, 16, 723–727. [Google Scholar] [CrossRef]
- Hirano, Y.; Obata, T.; Kashikura, K.; Nonaka, H.; Tachibana, A.; Ikehira, H.; Onozuka, M. Effects of chewing in working memory processing. Neurosci. Lett. 2008, 436, 189–192. [Google Scholar] [CrossRef]
- Higaki, N.; Goto, T.; Ichikawa, T. Periodontal tactile input activates the prefrontal cortex. Sci. Rep. 2016, 6, 36893. [Google Scholar] [CrossRef]
- Kishimoto, T.; Goto, T.; Ichikawa, T. Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force. Exp. Brain Res. 2019, 237, 2767–2774. [Google Scholar] [CrossRef]
- Chaigneau, E.; Tiret, P.; Lecoq, J.; Ducros, M.; Knöpfel, T.; Charpak, S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci. 2007, 27, 6452–6460. [Google Scholar] [CrossRef]
- Fox, P.T.; Mintun, M.A.; Raichle, M.E.; Herscovitch, P. A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography. J. Cereb. Blood Flow Metab. 1984, 4, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Lee, T.M. Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation. Magn. Reson. Med. 1990, 16, 9–18. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [Green Version]
- Bandettini, P.A.; Wong, E.C.; Hinks, R.S.; Tikofsky, R.S.; Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992, 25, 390–397. [Google Scholar] [CrossRef]
- Sörös, P.; Lalone, E.; Smith, R.; Stevens, T.; Theurer, J.; Menon, R.S.; Martin, R.E. Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 2008, 153, 1300–1308. [Google Scholar] [CrossRef]
- Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef]
- Chance, B.; Zhuang, Z.; UnAh, C.; Alter, C.; Lipton, L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 1993, 90, 3770–3774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, E.; Maki, A.; Kawaguchi, F.; Takashiro, K.; Yamashita, Y.; Koizumi, H.; Mayanagi, Y. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci. Lett. 1998, 256, 49–52. [Google Scholar] [CrossRef]
- Akashi, H.; Tsujii, N.; Mikawa, W.; Adachi, T.; Kirime, E.; Shirakawa, O. Prefrontal cortex activation is associated with a discrepancy between self- and observer-rated depression severities of major depressive disorder: A multichannel near-infrared spectroscopy study. J. Affect. Disord. 2015, 174, 165–172. [Google Scholar] [CrossRef]
- Takizawa, R.; Fukuda, M.; Kawasaki, S.; Kasai, K.; Mimura, M.; Pu, S.; Noda, T.; Niwa, S.I.; Okazaki, Y.; Joint Project for Psychiatric Application of Near-Infrared Spectroscopy (JPSY-NIRS) Group. Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage 2014, 85, 498–507. [Google Scholar] [CrossRef]
- Ishii-Takahashi, A.; Takizawa, R.; Nishimura, Y.; Kawakubo, Y.; Hamada, K.; Okuhata, S.; Kawasaki, S.; Kuwabara, H.; Shimada, T.; Todokoro, A.; et al. Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: A randomized controlled trial. Neuropsychopharmacology 2015, 40, 2676–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delpy, D.T.; Cope, M.; van der Zee, P.; Arridge, S.; Wray, S.; Wyatt, J.S. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988, 33, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuzuki, D.; Jurcak, V.; Singh, A.K.; Okamoto, M.; Watanabe, E.; Dan, I. Virtual spatial registration of stand-alone fNIRS data to MNI space. Neuroimage 2007, 34, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Nakanishi, M.; Okamoto, K.; Kawashima, C.; Oshita, H.; Inoue, A.; Takita, F.; Izumi, T.; Ishitobi, Y.; Higuma, H.; et al. Different functioning of prefrontal cortex predicts treatment response after a selective serotonin reuptake inhibitor treatment in patients with major depression. J. Affect. Disord. 2017, 214, 44–52. [Google Scholar] [CrossRef]
- Bessho, H.; Shibukawa, Y.; Shintani, M.; Yajima, Y.; Suzuki, T.; Shibahara, T. Localization of palatal area in human somatosensory cortex. J. Dent. Res. 2007, 86, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.J.; Luzzi, S.; Alexander, D.C.; Wheeler-Kingshott, C.A.; Ciccarelli, O.; Ralph, M.A. Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 2005, 24, 656–666. [Google Scholar] [CrossRef]
- Hull, R.; Bortfeld, H.; Koons, S. Near-infrared spectroscopy and cortical responses to speech production. Open Neuroimaging J. 2009, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Kawakubo, Y.; Yanagi, M.; Tsujii, N.; Shirakawa, O. Repetition of verbal fluency task attenuates the hemodynamic activation in the left prefrontal cortex: Enhancing the clinical usefulness of near-infrared spectroscopy. PLoS ONE 2018, 13, e0193994. [Google Scholar] [CrossRef]
- Ogura, E.; Matsuyama, M.; Goto, T.K.; Nakamura, Y.; Koyano, K. Brain activation during oral exercises used for dysphagia rehabilitation in healthy human subjects: A functional magnetic resonance imaging study. Dysphagia 2012, 27, 353–360. [Google Scholar] [CrossRef]
- Suwabe, K.; Hyodo, K.; Fukuie, T.; Ochi, G.; Inagaki, K.; Sakairi, Y.; Soya, H. Positive mood while exercising influences beneficial effects of exercise with music on prefrontal executive function: A functional NIRS study. Neuroscience 2021, 454, 61–71. [Google Scholar] [CrossRef]
- Tachtsidis, I.; Leung, T.S.; Devoto, L.; Delpy, D.T.; Elwell, C.E. Measurement of frontal lobe functional activation and related systemic effects: A near-infrared spectroscopy investigation. In Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2008; Volume 614, pp. 397–403. [Google Scholar] [CrossRef]
- Cooper, R.; Selb, J.; Gagnon, L.; Phillip, D.; Schytz, H.W.; Iversen, H.K.; Ashina, M.; Boas, D.A. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 2012, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Sharma, V.; Kozel, F.A.; Liu, H. Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex. Brain Res. 2009, 1303, 120–130. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Reiss, A.L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 2010, 49, 3039–3046. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, A.; Fehring, D.J.; Rossell, S.L. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur. J. Neurosci. 2021, 53, 2592–2611. [Google Scholar] [CrossRef]
- Lee, C.H.; Sugiyama, T.; Kataoka, A.; Kudo, A.; Fujino, F.; Chen, Y.W.; Mitsuyama, Y.; Nomura, S.; Yoshioka, T. Analysis for distinctive activation patterns of pain and itchy in the human brain cortex measured using near infrared spectroscopy (NIRS). PLoS ONE 2013, 8, e75360. [Google Scholar] [CrossRef]
- Hiraba, H.; Inoue, M.; Gora, K.; Sato, T.; Nishimura, S.; Yamaoka, M.; Kumakura, A.; Ono, S.; Wakasa, H.; Nakayama, E.; et al. Facial vibrotactile stimulation activates the parasympathetic nervous system: Study of salivary secretion, heart rate, pupillary reflex, and functional near-infrared spectroscopy activity. BioMed Res. Int. 2014, 2014, 910812. [Google Scholar] [CrossRef]
- Ihme, K.; Unni, A.; Zhang, M.; Rieger, J.W.; Jipp, M. Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near-infrared spectroscopy. Front. Hum. Neurosci. 2018, 12, 327. [Google Scholar] [CrossRef] [Green Version]
- Seiyama, A.; Seki, J.; Tanabe, H.C.; Sase, I.; Takatsuki, A.; Miyauchi, S.; Eda, H.; Hayashi, S.; Imaruoka, T.; Iwakura, T.; et al. Circulatory basis of fMRI signals: Relationship between changes in the hemodynamic parameters and BOLD signal intensity. NeuroImage 2004, 21, 1204–1214. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hori, E.; Takamoto, K.; Tran, A.H.; Satoru, K.; Ishikawa, A.; Ono, T.; Endo, S.; Nishijo, H. Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation. Brain Topogr. 2009, 22, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Ono, Y.; Kobayashi, G.; Hayama, R.; Ikuta, R.; Onozouka, M.; Wake, H.; Shimada, A.; Shibuya, T.; Tamaki, K. Prefrontal hemodynamic changes associated with subjective sense of occlusal discomfort. BioMed Res. Int. 2015, 2015, 395705. [Google Scholar] [CrossRef]
- Narita, N.; Kamiya, K.; Makiyama, Y.; Iwaki, S.; Komiyama, O.; Ishii, T.; Wake, H. Prefrontal modulation during chewing performance in occlusal dysesthesia patients: A functional near-infrared spectroscopy study. Clin. Oral Investig. 2019, 23, 1181–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Participants n = 13 | Sex (kPa) | MTP1 (kPa) | MTP2 (kPa) | MTP3 (kPa) | Test Pressure (kPa) |
---|---|---|---|---|---|
a | M | 43.4 | 48.7 | 56.5 | 30.0 |
b | M | 50.4 | 49.6 | 51.0 | 30.0 |
c | M | 41.5 | 41.5 | 41.6 | 24.0 |
d | M | 40.8 | 37.3 | 41.9 | 24.0 |
e | M | 20.5 | 16.7 | 27.8 | 16.0 |
f | M | 32.4 | 39.1 | 37.0 | 20.0 |
g | F | 40.2 | 43.4 | 40.3 | 22.0 |
h | F | 35.4 | 41.7 | 41.0 | 23.0 |
i | M | 52.2 | 53.7 | 50.8 | 30.0 |
j | M | 41.4 | 43.7 | 43.8 | 26.0 |
k | M | 35.4 | 35.2 | 36.7 | 22.0 |
l | M | 36.1 | 36.5 | 38.9 | 23.0 |
m | F | 47.7 | 48.1 | 45.6 | 27.0 |
Male | Female | p-Value | |||
MTP (Mean ± SD, kPa) | 40.7 ± 9.0 | 42.6 ± 4.1 | p = 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyata, H.; Tani, R.; Toratani, S.; Okamoto, T. Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study. Brain Sci. 2022, 12, 296. https://doi.org/10.3390/brainsci12020296
Miyata H, Tani R, Toratani S, Okamoto T. Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study. Brain Sciences. 2022; 12(2):296. https://doi.org/10.3390/brainsci12020296
Chicago/Turabian StyleMiyata, Hidemasa, Ryouji Tani, Shigeaki Toratani, and Tetsuji Okamoto. 2022. "Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study" Brain Sciences 12, no. 2: 296. https://doi.org/10.3390/brainsci12020296
APA StyleMiyata, H., Tani, R., Toratani, S., & Okamoto, T. (2022). Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study. Brain Sciences, 12(2), 296. https://doi.org/10.3390/brainsci12020296