Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS
Abstract
:1. Introduction
1.1. Background
1.1.1. UHL Consequences and Care
1.1.2. Cortical Reorganization Following Unilateral Deafness
- In adults
- During development
1.1.3. fNIRS Brain Imaging in Children with UHL
1.2. Objectives
1.2.1. Primary Objective
1.2.2. Secondary Objectives
- study the relationship between the oxyhemoglobin/deoxyhemoglobin levels in each auditory cortex during sound stimulation and the scores on different tasks: sound localization, speech-in-noise recognition, language assessment, and quality of life measures.
- describe the relationship between the oxyhemoglobin/deoxyhemoglobin levels in each auditory cortex during sound stimulation and the duration of deafness/age of children with SSD.
1.3. Protocol Design
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Inclusion Criteria
- Children aged 5–16 years
- French speaking
- Covered by French social security
- Able and willing to participate in all sessions with parental written consent.
- Children with SSD have moderate to profound unilateral hearing loss (>40 dB) that has never been treated.
- Control group children have normal hearing (air-conduction thresholds <20 dB).
2.1.2. Exclusion Criteria
- Neurological disorders or other sensory or motor deficits
- Bilingualism
- Medications affecting attention
2.2. Measurements
2.2.1. Language Assessment: Perception and Expression
2.2.2. Assessment of Binaural Function
2.2.3. Quality of Life
2.2.4. Auditory Cortical Imaging
2.3. Participant Timeline
2.3.1. Number of Subjects
2.3.2. Recruitment
2.3.3. Data Collection and Management
2.4. Statistical Analysis
2.5. Ethics and Dissemination
2.5.1. Trial Registration
- NCT04043910 in Clinical Trials.gov
2.5.2. Protocol Version
- Version 2, 15 July 2020.
- Protocol amendments
- The protocol was amended (change the phone number of the contact person in the recruitment poster) and approved by the Ethics Committee in March 2021.
2.5.3. Confidentiality
3. Working Hypothesis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Everberg, G. LIII Etiology of Unilateral Total Deafness Studied in a Series of Children and Young Adults. Ann. Otol. Rhinol. Laryngol. 1960, 69, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Lieu, J.E.C. Speech-Language and Educational Consequences of Unilateral Hearing Loss in Children. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 524–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodson, K.M.; Georgolios, A.; Barr, N.; Nguyen, B.; Sismanis, A.; Arnos, K.S.; Norris, V.W.; Chapman, D.; Nance, W.E.; Pandya, A. Etiology of Unilateral Hearing Loss in a National Hereditary Deafness Repository. Am. J. Otolaryngol. 2012, 33, 590–594. [Google Scholar] [CrossRef]
- Shargorodsky, J.; Curhan, S.G.; Curhan, G.C.; Eavey, R. Change in prevalence of hearing loss in US adolescents. JAMA 2010, 304, 772–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookhouser, P.E.; Worthington, D.W.; Kelly, W.J. Unilateral Hearing Loss in Children. Laryngoscope 1991, 101, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Mehl, A.L.; Thomson, V. Newborn Hearing Screening: The Great Omission. Pediatrics 1998, 101, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widen, J.E.; Folsom, R.C.; Cone-Wesson, B.; Carty, L.; Dunnell, J.J.; Koebsell, K.; Levi, A.; Mancl, L.; Ohlrich, B.; Trouba, S.; et al. Identification of Neonatal Hearing Impairment: Hearing Status at 8 to 12 Months Corrected Age Using a Visual Reinforcement Audiometry Protocol. Ear Hear. 2000, 21, 471–487. [Google Scholar] [CrossRef]
- Berninger, E.; Westling, B. Outcome of a Universal Newborn Hearing-Screening Programme Based on Multiple Transient-Evoked Otoacoustic Emissions and Clinical Brainstem Response Audiometry. Acta Otolaryngol. 2011, 131, 728–739. [Google Scholar] [CrossRef]
- Northern, J.; Downs, M. Hearing in Children, 2nd ed.; Williams & Wilkiens: Baltimore, MD, USA, 1978. [Google Scholar]
- Bess, F.H.; Tharpe, A.M. An Introduction to Unilateral Sensorineural Hearing Loss in Children. Ear Hear. 1986, 7, 3–13. [Google Scholar] [CrossRef]
- Tharpe, A.M. Unilateral and Mild Bilateral Hearing Loss in Children: Past and Current Perspectives. Trends Amplif. 2008, 12, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Bess, F.H.; Tharpe, A.M.; Gibler, A.M. Auditory Performance of Children with Unilateral Sensorineural Hearing Loss. Ear Hear. 1986, 7, 20–26. [Google Scholar] [CrossRef]
- Bovo, R.; Martini, A.; Agnoletto, M.; Beghi, A.; Carmignoto, D.; Milani, M.; Zangaglia, A.M. Auditory and Academic Performance of Children with Unilateral Hearing Loss. Scand. Audiol. Suppl. 1988, 30, 71–74. [Google Scholar] [PubMed]
- Humes, L.E.; Allen, S.K.; Bess, F.H. Horizontal Sound Localization Skills of Unilaterally Hearing-Impaired Children. Audiol. Off. Organ Int. Soc. Audiol. 1980, 19, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Newton, V.E. Sound Localisation in Children with a Severe Unilateral Hearing Loss. Audiol. Off. Organ Int. Soc. Audiol. 1983, 22, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Stelmachowicz, P.G.; Shepard, N.T.; Gorga, M.P. Characteristics of Hearing-Impaired Children in the Public Schools: Part II—Psychoeducational Data. J. Speech Hear. Disord. 1981, 46, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Lieu, J.E.C.; Tye-Murray, N.; Karzon, R.K.; Piccirillo, J.F. Unilateral Hearing Loss Is Associated with Worse Speech-Language Scores in Children: A Case-Control Study. Pediatrics 2010, 125, e1348–e1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cruz, C.F.; Poblano, A.; Conde-Reyes, M.P. Cognitive Performance of School Children with Unilateral Sensorineural Hearing Loss. Arch. Med. Res. 2009, 40, 374–379. [Google Scholar] [CrossRef]
- Purcell, P.L.; Shinn, D., Jr.; Davis, G.E.; Sie, K.C.Y. Children with Unilateral Hearing Loss May Have Lower Intelligence Quotient Scores: A Meta-Analysis. Laryngoscope 2016, 126, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Sangen, A.; Royackers, L.; Desloovere, C.; Wouters, J.; van Wieringen, A. Single-Sided Deafness Affects Language and Auditory Development—A Case-Control Study. Clin. Otolaryngol. 2017, 42, 979–987. [Google Scholar] [CrossRef]
- Roland, L.; Fischer, C.; Tran, K.; Rachakonda, T.; Kallogjeri, D.; Lieu, J.E.C. Quality of Life in Children with Hearing Impairment: Systematic Review and Meta-analysis. Otolaryngol. Head Neck. Surg. 2016, 155, 208–219. [Google Scholar] [CrossRef]
- Umansky, A.M.; Jeffe, D.B.; Lieu, J.E.C. The HEAR-QL: Quality of Life Questionnaire for Children with Hearing Loss. J. Am. Acad. Audiol. 2011, 22, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Rachakonda, T.; Jeffe, D.B.; Shin, J.J.; Mankarious, L.; Fanning, R.J.; Lesperance, M.M.; Lieu, J.E.C. Validity, Discriminative Ability, and Reliability of the Hearing-Related Quality of Life Questionnaire for Adolescents: HEAR-QL for Adolescents. Laryngoscope 2014, 124, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Academy of Audiology Pediatric Amplification. Updated Clinical Practice Guidelines for Unilateral Hearing Loss; American Academy of Audiology: Reston, VA, USA, 2013. [Google Scholar]
- Fitzpatrick, E.M.; Durieux-Smith, A.; Whittingham, J. Clinical Practice for Children with Mild Bilateral and Unilateral Hearing Loss. Ear Hear. 2010, 31, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Denoyelle, F.; Coudert, C.; Thierry, B.; Parodi, M.; Mazzaschi, O.; Vicaut, E.; Tessier, N.; Loundon, N.; Garabedian, E.-N. Hearing Rehabilitation with the Closed Skin Bone-Anchored Implant Sophono Alpha1: Results of a Prospective Study in 15 Children with Ear Atresia. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Livingstone, D.; Yunker, W.K. The Role of Bone Conduction Hearing Aids in Congenital Unilateral Hearing Loss: A Systematic Review. Int. J. Pediatr. Otorhinolaryngol. 2017, 94, 45–51. [Google Scholar] [CrossRef]
- Vermeire, K.; Heyning, P. Binaural Hearing after Cochlear Implantation in Subjects with Unilateral Sensorineural Deafness and Tinnitus. Audiol. Neurotol. 2009, 14, 163–171. [Google Scholar] [CrossRef]
- Marx, M.; Mosnier, I.; Vincent, C.; Bonne, N.X.; Bakhos, D.; Lescanne, E.; Flament, J.; Bernardeschi, D.; Sterkers, O.; Fraysse, B.; et al. Treatment Choice in Single-Sided Deafness and Asymmetric Hearing Loss: A Prospective, Multicentre Cohort Study on 155 Patients. Clin. Otolaryngol. 2021, 46, 736–743. [Google Scholar] [CrossRef]
- Marx, M.; Mosnier, I.; Venail, F.; Mondain, M.; Uziel, A.; Bakhos, D.; Lescanne, E.; N’Guyen, Y.; Bernardeschi, D.; Sterkers, O.; et al. Cochlear Implantation and Other Treatments in Single-Sided Deafness and Asymmetric Hearing Loss: Results of a National Multicenter Study Including a Randomized Controlled Trial. Audiol. Neurotol. 2021, 26, 414–424. [Google Scholar] [CrossRef]
- Med-EL Medical Electronics. FDA Approves MED-EL USA’s Cochlear Implants for Single-Sided Deafness and Asymmetric Hearing Loss. Lead. Live 2019, 22. Available online: https://www.businesswire.com/news/home/20190722005153/en/FDA-Approves-MED-EL-USA%E2%80%99s-Cochlear-Implants-for-Single-Sided-Deafness-and-Asymmetric-Hearing-Loss (accessed on 22 July 2019).
- Schmerber, S.; Deguine, O.; Marx, M.; Heyning, P.; Sterkers, O.; Mosnier, I.; Garin, P.; Godey, B.; Vincent, C.; Venail, F.; et al. Safety and Effectiveness of the Bonebridge Transcutaneous Active Direct-Drive Bone-Conduction Hearing Implant at 1-Year Device Use. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1835–1851. [Google Scholar] [CrossRef]
- Firszt, J.B.; Holden, L.K.; Reeder, R.M.; Waltzman, S.B.; Arndt, S. Auditory Abilities after Cochlear Implantation in Adults with Unilateral Deafness: A Pilot Study. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2012, 33, 1339–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, S.; Aschendorff, A.; Laszig, R.; Beck, R.; Schild, C.; Kroeger, S.; Ihorst, G.; Wesarg, T. Comparison of Pseudobinaural Hearing to Real Binaural Hearing Rehabilitation after Cochlear Implantation in Patients with Unilateral Deafness and Tinnitus. Otol. Neurotol. 2011, 32, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, S.; Calmels, M.-N.; Gallois, Y.; Deguine, O.; Fraysse, B.; Marx, M. Quality of Life of Children Treated for Unilateral Hearing Loss: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2021, 106, 1102–1110. [Google Scholar] [CrossRef]
- Benchetrit, L.; Ronner, E.A.; Anne, S.; Cohen, M.S. Cochlear Implantation in Children with Single-Sided Deafness: A Systematic Review and Meta-Analysis. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 58–69. [Google Scholar] [CrossRef] [PubMed]
- McKay, S.; Gravel, J.S.; Tharpe, A.M. Amplification Considerations for Children with Minimal or Mild Bilateral Hearing Loss and Unilateral Hearing Loss. Trends Amplif. 2008, 12, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.C. Ascending Projections to the Inferior Colliculus. J. Comp. Neurol. 1979, 183, 519–538. [Google Scholar] [CrossRef]
- Coleman, C., Jr.; Clerici, W.J. Sources of Projections to Subdivisions of the Inferior Colliculus in the Rat. J. Comp. Neurol. 1987, 262, 215–226. [Google Scholar] [CrossRef]
- Schönwiesner, M.; Krumbholz, K.; Rübsamen, R.; Fink, G.R.; von Cramon, D.Y. Hemispheric Asymmetry for Auditory Processing in the Human Auditory Brain Stem, Thalamus, and Cortex. Cereb. Cortex 2007, 17, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Eisenman, L.M. Neural Encoding of Sound Location: An Electrophysiological Study in Auditory Cortex (AI) of the Cat Using Free Field Stimuli. Brain Res. 1974, 75, 203–214. [Google Scholar] [CrossRef]
- Middlebrooks, J.; Pettigrew, J. Functional Classes of Neurons in Primary Auditory Cortex of the Cat Distinguished by Sensitivity to Sound Location. J. Neurosci. 1981, 1, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.P.; Gates, G.R. Representation of the Two Ears in the Auditory Cortex: A Re-Examination. Int. J. Neurosci. 1982, 16, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Kral, A.; Hubka, P.; Heid, S.; Tillein, J. Single-Sided Deafness Leads to Unilateral Aural Preference within an Early Sensitive Period. Brain 2013, 136, 180–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillein, J.; Hubka, P.; Kral, A. Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing. Cereb. Cortex 2016, 26, 1762–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, H.; Firszt, J.B.; Holden, T.; Agato, A.; Uchanski, R.M. Activation Lateralization in Human Core, Belt, and Parabelt Auditory Fields with Unilateral Deafness Compared to Normal Hearing. Brain Res. 2012, 1454, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, K. Auditory Cortical Responses in Hearing Subjects and Unilateral Deaf Patients as Detected by Functional Magnetic Resonance Imaging. Cereb. Cortex 1998, 8, 156–163. [Google Scholar] [CrossRef]
- Suzuki, M.; Kouzaki, H.; Nishida, Y.; Shiino, A.; Ito, R.; Kitano, H. Cortical Representation of Hearing Restoration in Patients with Sudden Deafness. Neuroreport 2002, 13, 1829–1832. [Google Scholar] [CrossRef]
- Hanss, J.; Veuillet, E.; Adjout, K.; Besle, J.; Collet, L.; Thai-Van, H. The Effect of Long-Term Unilateral Deafness on the Activation Pattern in the Auditory Cortices of French-Native Speakers: Influence of Deafness Side. BMC Neurosci. 2009, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Vasama, J.P.; Mäkelä, J.P.; Pyykkö, I.; Hari, R. Abrupt Unilateral Deafness Modifies Function of Human Auditory Pathways. Neuroreport 1995, 6, 961–964. [Google Scholar] [CrossRef]
- Bilecen, D.; Seifritz, E.; Radü, E.W.; Schmid, N.; Wetzel, S.; Probst, R.; Scheffler, K. Cortical Reorganization after Acute Unilateral Hearing Loss Traced by FMRI. Neurology 2000, 54, 765–767. [Google Scholar] [CrossRef]
- Alzaher, M.; Vannson, N.; Deguine, O.; Marx, M.; Barone, P.; Strelnikov, K. Brain Plasticity and Hearing Disorders. Rev. Neurol. Paris 2021, 177, 1121–1132. [Google Scholar] [CrossRef]
- Vannson, N.; James, C.J.; Fraysse, B.; Lescure, B.; Strelnikov, K.; Deguine, O.; Barone, P.; Marx, M. Speech-in-Noise Perception in Unilateral Hearing Loss: Relation to Pure-Tone Thresholds and Brainstem Plasticity. Neuropsychologia 2017, 102, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Middlebrooks, J.C.; Green, D.M. Sound Localization by Human Listeners. Annu. Rev. Psychol. 1991, 42, 135–159. [Google Scholar] [CrossRef] [PubMed]
- Van Wanrooij, M.M.; Van Opstal, A.J. Contribution of Head Shadow and Pinna Cues to Chronic Monaural Sound Localization. J. Neurosci. 2004, 24, 4163–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannson, N.; Strelnikov, K.; James, C.J.; Deguine, O.; Barone, P.; Marx, M. Evidence of a Functional Reorganization in the Auditory Dorsal Stream Following Unilateral Hearing Loss. Neuropsychologia 2020, 149, 107683. [Google Scholar] [CrossRef] [PubMed]
- Karoui, C.; Strelnikov, K.; Payoux, P.; Salabert, A.-S.; James, C.; Deguine, O.; Barone, P.; Marx, M. Cochlear Implantation Restores Cortical Processing for Spatial Hearing in Asymmetric Hearing Loss. medRxiv 2021. Available online: https://www.medrxiv.org/content/10.1101/2021.12.22.21268180v1.full-text (accessed on 30 December 2021).
- Huang, L.; Zheng, W.; Wu, C.; Wei, X.; Wu, X.; Wang, Y.; Zheng, H. Diffusion Tensor Imaging of the Auditory Neural Pathway for Clinical Outcome of Cochlear Implantation in Pediatric Congenital Sensorineural Hearing Loss Patients. PLoS ONE 2015, 10, e0140643. [Google Scholar] [CrossRef] [Green Version]
- Kral, A.; Hubka, P.; Tillein, J. Strengthening of Hearing Ear Representation Reduces Binaural Sensitivity in Early Single-Sided Deafness. AUD 2015, 20, 7–12. [Google Scholar] [CrossRef]
- Lee, H.-J.; Smieja, D.; Polonenko, M.J.; Cushing, S.L.; Papsin, B.C.; Gordon, K.A. Consistent and Chronic Cochlear Implant Use Partially Reverses Cortical Effects of Single Sided Deafness in Children. Sci. Rep. 2020, 10, 21526. [Google Scholar] [CrossRef]
- Gordon, K.; Kral, A. Animal and Human Studies on Developmental Monaural Hearing Loss. Hear Res. 2019, 380, 60–74. [Google Scholar] [CrossRef]
- Sharma, A.; Dorman, M.F.; Kral, A. The Influence of a Sensitive Period on Central Auditory Development in Children with Unilateral and Bilateral Cochlear Implants. Hear Res. 2005, 203, 134–143. [Google Scholar] [CrossRef]
- Gordon, K.A.; Salloum, C.; Toor, G.S.; Hoesel, R.; Papsin, B.C. Binaural Interactions Develop in the Auditory Brainstem of Children Who Are Deaf: Effects of Place and Level of Bilateral Electrical Stimulation. J. Neurosci. 2012, 32, 4212–4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kral, A.; Tillein, J.; Hubka, P.; Schiemann, D.; Heid, S.; Hartmann, R.; Engel, A.K. Spatiotemporal Patterns of Cortical Activity with Bilateral Cochlear Implants in Congenital Deafness. J. Neurosci. 2009, 29, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Polonenko, M.J.; Papsin, B.C.; Gordon, K.A. Limiting Asymmetric Hearing Improves Benefits of Bilateral Hearing in Children Using Cochlear Implants. Sci. Rep. 2018, 8, 13201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.A.; Lazard, D.S.; Hartley, D.E.H. Plasticity in Bilateral Superior Temporal Cortex: Effects of Deafness and Cochlear Implantation on Auditory and Visual Speech Processing. Hear Res. 2017, 343, 138–149. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A Review on Continuous Wave Functional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. NeuroImage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The Present and Future Use of Functional Near-Infrared Spectroscopy (FNIRS) for Cognitive Neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Harrison, S.C.; Hartley, D.E. Shedding Light on the Human Auditory Cortex: A Review of the Advances in Near Infrared Spectroscopy (NIRS). RMI 2019, 12, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Saliba, J.; Bortfeld, H.; Levitin, D.J.; Oghalai, J.S. Functional Near-Infrared Spectroscopy for Neuroimaging in Cochlear Implant Recipients. Hear. Res. 2016, 338, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Basura, G.J.; Hu, X.; Juan, J.S.; Tessier, A.; Kovelman, I. Human Central Auditory Plasticity: A Review of Functional Near-infrared Spectroscopy (FNIRS) to Measure Cochlear Implant Performance and Tinnitus Perception. Laryngoscope Investig. Otolaryngol. 2018, 3, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Nishiyori, R. FNIRS: An Emergent Method to Document Functional Cortical Activity during Infant Movements. Front. Psychol. 2016, 7, 533. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, I.M.; Anderson, C.A.; Kitterick, P.T.; Hartley, D.E.H. Speech-Evoked Activation in Adult Temporal Cortex Measured Using Functional near-Infrared Spectroscopy (FNIRS): Are the Measurements Reliable? Hear. Res. 2016, 339, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Steinmetzger, K.; Shen, Z.; Riedel, H.; Rupp, A. Auditory Cortex Activity Measured Using Functional Near-Infrared Spectroscopy (FNIRS) Appears to Be Susceptible to Masking by Cortical Blood Stealing. Hear. Res. 2020, 396, 108069. [Google Scholar] [CrossRef] [PubMed]
- Sevy, A.B.G.; Bortfeld, H.; Huppert, T.J.; Beauchamp, M.S.; Tonini, R.E.; Oghalai, J.S. Neuroimaging with Near-Infrared Spectroscopy Demonstrates Speech-Evoked Activity in the Auditory Cortex of Deaf Children Following Cochlear Implantation. Hear. Res. 2010, 270, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Minagawa-Kawai, Y.; van der Lely, H.; Ramus, F.; Sato, Y.; Mazuka, R.; Dupoux, E. Optical Brain Imaging Reveals General Auditory and Language-Specific Processing in Early Infant Development. Cereb. Cortex 2011, 21, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Telkemeyer, S.; Rossi, S.; Koch, S.P.; Nierhaus, T.; Steinbrink, J.; Poeppel, D.; Obrig, H.; Wartenburger, I. Sensitivity of Newborn Auditory Cortex to the Temporal Structure of Sounds. J. Neurosci. 2009, 29, 14726–14733. [Google Scholar] [CrossRef]
- Telkemeyer, S.; Rossi, S.; Nierhaus, T.; Steinbrink, J.; Obrig, H.; Wartenburger, I. Acoustic Processing of Temporally Modulated Sounds in Infants: Evidence from a Combined Near-Infrared Spectroscopy and EEG Study. Front. Psychol. 2011, 2, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archbold, S.; Lutman, M.E.; Marshall, D.H. Categories of Auditory Performance. Ann. Otol. Rhinol. Laryngol. Suppl. 1995, 166, 312–314. [Google Scholar]
- Allen, M.C.; Nikolopoulos, T.P.; O’Donoghue, G.M. Speech Intelligibility in Children after Cochlear Implantation. Am. J. Otol. 1998, 19, 742–746. [Google Scholar]
- Coquet, F.; Roustit, J.; Jeunier, B. Batterie EVALO 2-6 Evaluation du développement du langage oral et des comportements non verbaux du jeune enfant. Rééduc. Orthophonique 2007, 45, 203–225. [Google Scholar]
- Dunn, M. Peabody Picture Vocabulary Test, 5th ed.; NCS Pearson: Bloomington, MN, USA, 2019. [Google Scholar]
- Lecocq, P. L’E.CO.SE. Une Épreuve de Compréhension Syntaxico-Sémantique; Septentrion Presses Universitaires: Villeneuve-d’Ascq, France, 1996. [Google Scholar]
- Kaufman, A.S.; Flanagan, D.P.; Alfonso, V.C.; Mascolo, J.T. Test Review: Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV). J. Psychoeduc. Assess. 2006, 24, 278–295. [Google Scholar] [CrossRef]
- Berland, A.; Gaillard, P.; Guidetti, M.; Barone, P. Perception of Everyday Sounds: A Developmental Study of a Free Sorting Task. PLoS ONE 2015, 10, e0115557. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.Y.; Freed, D.J.; Vermiglio, A.J.; Soli, S.D. Evaluation of Binaural Functions in Bilateral Cochlear Implant Users. Int. J. Audiol. 2008, 47, 296–310. [Google Scholar] [CrossRef]
- Robbins, A.; Renshaw, J.; Osberger, M. Common Phrases Test; Indiana University School of Medecine: Indianapolis, IN, USA, 1995. [Google Scholar]
- Nilsson, M.; Soli, S.D.; Sullivan, J.A. Development of the Hearing in Noise Test for the Measurement of Speech Reception Thresholds in Quiet and in Noise. J. Acoust. Soc. Am. 1994, 95, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- James, C.J.; Laborde, M.-L.; Algans, C.; Tartayre, M.; Cochard, N.; Fraysse, B.; Deguine, O.; Marx, M.; Karoui, C. The French MBAA2 Sentence Recognition in Noise Test for Cochlear Implant Users. Int. J. Audiol. 2022, 1–8. [Google Scholar] [CrossRef]
- Ravens-Sieberer, U.; Bullinger, M. Assessing Health-Related Quality of Life in Chronically Ill Children with the German KINDL: First Psychometric and Content Analytical Results. Qual. Life Res. 1998, 7, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Ravens-Sieberer, U.; Bullinger, M. News from the KINDL-Questionnaire—A new version for adolescents. Qual. Life Res. 1998, 7, 653. [Google Scholar]
- Moerel, M.; Martino, F.D.; Formisano, E. Processing of Natural Sounds in Human Auditory Cortex: Tonotopy, Spectral Tuning, and Relation to Voice Sensitivity. J. Neurosci. 2012, 32, 14205–14216. [Google Scholar] [CrossRef] [Green Version]
- Massida, Z.; Belin, P.; James, C.; Rouger, J.; Fraysse, B.; Barone, P.; Deguine, O. Voice Discrimination in Cochlear-Implanted Deaf Subjects. Hear. Res. 2011, 275, 120–129. [Google Scholar] [CrossRef]
- Devlin, J.T.; Matthews, P.M.; Rushworth, M.F.S. Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study. J. Cogn. Neurosci. 2003, 15, 71–84. [Google Scholar] [CrossRef]
- Hocke, L.; Oni, I.; Duszynski, C.; Corrigan, A.; Frederick, B.; Dunn, J. Automated Processing of FNIRS Data—A Visual Guide to the Pitfalls and Consequences. Algorithms 2018, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Pollonini, L.; Olds, C.; Abaya, H.; Bortfeld, H.; Beauchamp, M.S.; Oghalai, J.S. Auditory Cortex Activation to Natural Speech and Simulated Cochlear Implant Speech Measured with Functional Near-Infrared Spectroscopy. Hear. Res. 2014, 309, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uga, M.; Dan, I.; Sano, T.; Dan, H.; Watanabe, E. Optimizing the General Linear Model for Functional Near-Infrared Spectroscopy: An Adaptive Hemodynamic Response Function Approach. Neurophotonics 2014, 1, 015004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calmels, M.-N.; Gallois, Y.; Marx, M.; Deguine, O.; Taoui, S.; Arnaud, E.; Strelnikov, K.; Barone, P. Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS. Brain Sci. 2022, 12, 423. https://doi.org/10.3390/brainsci12040423
Calmels M-N, Gallois Y, Marx M, Deguine O, Taoui S, Arnaud E, Strelnikov K, Barone P. Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS. Brain Sciences. 2022; 12(4):423. https://doi.org/10.3390/brainsci12040423
Chicago/Turabian StyleCalmels, Marie-Noëlle, Yohan Gallois, Mathieu Marx, Olivier Deguine, Soumia Taoui, Emma Arnaud, Kuzma Strelnikov, and Pascal Barone. 2022. "Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS" Brain Sciences 12, no. 4: 423. https://doi.org/10.3390/brainsci12040423
APA StyleCalmels, M. -N., Gallois, Y., Marx, M., Deguine, O., Taoui, S., Arnaud, E., Strelnikov, K., & Barone, P. (2022). Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS. Brain Sciences, 12(4), 423. https://doi.org/10.3390/brainsci12040423