Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- exercise effects on learning-related changes in corticospinal excitability [24] and contextual interference links to dorsolateral prefrontal cortex activity [23] appear to be somewhat separate. Secondarily, we used electromyography (EMG) to evaluate alterations in β-band intermuscular coherence obtained from muscles involved in the performance of the motor skill task. Intermuscular coherence is a measure of the similarity of a pair of EMG signals in the frequency domain [25]. Coherence between muscles is typically found in two frequency bands, α (5–15 Hz) and β (15–35 Hz). Sharing similarities and commonly considered to be underpinned by similar mechanisms as corticomuscular coherence, β-band intermuscular coherence is often used as an indirect measure of corticospinal activity that reflects common rhythmic drive from M1 to the assessed muscles [26,27,28,29]. Assessing intermuscular coherence in the current study provided a window into neurophysiological changes that may support exercise and practice schedule effects on motor skill consolidation.
2. Materials and Methods
2.1. Overview of Experimental Design
2.2. Participants
2.3. Graded Exercise Test
2.4. Questionnaires
2.5. Maximum Voluntary Contractions (MVCs)
2.6. Intermuscular Coherence
2.7. Visuomotor Tracking Task (VTT)
2.7.1. VTT Familiarization and Tests
2.7.2. VTT Practice
2.8. Standardized Acute Exercise Bout
2.9. Statistical Analyses
2.9.1. Normality
2.9.2. Participant Characteristics and Questionnaires
2.9.3. VTT Practice Session
2.9.4. Retention Sessions
2.9.5. Sample Size Calculation
2.9.6. Reporting
3. Results
3.1. Participant Characteristics and Questionnaires
3.2. Practice Session
3.3. Retention Sessions
4. Discussion
4.1. Interleaved Practice Did Not Enhance Motor Skill Consolidation
4.2. Exercise Enhanced Motor Skill Consolidation following Interleaved Practice Only
4.3. Exercise Benefits for Motor Skill Consolidation Were Accompanied by Increased Intermuscular Coherence
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mang, C.S.; Snow, N.J.; Campbell, K.L.; Ross, C.J.D.; Boyd, L.A. A Single Bout of High-Intensity Aerobic Exercise Facilitates Response to Paired Associative Stimulation and Promotes Sequence-Specific Implicit Motor Learning. J. Appl. Physiol. 2014, 117, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Statton, M.A.; Encarnacion, M.; Celnik, P.; Bastian, A.J. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition. PLoS ONE 2015, 10, e0141393. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Thomas, R.; Beck, M.M.; Pingel, J.; Andersen, J.D.; Mang, C.S.; Madsen, M.A.J.; Roig, M.; Lundbye-Jensen, J. The Beneficial Effect of Acute Exercise on Motor Memory Consolidation Is Modulated by Dopaminergic Gene Profile. J. Clin. Med. 2019, 8, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mang, C.S.; Snow, N.J.; Wadden, K.P.; Campbell, K.L.; Boyd, L.A. High-Intensity Aerobic Exercise Enhances Motor Memory Retrieval. Med. Sci. Sports Exerc. 2016, 48, 2477–2486. [Google Scholar] [CrossRef]
- Roig, M.; Thomas, R.; Mang, C.S.; Snow, N.J.; Ostadan, F.; Boyd, L.A.; Lundbye-Jensen, J. Time-Dependent Effects of Cardiovascular Exercise on Memory. Exerc. Sport Sci. Rev. 2016, 44, 81–88. [Google Scholar] [CrossRef]
- Thomas, R.; Beck, M.M.; Lind, R.R.; Johnsen, L.K.; Geertsen, S.S.; Christiansen, L.; Ritz, C.; Roig, M.; Lundbye-Jensen, J. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing. Neural Plast. 2016, 2016, 6205452. [Google Scholar] [CrossRef] [Green Version]
- Roig, M.; Nordbrandt, S.; Geertsen, S.S.; Nielsen, J.B. The Effects of Cardiovascular Exercise on Human Memory: A Review with Meta-Analysis. Neurosci. Biobehav. Rev. 2013, 37, 1645–1666. [Google Scholar] [CrossRef]
- Skriver, K.; Roig, M.; Lundbye-Jensen, J.; Pingel, J.; Helge, J.W.; Kiens, B.; Nielsen, J.B. Acute Exercise Improves Motor Memory: Exploring Potential Biomarkers. Neurobiol. Learn. Mem. 2014, 116, 46–58. [Google Scholar] [CrossRef]
- Taubert, M.; Villringer, A.; Lehmann, N. Endurance Exercise as an “Endogenous” Neuro-Enhancement Strategy to Facilitate Motor Learning. Front. Hum. Neurosci. 2015, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.E.; Neva, J.L.; Mang, C.S.; Chau, B.; Chiu, L.K.; Francisco, B.A.; Staines, W.R.; Boyd, L.A. The Influence of an Acute Bout of Moderate-Intensity Cycling Exercise on Sensorimotor Integration. Eur. J. Neurosci. 2020, 52, 4779–4790. [Google Scholar] [CrossRef]
- Neva, J.L.; Brown, K.E.; Mang, C.S.; Francisco, B.A.; Boyd, L.A. An Acute Bout of Exercise Modulates Both Intracortical and Interhemispheric Excitability. Eur. J. Neurosci. 2017, 45, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Neva, J.L.; Brown, K.E.; Peters, S.; Feldman, S.J.; Mahendran, N.; Boisgontier, M.P.; Boyd, L.A. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021, 475, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.M.; Duncan, R.E.; Neva, J.L.; Staines, W.R. Aerobic Exercise Modulates Intracortical Inhibition and Facilitation in a Nonexercised Upper Limb Muscle. BMC Sports Sci. Med. Rehabil. 2014, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellow, M.L.; Goldsworthy, M.R.; Coussens, S.; Smith, A.E. Acute Aerobic Exercise and Neuroplasticity of the Motor Cortex: A Systematic Review. J. Sci. Med. Sport 2020, 23, 408–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehan, S.K.; Zabukovec, J.R.; Dao, E.; Cheung, K.L.; Linsdell, M.A.; Boyd, L.A. One Hertz Repetitive Transcranial Magnetic Stimulation over Dorsal Premotor Cortex Enhances Offline Motor Memory Consolidation for Sequence-Specific Implicit Learning. Eur. J. Neurosci. 2013, 38, 3071–3079. [Google Scholar] [CrossRef] [Green Version]
- King, B.R.; Saucier, P.; Albouy, G.; Fogel, S.M.; Rumpf, J.-J.; Klann, J.; Buccino, G.; Binkofski, F.; Classen, J.; Karni, A.; et al. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults. Cereb. Cortex 2017, 27, 1588–1601. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Wright, D.L. Exposure to Sleep, Rest, or Exercise Impacts Skill Memory Consolidation but so Too Can a Challenging Practice Schedule. Eneuro 2021, 8, ENEURO.0198-21.2021. [Google Scholar] [CrossRef]
- Kantak, S.S.; Winstein, C.J. Learning–Performance Distinction and Memory Processes for Motor Skills: A Focused Review and Perspective. Behav. Brain Res. 2012, 228, 219–231. [Google Scholar] [CrossRef]
- Shea, J.B.; Morgan, R.L. Contextual Interference Effects on the Acquisition, Retention, and Transfer of a Motor Skill. J. Exp. Psychol. Hum. Learn. Mem. 1979, 5, 179–187. [Google Scholar] [CrossRef]
- Wright, D.; Verwey, W.; Buchanen, J.; Chen, J.; Rhee, J.; Immink, M. Consolidating Behavioral and Neurophysiologic Findings to Explain the Influence of Contextual Interference during Motor Sequence Learning. Psychon. Bull. Rev. 2016, 23, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wright, D.L. An Assessment of the Attention Demands during Random- and Blocked-Practice Schedules. Q. J. Exp. Psychol. Sect. A 2000, 53, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Lohse, K.R.; Wadden, K.P.; Boyd, L.A.; Hodges, N.J. Motor Skill Acquisition across Short and Long Time Scales: A Meta-Analysis of Neuroimaging Data. Neuropsychologia 2014, 59, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Kantak, S.S.; Sullivan, K.J.; Fisher, B.E.; Knowlton, B.J.; Winstein, C.J. Neural Substrates of Motor Memory Consolidation Depend on Practice Structure. Nat. Neurosci. 2010, 13, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Ostadan, F.; Centeno, C.; Daloze, J.-F.; Frenn, M.; Lundbye-Jensen, J.; Roig, M. Changes in Corticospinal Excitability during Consolidation Predict Acute Exercise-Induced off-Line Gains in Procedural Memory. Neurobiol. Learn. Mem. 2016, 136, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Challis, R.E.; Kitney, R.I. Biomedical Signal Processing (in Four Parts). Med. Biol. Eng. Comput. 1991, 29, 225–241. [Google Scholar] [CrossRef]
- Mima, T.; Hallett, M. Corticomuscular Coherence: A Review. J. Clin. Neurophysiol. 1999, 16, 501. [Google Scholar] [CrossRef]
- Gerloff, C.; Braun, C.; Staudt, M.; Hegner, Y.L.; Dichgans, J.; Krägeloh-Mann, I. Coherent Corticomuscular Oscillations Originate from Primary Motor Cortex: Evidence from Patients with Early Brain Lesions. Hum. Brain Mapp. 2006, 27, 789–798. [Google Scholar] [CrossRef]
- Grosse, P.; Cassidy, M.J.; Brown, P. EEG–EMG, MEG–EMG and EMG–EMG Frequency Analysis: Physiological Principles and Clinical Applications. Clin. Neurophysiol. 2002, 113, 1523–1531. [Google Scholar] [CrossRef]
- Kilner, J.M.; Baker, S.N.; Salenius, S.; Hari, R.; Lemon, R.N. Human Cortical Muscle Coherence Is Directly Related to Specific Motor Parameters. J. Neurosci. 2000, 20, 8838–8845. [Google Scholar] [CrossRef]
- Halliday, D.M.; Rosenberg, J.R.; Amjad, A.M.; Breeze, P.; Conway, B.A.; Farmer, S.F. A Framework for the Analysis of Mixed Time Series/Point Process Data—Theory and Application to the Study of Physiological Tremor, Single Motor Unit Discharges and Electromyograms. Prog. Biophys. Mol. Biol. 1995, 64, 237–278. [Google Scholar] [CrossRef]
- Farmer, S.F.; Gibbs, J.; Halliday, D.M.; Harrison, L.M.; James, L.M.; Mayston, M.J.; Stephens, J.A. Changes in EMG Coherence between Long and Short Thumb Abductor Muscles during Human Development. J. Physiol. 2007, 579, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.A.; Lungholt, B.K.S.; Nyborg, K.; Nielsen, J.B. Motor Skill Training Induces Changes in the Excitability of the Leg Cortical Area in Healthy Humans. Exp. Brain Res. 2004, 159, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.L.; Marstrand, P.C.D.; Nielsen, J.B. Motor Skill Training and Strength Training Are Associated with Different Plastic Changes in the Central Nervous System. J. Appl. Physiol. 2005, 99, 1558–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundbye-Jensen, J.; Petersen, T.H.; Rothwell, J.C.; Nielsen, J.B. Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals. PLoS ONE 2011, 6, e17451. [Google Scholar] [CrossRef] [Green Version]
- Roig, M.; Skriver, K.; Lundbye-Jensen, J.; Kiens, B.; Nielsen, J.B. A Single Bout of Exercise Improves Motor Memory. PLoS ONE 2012, 7, e44594. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D. Chapter 7 Transfer-Appropriate Processing: A Framework for Conceptualizing Practice Effects in Motor Learning. Adv. Psychol. 1988, 50, 201–215. [Google Scholar]
- Lee, T.D.; Magill, R.A. The Locus of Contextual Interference in Motor-Skill Acquisition. J. Exp. Psychol. Learn. Mem. Cogn. 1983, 9, 730–746. [Google Scholar] [CrossRef]
- Lin, C.-H.; Knowlton, B.J.; Chiang, M.-C.; Iacoboni, M.; Udompholkul, P.; Wu, A.D. Brain–Behavior Correlates of Optimizing Learning through Interleaved Practice. NeuroImage 2011, 56, 1758–1772. [Google Scholar] [CrossRef]
- Mang, C.S.; Brown, K.E.; Neva, J.L.; Snow, N.J.; Campbell, K.L.; Boyd, L.A. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits. Neural Plast. 2016, 2016, 6797912–6797928. [Google Scholar] [CrossRef] [Green Version]
- Gamst, G.; Meyers, L.; Guarino, A. Analysis of Variance Designs: A Conceptual and Computational Approach with SPSS and SAS; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kim, T.; Chen, J.; Verwey, W.B.; Wright, D.L. Improving Novel Motor Learning through Prior High Contextual Interference Training. Acta Psychol. 2018, 182, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Shea, C.H. Generalized Motor Program (GMP) Learning: Effects of Reduced Frequency of Knowledge of Results and Practice Variability. J. Mot. Behav. 1998, 30, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Shea, C.H. Bandwidth Knowledge of Results Enhances Generalized Motor Program Learning. Res. Q. Exerc. Sport 1999, 70, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Shea, C.H.; Wulf, G.; Wright, D.L. Optimizing Generalized Motor Program and Parameter Learning. Res. Q. Exerc. Sport 2000, 71, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Shea, C.H.; Lai, Q.; Wright, D.L.; Immink, M.; Black, C. Consistent and Variable Practice Conditions: Effects on Relative and Absolute Timing. J. Mot. Behav. 2001, 33, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Whitacre, C.A.; Shea, C.H. Performance and Learning of Generalized Motor Programs: Relative (GMP) and Absolute (Parameter) Errors. J. Mot. Behav. 2000, 32, 163–175. [Google Scholar] [CrossRef]
- Wright, D.L.; Shea, C.H. Manipulating Generalized Motor Program Difficulty during Blocked and Random Practice Does Not Affect Parameter Learning. Res. Q. Exerc. Sport 2001, 72, 32–38. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.H. Principles Derived from the Study of Simple Skills Do Not Generalize to Complex Skill Learning. Psychon. Bull. Rev. 2002, 9, 185–211. [Google Scholar] [CrossRef]
- Jo, J.S.; Chen, J.; Riechman, S.; Roig, M.; Wright, D.L. The Protective Effects of Acute Cardiovascular Exercise on the Interference of Procedural Memory. Psychol. Res. 2019, 83, 1543–1555. [Google Scholar] [CrossRef]
- Rhee, J.; Chen, J.; Riechman, S.M.; Handa, A.; Bhatia, S.; Wright, D.L. An Acute Bout of Aerobic Exercise Can Protect Immediate Offline Motor Sequence Gains. Psychol. Res. 2016, 80, 518–531. [Google Scholar] [CrossRef]
- Chen, J.; Roig, M.; Wright, D.L. Exercise Reduces Competition between Procedural and Declarative Memory Systems. Eneuro 2020, 7. [Google Scholar] [CrossRef]
- Beck, M.M.; Grandjean, M.U.; Hartmand, S.; Spedden, M.E.; Christiansen, L.; Roig, M.; Lundbye-Jensen, J. Acute Exercise Protects Newly Formed Motor Memories Against RTMS-Induced Interference Targeting Primary Motor Cortex. Neuroscience 2020, 436, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.A.; Lundbye-Jensen, J.; Nielsen, J.B. Changes in Corticospinal Drive to Spinal Motoneurones Following Visuo-Motor Skill Learning in Humans. J. Physiol. 2006, 573, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Svane, C.; Forman, C.R.; Beck, M.M.; Geertsen, S.S.; Lundbye-Jensen, J.; Nielsen, J.B. Transcranial Alternating Current Stimulation of the Primary Motor Cortex after Skill Acquisition Improves Motor Memory Retention in Humans: A Double-Blinded Sham-Controlled Study. Cereb. Cortex Commun. 2020, 1, tgaa047. [Google Scholar] [CrossRef] [PubMed]
- Power, H.A.; Norton, J.A.; Porter, C.L.; Doyle, Z.; Hui, I.; Chan, K.M. Transcranial Direct Current Stimulation of the Primary Motor Cortex Affects Cortical Drive to Human Musculature as Assessed by Intermuscular Coherence. J. Physiol. 2006, 577, 795–803. [Google Scholar] [CrossRef]
- Hansen, N.L.; Conway, B.A.; Halliday, D.M.; Hansen, S.; Pyndt, H.S.; Biering-Sørensen, F.; Nielsen, J.B. Reduction of Common Synaptic Drive to Ankle Dorsiflexor Motoneurons During Walking in Patients With Spinal Cord Lesion. J. Neurophysiol. 2005, 94, 934–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchio, A.D.; Germer, C.M.; Elias, L.A.; Fu, Q.; Fine, J.; Santello, M.; Farina, D. The Human Central Nervous System Transmits Common Synaptic Inputs to Distinct Motor Neuron Pools during Non-Synergistic Digit Actions. J. Physiol. 2019, 597, 5935–5948. [Google Scholar] [CrossRef] [Green Version]
- Spedden, M.E.; Nielsen, J.B.; Geertsen, S.S. Oscillatory Corticospinal Activity during Static Contraction of Ankle Muscles Is Reduced in Healthy Old versus Young Adults. Neural Plast. 2018, 2018, 3432649. [Google Scholar] [CrossRef]
- Watanabe, T.; Nojima, I.; Mima, T.; Sugiura, H.; Kirimoto, H. Magnification of Visual Feedback Modulates Corticomuscular and Intermuscular Coherences Differently in Young and Elderly Adults. NeuroImage 2020, 220, 117089. [Google Scholar] [CrossRef]
REP + REST | INL + REST | REP + EX | INL + EX | |
---|---|---|---|---|
N | 12 | 13 | 12 | 11 |
Age (years) | 23.2 ± 4.9 | 20.8 ± 2.8 | 23.1 ± 4.4 | 22.7 ± 5.5 |
Sex (M/F) | 8/4 | 8/5 | 10/2 | 10/1 |
BMI (kg/m2) | 23.8 ± 4.4 | 22.2 ± 3.4 | 24.3 ± 3.3 | 26.3 ± 5.2 |
VO2 peak (mL/min/kg) * | 37.4 ± 1.8 | 35.8 ± 7.8 | 37.2 ± 9.3 | 42.1 ± 8.1 |
IPAQ score (H/M/L) | 8/2/2 | 8/1/4 | 8/2/2 | 7/3/1 |
Wmax (W) | 175.5 ± 50.0 | 181.5 ± 56.8 | 183.3 ± 34.5 | 215.5 ± 55.7 |
VTT Repetitive Pre-ToT% | 52.9 ± 12.1 | 53.6 ± 8.2 | 55.1 ± 8.0 | 54.3 ± 7.2 |
VTT Repetitive Post-ToT% | 69.1 ± 7.7 | 71.6 ± 5.8 | 74.1 ± 6.2 | 72.1 ± 8.2 |
VTT Repetitive Post-to-Pre ToT% ratio | 1.36 ± 0.26 | 1.35 ± 0.16 | 1.36 ± 0.13 | 1.34 ± 0.16 |
VTT Interleaved Pre-ToT% | 57.8 ± 9.7 | 60.2 ± 7.7 | 61.6 ± 11.6 | 62.5 ± 6.7 |
VTT Interleaved Post-ToT% | 70.0 ± 8.3 | 73.3 ± 5.9 | 73.2 ± 6.2 | 72.0 ± 7.0 |
VTT Interleaved Post-to-Pre ToT% ratio | 1.23 ± 0.2 | 1.23 ± 0.12 | 1.22 ± 0.23 | 1.16 ± 0.11 |
Coh Pre-Ax (0–1) | 0.05 ± 0.03 | 0.06 ± 0.04 | 0.10 ± 0.11 | 0.07 ± 0.04 |
Coh Post-Ax (0–1) | 0.06 ± 0.04 | 0.07 ± 0.07 | 0.10 ± 0.08 | 0.05 ± 0.03 |
Coh Post-to-Pre ratio | 1.25 ± 0.52 | 1.75 ± 2.29 | 1.34 ± 0.95 | 0.83 ± 0.26 |
REP + REST | INL + REST | REP + EX | INL + EX | |
---|---|---|---|---|
Hours slept prior to: | ||||
(i) VTT Practice | 6.4 ± 1.4 | 6.9 ± 1.4 | 7.2 ± 1.0 | 6.2 ± 1.8 |
(ii) 24 h Ret | 7.3 ± 1.7 | 6.8 ± 1.4 | 7.0 ± 1.3 | 7.7 ± 1.4 |
(iii) 7 d Ret | 7.1 ± 1.5 | 6.7 ± 2.2 | 7.4 ± 1.8 | 7.4 ± 1.0 |
Difference from typical night’s sleep: | ||||
(i) VTT Practice | −1.1 ± 1.7 | −0.2 ± 1.3 | −0.1 ± 0.8 | −0.9 ± 1.8 |
(ii) 24 h Ret | −0.2 ± 1.9 | −0.3 ± 1.1 | −0.5 ± 1.0 | 0.8 ± 1.4 |
(iii) 7 d Ret | −0.4 ± 1.0 | −0.4 ± 1.9 | 0.1 ± 1.4 | 0.3 ± 1.1 |
Stanford Sleepiness Scale: | ||||
(i) VTT Practice | 2.4 ± 1.4 | 3.0 ± 1.4 | 2.6 ± 1.4 | 3.3 ± 1.6 |
(ii) 24 h Ret | 1.8 ± 0.8 | 2.2 ± 1.1 | 2.2 ± 0.9 | 2.5 ± 0.9 |
(iii) 7 d Ret | 1.7 ± 0.7 | 2.2 ± 0.8 | 2.0 ± 0.7 | 2.1 ± 0.9 |
Attention VAS (0–10): | ||||
(i) VTT Practice | 7.5 ± 1.2 | 7.4 ± 1.4 | 7.8 ± 1.7 | 7.6 ± 1.8 |
(ii) 24 h Ret | 8.9 ± 0.7 | 7.9 ± 2.5 | 8.5 ± 1.4 | 8.2 ± 1.1 |
(iii) 7 d Ret | 8.8 ± 1.2 | 8.0 ± 2.1 | 8.7 ± 1.3 | 8.4 ± 1.2 |
Effort VAS (0–10): | ||||
(i) VTT Practice | 9.4 ± 0.6 | 8.9 ± 2.1 | 8.9 ± 1.1 | 8.9 ± 1.5 |
(ii) 24 h Ret | 9.3 ± 0.8 | 8.6 ± 2.3 | 9.3 ± 0.7 | 9.2 ± 0.7 |
(iii) 7 d Ret | 9.2 ± 1.1 | 9.2 ± 1.7 | 9.5 ± 0.6 | 8.9 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Singh, J.; Neary, J.P.; Mang, C.S. Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule. Brain Sci. 2022, 12, 436. https://doi.org/10.3390/brainsci12040436
Khan A, Singh J, Neary JP, Mang CS. Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule. Brain Sciences. 2022; 12(4):436. https://doi.org/10.3390/brainsci12040436
Chicago/Turabian StyleKhan, Ali, Jyotpal Singh, J. Patrick Neary, and Cameron S. Mang. 2022. "Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule" Brain Sciences 12, no. 4: 436. https://doi.org/10.3390/brainsci12040436
APA StyleKhan, A., Singh, J., Neary, J. P., & Mang, C. S. (2022). Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule. Brain Sciences, 12(4), 436. https://doi.org/10.3390/brainsci12040436