A Preliminary Report of Network Electroencephalographic Measures in Primary Progressive Apraxia of Speech and Aphasia
Abstract
:1. Introduction
1.1. EEG Graph Theory Measures
1.2. EEG Graph Theory in Neurodegenerative Disease
1.3. Primary Progressive Aphasia and Apraxia of Speech
1.4. Present Study
2. Materials and Methods
2.1. Participants
2.2. Clinical Measures
2.3. Electroencephalographic (EEG) Recording
2.4. EEG Processing
2.5. Graph Theory Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. General Discussion
4.2. Tests of Differences and Correlations
4.3. Relationship with Functional Connectivity Literature
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Waal, H.; Stam, C.J.; Blankenstein, M.A.; Pijnenburg, Y.A.; Scheltens, P.; van der Flier, W.M. EEG abnormalities in early and late onset Alzheimer’s disease: Understanding heterogeneity. J. Neurol. Neurosurg. Psychiatry 2011, 82, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caviness, J.N.; Hentz, J.G.; Evidente, V.G.; Driver-Dunckley, E.; Samanta, J.; Mahant, P.; Connor, D.J.; Sabbagh, M.N.; Shill, H.A.; Adler, C.H. Both early and late cognitive dysfunction affects the electroencephalogram in Parkinson’s disease. Parkinsonism Relat. Disord. 2007, 13, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M. Slowly progressive aphasia without generalized dementia. Ann. Neurol. 1982, 11, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Utianski, R.L.; Caviness, J.N.; Worrell, G.A.; Duffy, J.R.; Clark, H.M.; Machulda, M.M.; Whitwell, J.L.; Josephs, K.A. Electroencephalography in primary progressive aphasia and apraxia of speech. Aphasiology 2019, 33, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Van Steen, M. Graph theory and complex networks. An introduction. Meterial 2010, 144, 152. [Google Scholar]
- Utianski, R.L.; Caviness, J.N.; van Straaten, E.C.; Beach, T.G.; Dugger, B.N.; Shill, H.A.; Driver-Dunckley, E.D.; Sabbagh, M.N.; Mehta, S.; Adler, C.H.; et al. Graph theory network function in Parkinson’s disease assessed with electroencephalography. Clin. Neurophysiol. 2016, 127, 2228–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miraglia, F.; Vecchio, F.; Rossini, P.M. Searching for signs of aging and dementia in EEG through network analysis. Behav. Brain Res. 2017, 317, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, F.; Miraglia, F.; Iberite, F.; Lacidogna, G.; Guglielmi, V.; Marra, C.; Pasqualetti, P.; Tiziano, F.D.; Rossini, P.M. Sustainable method for Alzheimer’s prediction in Mild Cognitive Impairment: EEG connectivity and graph theory combined with ApoE. Ann. Neurol. 2018, 84, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; De Haan, W.; Daffertshofer, A.; Jones, B.; Manshanden, I.; van Cappellen van Walsum, A.-M.; Montez, T.; Verbunt, J.; De Munck, J.; Van Dijk, B. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 2009, 132, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Jones, B.F.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 2007, 17, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Haan, W.; Pijnenburg, Y.A.; Strijers, R.L.; van der Made, Y.; van der Flier, W.M.; Scheltens, P.; Stam, C.J. Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 2009, 10, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moral-Rubio, C.; Balugo, P.; Fraile-Pereda, A.; Pytel, V.; Fernández-Romero, L.; Delgado-Alonso, C.; Delgado-Álvarez, A.; Matias-Guiu, J.; Matias-Guiu, J.A.; Ayala, J.L. Application of Machine Learning to Electroencephalography for the Diagnosis of Primary Progressive Aphasia: A Pilot Study. Brain Sci. 2021, 11, 1262. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M. Primary progressive aphasia. Ann. Neurol. 2001, 49, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Machulda, M.M.; Senjem, M.L.; Master, A.V.; Lowe, V.J.; Jack, C.R.; Whitwell, J.L. Characterizing a neurodegenerative syndrome: Primary progressive apraxia of speech. Brain 2012, 135, 1522–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, J.R. Apraxia of Speech in degenerative neurologic disease. Aphasiology 2006, 20, 511–527. [Google Scholar] [CrossRef]
- Utianski, R.L.; Duffy, J.R.; Clark, H.M.; Strand, E.A.; Boland, S.M.; Machulda, M.M.; Whitwell, J.L.; Josephs, K.A. Clinical Progression in Four Cases of Primary Progressive Apraxia of Speech. Am. J. Speech-Lang. Pathol. 2018, 27, 1303–1318. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Duffy, J.R.; Clark, H.M.; Utianski, R.L.; Strand, E.A.; Machulda, M.M.; Botha, H.; Martin, P.R.; Pham, N.T.T.; Stierwalt, J.; et al. A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nat. Commun. 2021, 12, 3452. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.L.; Duffy, J.R.; Machulda, M.M.; Clark, H.M.; Strand, E.A.; Senjem, M.L.; Gunter, J.L.; Spychalla, A.J.; Petersen, R.C.; Jack, C.R.; et al. Tracking the development of agrammatic aphasia: A tensor-based morphometry study. Cortex 2017, 90, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitwell, J.L.; Martin, P.; Duffy, J.R.; Clark, H.M.; Utianski, R.L.; Botha, H.; Machulda, M.M.; Strand, E.A.; Josephs, K.A. Survival analysis in primary progressive apraxia of speech and agrammatic aphasia. Neurol. Clin. Pract. 2021, 11, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Tetzloff, K.A.; Duffy, J.R.; Clark, H.M.; Utianski, R.L.; Strand, E.A.; Machulda, M.M.; Botha, H.; Martin, P.R.; Schwarz, C.G.; Senjem, M.L.; et al. Progressive agrammatic aphasia without apraxia of speech as a distinct syndrome. Brain 2019, 142, 2466–2482. [Google Scholar] [CrossRef]
- Duffy, J.R.; Utianski, R.L.; Josephs, K.A. Primary progressive apraxia of speech: From recognition to diagnosis and care. Aphasiology 2021, 35, 560–591. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, A. Western Aphasia Battery (Revised); PsychCorp: San Antonio, TX, USA, 2006. [Google Scholar]
- Weintraub, S.; Mesulam, M.M.; Wieneke, C.; Rademaker, A.; Rogalski, E.J.; Thompson, C.K. The northwestern anagram test: Measuring sentence production in primary progressive aphasia. Am. J. Alzheimers Dis. Other Demen. 2009, 24, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Utianski, R.L.; Duffy, J.R.; Clark, H.M.; Strand, E.; Botha, H.; Schwarz, C.G.; Machulda, M.M.; Senjem, M.; Spychalla, A.J.; Jack, C.; et al. Prosodic and phonetic subtypes of primary progressive apraxia of speech. Brain Lang. 2018, 184, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.A.; Duffy, J.R.; Clark, H.M.; Josephs, K.A. The Apraxia of Speech Rating Scale: A new tool for diagnosis and description of AOS. J. Commun. Disord. 2014, 51, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasreddine, Z.; Phillips, N.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 669–695. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.; Tilley, B.; Shaftman, S.; Stebbins, G.; Fahn, S.; Martinex-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Tewarie, P.; Van Dellen, E.; van Straaten, E.C.W.; Hillebrand, A.; Van Mieghem, P. The trees and the forest: Characterization of complex brain networks with minimum spanning trees. Int. J. Psychophysiol. 2014, 92, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewarie, P.; van Dellen, E.; Hillebrand, A.; Stam, C.J. The minimum spanning tree: An unbiased method for brain network analysis. NeuroImage 2015, 104, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Midway, S.; Robertson, M.; Flinn, S.; Kaller, M. Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test. Test. PeerJ 2020, 8, e10387. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Knopman, D.S.; Gunter, J.L.; Graff-Radford, J.; Vemuri, P.; Boeve, B.F.; Petersen, R.C.; Weiner, M.W.; Jack, C.R., Jr. Cascading network failure across the Alzheimer’s disease spectrum. Brain 2016, 139, 547–562. [Google Scholar] [CrossRef] [PubMed]
- van Dellen, E.; de Waal, H.; van der Flier, W.M.; Lemstra, A.W.; Slooter, A.J.; Smits, L.L.; van Straaten, E.C.; Stam, C.J.; Scheltens, P. Loss of EEG Network Efficiency Is Related to Cognitive Impairment in Dementia with Lewy Bodies. Mov. Disord. 2015, 30, 1785–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musaeus, C.S.; Engedal, K.; Hogh, P.; Jelic, V.; Morup, M.; Naik, M.; Oeksengaard, A.R.; Snaedal, J.; Wahlund, L.O.; Waldemar, G.; et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Nauta, I.M.; Kulik, S.D.; Breedt, L.C.; Eijlers, A.J.; Strijbis, E.M.; Bertens, D.; Tewarie, P.; Hillebrand, A.; Stam, C.J.; Uitdehaag, B.M.; et al. Functional brain network organization measured with magnetoencephalography predicts cognitive decline in multiple sclerosis. Mult. Scler. J. 2021, 27, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Pievani, M.; de Haan, W.; Wu, T.; Seeley, W.W.; Frisoni, G.B. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011, 10, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Botha, H.; Utianski, R.L.; Whitwell, J.L.; Duffy, J.R.; Clark, H.M.; Strand, E.A.; Machulda, M.M.; Tosakulwong, N.; Knopman, D.S.; Petersen, R.C.; et al. Disrupted functional connectivity in primary progressive apraxia of speech. Neuroimage Clin. 2018, 18, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Agosta, F.; Galantucci, S.; Valsasina, P.; Canu, E.; Meani, A.; Marcone, A.; Magnani, G.; Falini, A.; Comi, G.; Filippi, M. Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol. Aging 2014, 35, 2646–2655. [Google Scholar] [CrossRef]
- Mandelli, M.L.; Welch, A.E.; Vilaplana, E.; Watson, C.; Battistella, G.; Brown, J.A.; Possin, K.L.; Hubbard, H.I.; Miller, Z.A.; Henry, M.L. Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex 2018, 108, 252–264. [Google Scholar] [CrossRef]
- Tao, Y.; Ficek, B.; Rapp, B.; Tsapkini, K. Different patterns of functional network reorganization across the variants of primary progressive aphasia: A graph-theoretic analysis. Neurobiol. Aging 2020, 96, 184–196. [Google Scholar] [CrossRef]
- Baselice, F.; Sorriso, A.; Rucco, R.; Sorrentino, P. Phase Linearity Measurement: A Novel Index for Brain Functional Connectivity. IEEE Trans. Med. Imaging 2019, 38, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, M.N.; Christodoulakis, M.; Papathanasiou, E.S.; Papacostas, S.S.; Hadjipapas, A.; Mitsis, G.D. Graph theoretical characteristics of EEG-based functional brain networks in patients with epilepsy: The effect of reference choice and volume conduction. Front. Neurosci. 2019, 13, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measure | Definition |
---|---|
PLI, Phase lag index | Measure of functional connectivity between nodes |
Gamma, Normalized weighted clustering coefficient | Measure of connectivity between nodes or the extent to which neighboring nodes are also neighbors with one another, calculated per node and averaged over the entire network. |
Lambda, Normalized characteristic path length | Measure of the average number of connections in the shortest path between two nodes of the network |
KappaW, Weighted degree divergence | Measure of the broadness of the weighted degree distribution, where weighted degree is the summed weights of all edges connected to a node |
Modularity | Measure of the degree to which nodes are more connected to each other than to nodes outside a given cluster (i.e., module) |
MST BCmax, Maximum MST betweenness centrality | Maximum number of paths between any two MST nodes running through a single node |
MST Diameter | Maximum number of connections (distance) between two MST nodes |
MST Eccentricity | Average maximum distance between any two MST nodes |
MST Leaf, MST leaf fraction | Measure of the number of MST nodes with only one link relative to the maximum possible number of leaves |
agPPA (n = 15) | PPAOS (n = 7) | All (n = 22) | |
---|---|---|---|
Age at EEG * | 69 | 74 | 73 |
Disease Duration at EEG * | 4.1 | 2 | 3.95 |
Sex | 9 F (60%) | 4 F (57%) | 13 F (59%) |
MoCA* (/30) | 21 | 27 | 25 |
MDS-UPDRS III (/81) * | 15 | 12 | 15 |
ASRS-3 (/52) | 21 | 16 | 21 |
NAT (/10) * | 5 | 9 | 7 |
WAB-AQ (/100) * | 88.775 | 97.9 | 96.4 |
Aphasia Severity (/4) * | 1.5 | 0 | 1 |
AOS Severity (/4) | 2 | 2 | 2 |
Measure | agPPA (n = 15) | PPAOS (n = 7) | All (n = 22) |
---|---|---|---|
Theta | |||
PLI | 0.189 (0.180, 0.211) | 0.187 (0.175, 0.209) | 0.188 (0.178, 0.210) |
Gamma | 1.020 (1.007, 1.038) | 1.030 (1.008, 1.040) | 1.025 (1.007, 1.039) |
Lambda | 0.934 (0.932, 0.945) | 0.934 (0.922, 0.947) | 0.934 (0.930, 0.946) |
KappaW | 4.001 (3.787, 4.439) | 3.978 (3.694, 4.440) | 3.998 (3.723, 4.439) |
Modularity | 0.077 (0.068, 0.083) | 0.081 (0.070, 0.082) | 0.078 (0.070, 0.082) |
MST BCmax | 0.723 (0.692, 0.742) | 0.711 (0.680, 0.722) | 0.711 (0.691, 0.734) |
MST Diameter | 0.425 (0.413, 0.444) | 0.406 (0.394, 0.438) | 0.422 (0.405, 0.439) |
MST Eccentricity | 0.340 (0.324, 0.352) | 0.330 (0.313, 0.347) | 0.339 (0.323, 0.348) |
MST Leaf | 0.550 (0.519, 0.569) | 0.544 (0.531, 0.575) | 0.547 (0.530, 0.570) |
Alpha1 | |||
PLI | 0.242 (0.242, 0.272) | 0.257 (0.234, 0.274) | 0.248 (0.234, 0.273) |
Gamma | 1.029 (1.022, 1.043) | 1.033 (1.022, 1.039) | 1.030 (1.022, 1.040) |
Lambda | 0.938 (0.937, 0.946) | 0.935 (0.932, 0.941) | 0.938 (0.935, 0.946) |
KappaW | 5.143 (4.992, 5.753) | 5.434 (4.940, 5.833) | 5.296 (4.980, 5.773) |
Modularity | 0.079 (0.073, 0.084) | 0.081 (0.070, 0.084) | 0.080 (0.072, 0.084) |
MST BCmax | 0.721 (0.707, 0.734) | 0.733 (0.696, 0.757) | 0.723 (0.705, 0.739) |
MST Diameter | 0.431 (0.388, 0.444) | 0.394 (0.388, 0.431) | 0.419 (0.388, 0.444) |
MST Eccentricity | 0.339 (0.306, 0.350) | 0.314 (0.310, 0.348) | 0.335 (0.309, 0.349) |
MST Leaf | 0.550 (0.531, 0.588) | 0.581 (0.531, 0.600) | 0.553 (0.531, 0.595) |
Alpha2 | |||
PLI | 0.215 (0.193, 0.241) | 0.207 (0.198, 0.219) | 0.210 (0.196, 0.230) |
Gamma | 1.041 (1.012, 1.057) | 1.029 (1.005, 1.044) | 1.033 (1.012, 1.046) |
Lambda | 0.943 (0.932, 0.950) | 0.933 (0.925, 0.938) | 0.936 (0.928, 0.946) |
KappaW | 4.553 (4.054, 5.157) | 4.327 (4.242, 4.620) | 4.440 (4.156, 4.920) |
Modularity | 0.075 (0.071, 0.086) | 0.080 (0.071, 0.080) | 0.077 (0.071, 0.084) |
MST BCmax | 0.714 (0.700, 0.749) | 0.734 (0.684, 0.742) | 0.719 (0.700, 0.742) |
MST Diameter | 0.419 (0.388, 0.438) | 0.406 (0.400, 0.419) | 0.413 (0.398, 0.433) |
MST Eccentricity | 0.336 (0.309, 0.347) | 0.320 (0.314, 0.332) | 0.325 (0.314, 0.341) |
MST Leaf | 0.556 (0.538, 0.594) | 0.563 (0.519, 0.581) | 0.559 (0.536, 0.583) |
Age | Disease Duration | MoCA | MDS-UPDRS III | ASRS-3 | WAB-AQ | |
---|---|---|---|---|---|---|
Theta | ||||||
PLI | −0.1404 | 0.2893 | −0.1254 | 0.0023 | 0.0788 | −0.0589 |
Gamma | 0.0583 | 0.1509 | 0.1904 | −0.0736 | 0.0037 | 0.1218 |
Lambda | −0.1130 | 0.1524 | −0.0325 | −0.1586 | −0.0283 | −0.0558 |
KappaW | −0.1512 | 0.2995 | −0.1005 | −0.0068 | 0.0640 | −0.0392 |
Modularity | −0.0261 | −0.5790 * | 0.1266 | −0.0739 | −0.0382 | 0.1539 |
MST BCmax | −0.0798 | 0.0590 | −0.2501 | 0.1687 | −0.1280 | −0.3221 |
MST Diameter | 0.2293 | 0.2937 | −0.0906 | 0.0923 | 0.3820 | 0.0083 |
MST Eccentricity | 0. 3000 | 0.2640 | −0.0495 | 0.0977 | 0.3879 | −0.0021 |
MST Leaf | −0.3106 | −0.0500 | 0.1542 | −0.1328 | −0.0315 | 0.0990 |
Alpha1 | ||||||
PLI | −0.3447 | −0.0483 | 0.1778 | −0.5537 * | −0.2069 | 0.1552 |
Gamma | 0.0476 | 0.1421 | 0.1538 | −0.1954 | 0.5357 * | 0.2598 |
Lambda | 0.0340 | 0.7833 * | −0.2614 | 0.4002 | 0.8246 * | −0.0485 |
KappaW | −0.3505 | −0.0596 | 0.1466 | −0.5593 * | −0.1625 | 0.1869 |
Modularity | 0.0986 | 0.0301 | 0.2071 | 0.2310 | 0.0197 | 0.1260 |
MST BCmax | −0.0541 | −0.2585 | 0.1364 | −0.2593 | −0.1016 | 0.0015 |
MST Diameter | 0.0390 | 0.0542 | −0.2057 | 0.2736 | 0.2427 | 0.0156 |
MST Eccentricity | −0.0456 | 0.1078 | −0.1194 | 0.2591 | 0.1932 | 0.1147 |
MST Leaf | −0.0011 | 0.1291 | 0.1326 | −0.3163 | −0.0167 | −0.0109 |
Alpha2 | ||||||
PLI | −0.3771 | 0.0556 | −0.1609 | −0.0668 | 0.1822 | 0.0743 |
Gamma | −0.5991 * | 0.0562 | 0.0650 | −0.4110 | 0.1994 | 0.3263 |
Lambda | 0.0102 | 0.3142 | −0.2803 | 0.0221 | 0.5871 * | −0.1249 |
KappaW | −0.4241 * | 0.0153 | −0.0688 | −0.1545 | 0.1883 | 0.1735 |
Modularity | 0.2749 | −0.1153 | 0.1483 | 0.1116 | −0.4380 | −0.1314 |
MST BCmax | −0.2936 | 0.3081 | −0.0643 | −0.0856 | 0.4436 | 0.3390 |
MST Diameter | 0.3636 | −0.0558 | −0.0065 | 0.1252 | −0.1891 | −0.3696 |
MST Eccentricity | 0.3539 | −0.1016 | −0.0295 | 0.1432 | −0.2905 | −0.4027 |
MST Leaf | −0.4824 * | 0.0546 | 0.0546 | −0.4686 * | 0.0722 | 0.2962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utianski, R.L.; Botha, H.; Caviness, J.N.; Worrell, G.A.; Duffy, J.R.; Clark, H.M.; Whitwell, J.L.; Josephs, K.A. A Preliminary Report of Network Electroencephalographic Measures in Primary Progressive Apraxia of Speech and Aphasia. Brain Sci. 2022, 12, 378. https://doi.org/10.3390/brainsci12030378
Utianski RL, Botha H, Caviness JN, Worrell GA, Duffy JR, Clark HM, Whitwell JL, Josephs KA. A Preliminary Report of Network Electroencephalographic Measures in Primary Progressive Apraxia of Speech and Aphasia. Brain Sciences. 2022; 12(3):378. https://doi.org/10.3390/brainsci12030378
Chicago/Turabian StyleUtianski, Rene L., Hugo Botha, John N. Caviness, Gregory A. Worrell, Joseph R. Duffy, Heather M. Clark, Jennifer L. Whitwell, and Keith A. Josephs. 2022. "A Preliminary Report of Network Electroencephalographic Measures in Primary Progressive Apraxia of Speech and Aphasia" Brain Sciences 12, no. 3: 378. https://doi.org/10.3390/brainsci12030378
APA StyleUtianski, R. L., Botha, H., Caviness, J. N., Worrell, G. A., Duffy, J. R., Clark, H. M., Whitwell, J. L., & Josephs, K. A. (2022). A Preliminary Report of Network Electroencephalographic Measures in Primary Progressive Apraxia of Speech and Aphasia. Brain Sciences, 12(3), 378. https://doi.org/10.3390/brainsci12030378