Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Participants
2.3. Psychological/Behavior Assessment
2.4. Imaging Data
2.5. Image Preprocessing
Structural Data
2.6. Statistical Analysis
3. Results
3.1. Quality Assessment between Neurotypical Males in ASD and SZ Databases
3.2. Global Brain Volumes between Groups (Disorder vs. Neurotypical)
3.3. Correlations between Subcortical Volumes, IQ and Social Cognition
4. Discussion
4.1. Direct Comparisons
4.1.1. ASD and ASD-NT
4.1.2. SZ and SZ-NT
4.2. Indirect Comparisons: ASD vs. SZ in Relation to NT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çalişir, Ö.M.; Atbaşoğlu, E.C.; Özgüven, H.D.; Ölmez, Ş. Cognitive features of high-functioning adults with autism and schizophrenia spectrum disorders. Turk Psikiyatr. Derg. 2018, 29, 1–10. [Google Scholar]
- Noel, J.; Stevenson, R.A.; Wallace, M.T. Atypical audiovisual temporal function in autism and schizophrenia: Similar phenotype, different cause. Eur. J. Neurosci. 2018, 47, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Eack, S.M.; Hogarty, S.S.; Greenwald, D.P.; Litschge, M.Y.; Porton, S.A.; Mazefsky, C.A.; Minshew, N.J. Cognitive enhancement therapy for adult autism spectrum disorder: Results of an 18-month randomized clinical trial. Autism Res. 2018, 11, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Pelphrey, K.A.; Shultz, S.; Hudac, C.; Wyk, B.C.V. Research Review: Constraining heterogeneity: The social brain and its development in autism spectrum disorder. J. Child Psychol. Psychiatry 2011, 52, 631–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestor, P.G.; Niznikiewicz, M.; Hasler, V.C.; Newell, D.T.; Shenton, M.E.; McCarley, O.W. Neuropsychology of the Social Brain Hypothesis of Schizophrenia: Symptoms, Personality and MRI Correlates. J. Neuroimaging Psychiatry Neurol 2017, 2, 3–10. [Google Scholar] [CrossRef]
- Owen, M.J.; O’Donovan, M.C. Schizophrenia and the neurodevelopmental continuum: Evidence from genomics. World Psychiatry 2017, 16, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Voineskos, A. Behavioral and neural correlates of social cognition: A dimensional approach in youth with mental illness. Neuropsychopharmacology 2016, 41, S63–S64. [Google Scholar]
- Goldstein, G.; Minshew, N.J.; Allen, D.N.; Seaton, B.E. High-functioning autism and schizophrenia A comparison of an early and late onset neurodevelopmental disorder. Arch. Clin. Neuropsychol. 2002, 17, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Khanjani, Z.; Azmoodeh, S.; Mahmoudaliloo, M.; Noorazar, G. A Comparison of Autistic Like Traits in the Relatives of Patients with Autism and Schizophrenia Spectrum Disorder. Iran. J. Psychiatry 2018, 13, 148–153. [Google Scholar]
- Meyer, U.; Feldon, J.; Dammann, O. Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatric Res. 2011, 10, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Haigh, S.M.; Eack, S.M.; Keller, T.; Minshew, N.J.; Behrmann, M. White matter structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia 2019, 135, 107233. [Google Scholar] [CrossRef] [PubMed]
- Stanfield, A.; McIntosh, A.; Spencer, M.; Philip, R.; Gaur, S.; Lawrie, S.M. Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur. Psychiatry 2008, 23, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Silenzi, C.; Dieci, M. Brain morphology in first-episode schizophrenia: A meta-analysis of quantitative magnetic resonance imaging studies. Schizophr. Res. 2006, 82, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.; Chua, S.E.; Cheung, V.; Khong, P.L.; Tai, K.S.; Wong, T.K.W.; Ho, T.P.; McAlonan, G.M. White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. J. Child Psychol. Psychiatry Allied Discip. 2009, 50, 1102–1112. [Google Scholar] [CrossRef]
- Nickl-Jockschat, T.; Habel, U.; Michel, T.; Manning, J.; Laird, A.; Fox, P.T.; Schneider, F.; Eickhoff, S.B. Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Hum. Brain Mapp. 2011, 33, 1470–1489. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.M.; Laurens, K.; Matheson, S.L.; Carr, V.J.; Green, M. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci. Biobehav. Rev. 2012, 36, 1342–1356. [Google Scholar] [CrossRef]
- Honea, R.; Crow, T.J.; Passingham, D.; Mackay, C. Regional Deficits in Brain Volume in Schizophrenia: A Meta-Analysis of Voxel-Based Morphometry Studies. Am. J. Psychiatry 2005, 162, 2233–2245. [Google Scholar] [CrossRef]
- Pinkham, A.E.; Hopfinger, J.B.; Pelphrey, K.A.; Piven, J.; Penn, D.L. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr. Res. 2008, 99, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Radeloff, D.; Ciaramidaro, A.; Siniatchkin, M.; Hainz, D.; Schlitt, S.; Weber, B.; Poustka, F.; Bölte, S.; Walter, H.; Freitag, C.M. Structural Alterations of the Social Brain: A Comparison between Schizophrenia and Autism. PLoS ONE 2014, 9, e106539. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.W.; Yoon, W.; Shon, S.-H.; Kim, H.; Cha, S.; Park, K.J.; Lee, J. Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from Schiz Connect. PLoS ONE 2018, 13, e0205369. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Luo, C.; Li, X.; Li, Y.; Yang, H.; Li, J.; Chang, X.; Li, H.; Yang, H.; Wang, J.; et al. White-matter functional networks changes in patients with schizophrenia. NeuroImage 2019, 190, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-J.; Wang, Y.; Qian, L.; Liu, G.; Liu, S.-F.; Zou, L.-P.; Zhang, J.-S.; Hu, N.; Chen, X.-Q.; Yu, S.-Y.; et al. Alterations of White Matter Connectivity in Preschool Children with Autism Spectrum Disorder. Radiology 2018, 288, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-J.; Hyung, B.; Paquola, C.; Bernhardt, B.C. The Superficial White Matter in Autism and Its Role in Connectivity Anomalies and Symptom Severity. Cereb. Cortex 2019, 29, 4415–4425. [Google Scholar] [CrossRef] [PubMed]
- Bonekamp, D.; Nagae, L.M.; Degaonkar, M.; Matson, M.; Abdalla, W.M.; Barker, P.B.; Mori, S.; Horská, A. Diffusion tensor imaging in children and adolescents: Reproducibility, hemispheric, and age-related differences. NeuroImage 2007, 34, 733–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeel, M.K.; MacQueen, G.; Addington, J.; Metzak, P.D.; Georgopoulos, G.; Bray, S.; Goldstein, B.I.; MacIntosh, B.J.; Wang, J.; Kennedy, S.H.; et al. White Matter Connectivity in Youth at Risk for Serious Mental Illness: A Longitudinal Analysis. Psychiatry Res. Neuroimaging 2020, 302, 111106. [Google Scholar] [CrossRef]
- Li, F.; Lui, S.; Yao, L.; Ji, G.-J.; Liao, W.; Sweeney, A.J.; Gong, Q. Altered White Matter Connectivity Within and Between Networks in Antipsychotic-Naive First-Episode Schizophrenia. Schizophr. Bull. 2018, 44, 409–418. [Google Scholar] [CrossRef]
- Koshiyama, D.; Fukunaga, M.; Okada, N.; Yamashita, F.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Ohi, K.; Fujino, H.; Watanabe, Y.; et al. Role of subcortical structures on cognitive and social function in schizophrenia. Sci. Rep. 2018, 8, 1183. [Google Scholar] [CrossRef]
- Fischi-Gomez, E.; Vasung, L.; Meskaldji, D.-E.; Lazeyras, F.; Borradori-Tolsa, C.; Hagmann, P.; Barisnikov, K.; Thiran, J.-P.; Hüppi, P. Structural Brain Connectivity in School-Age Preterm Infants Provides Evidence for Impaired Networks Relevant for Higher Order Cognitive Skills and Social Cognition. Cereb. Cortex 2015, 25, 2793–2805. [Google Scholar] [CrossRef] [Green Version]
- Cerliani, L.; Mennes, M.; Thomas, R.M.; Di Martino, A.; Thioux, M.; Keysers, C. Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder. JAMA Psychiatry 2015, 72, 767–777. [Google Scholar] [CrossRef]
- Okada, N.; Fukunaga, M.; Yamashita, F.; Koshiyama, D.; Yamamori, H.; Ohi, K.; Yasuda, Y.; Fujimoto, M.; Watanabe, Y.; Ya-hata, N.; et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol. Psychiatry 2016, 21, 1460–1466. [Google Scholar] [CrossRef] [Green Version]
- Boedhoe, P.S.; Van Rooij, D.; Hoogman, M.; Twisk, J.W.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anikin, A.; Anticevic, A.; et al. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the ENIGMA ADHD, ASD, and OCD working groups. Am. J. Psychiatry 2020, 177, 834–843. [Google Scholar] [CrossRef] [PubMed]
- White, N.M. Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav. Brain Res. 2009, 199, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Hannan, K.L.; Wood, S.J.; Yung, A.R.; Velakoulis, D.; Phillips, L.J.; Soulsby, B.; Berger, G.; McGorry, P.D.; Pantelis, C. Caudate nucleus volume in individuals at ultra-high risk of psychosis: A cross-sectional magnetic resonance imaging study. Psychiatry Res. Neuroimaging 2010, 182, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J.J.; McCarley, R.W.; Dickey, C.C.; Voglmaier, M.M.; Niznikiewicz, M.A.; Seidman, L.J.; Hirayasu, Y.; Ciszewski, A.A.; Kikinis, R.; Jolesz, F.A.; et al. MRI Study of Caudate Nucleus Volume and Its Cognitive Correlates in Neuroleptic-Naive Patients with Schizotypal Personality Disorder. Am. J. Psychiatry 2002, 159, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Vallar, G. Subcortical functions in language and memory. Neuropsychologia 1994, 32, 1035–1036. [Google Scholar] [CrossRef]
- Jacquemot, C.; Bachoud-Lévi, A.C. Striatum and language processing: Where do we stand? Cognition 2021, 213, 104785. [Google Scholar] [CrossRef] [PubMed]
- Seger, C.A.; Cincotta, C.M. The roles of the caudate nucleus in human classification learning. J. Neurosci. 2005, 25, 2941–2951. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The role of the basal ganglia in learning and memory: Neuropsychological studies. Behav. Brain Res. 2009, 199, 53–60. [Google Scholar] [CrossRef]
- Elliott, R.; Newman, J.L.; Longe, O.A.; Deakin, J. Differential Response Patterns in the Striatum and Orbitofrontal Cortex to Financial Reward in Humans: A Parametric Functional Magnetic Resonance Imaging Study. J. Neurosci. 2003, 23, 303–307. [Google Scholar] [CrossRef]
- Marchand, W.R.; Lee, J.N.; Thatcher, J.W.; Hsu, E.W.; Rashkin, E.; Suchy, Y.; Chelune, G.; Starr, J.; Barbera, S.S. Putamen coactivation during motor task execution. Neuroreport 2008, 19, 957–960. [Google Scholar] [CrossRef]
- Delong, M.R.; Alexander, E.G.; Georgopoulos, A.P.; Crutcher, M.D.; Mitchell, S.J.; Richardson, R.T. Role of basal ganglia in limb movements. Hum. Neurobiol. 1984, 2, 235–244. [Google Scholar] [PubMed]
- Packard, M.G.; Knowlton, B.J. Learning and Memory Functions of the Basal Ganglia. Annu. Rev. Neurosci. 2002, 25, 563–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, H.; Matsumoto, N.; Kimura, M. Tonically Active Neurons in the Primate Caudate Nucleus and Putamen Differentially Encode Instructed Motivational Outcomes of Action. J. Neurosci. 2004, 24, 3500–3510. [Google Scholar] [CrossRef] [PubMed]
- Ell, S.W.; Marchant, N.L.; Ivry, R.B. Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks. Neuropsychologia 2006, 44, 1737–1751. [Google Scholar] [CrossRef] [Green Version]
- Gillies, M.; Hyam, J.A.; Weiss, A.; Antoniades, C.; Bogacz, R.; Fitzgerald, J.J.; Aziz, T.Z.; Whittington, M.A.; Green, A.L. The Cognitive Role of the Globus Pallidus interna; Insights from Disease States. Exp. Brain Res. 2017, 235, 1455–1465. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.S.; Tindell, A.J.; Aldridge, J.W.; Berridge, K.C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 2009, 196, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Ottenheimer, D.; Richard, J.M.; Janak, P.H. Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nat. Commun. 2018, 9, 4350. [Google Scholar] [CrossRef]
- Setlow, B. The nucleus accumbens and learning and memory. J. Neurosci. Res. 1997, 49, 515–521. [Google Scholar] [CrossRef]
- Salgado, S.; Kaplitt, M.G. The Nucleus Accumbens: A Comprehensive Review. Ster. Funct. Neurosurg. 2015, 93, 75–93. [Google Scholar] [CrossRef]
- Maren, S. Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends Neurosci. 1999, 22, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Tsoory, M.; Vouimba, R.; Akirav, I.; Kavushansky, A.; Avital, A.; Richter-Levin, G. Amygdala modulation of memory-related processes in the hippocampus: Potential relevance to PTSD. Prog. Brain Res. 2007, 167, 35–51. [Google Scholar] [CrossRef]
- Wixted, J.T.; Goldinger, S.D.; Squire, L.R.; Kuhn, J.R.; Papesh, M.H.; Smith, K.A.; Treiman, D.M.; Steinmetz, P.N. Coding of episodic memory in the human hippocampus. Proc. Natl. Acad. Sci. USA 2018, 115, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulving, E.; Markowitsch, H.J. Episodic and declarative memory: Role of the hippocampus. Hippocampus 1998, 8, 198–204. [Google Scholar] [CrossRef]
- Fritch, H.A.; MacEvoy, S.P.; Thakral, P.P.; Jeye, B.M.; Ross, R.S.; Slotnick, S.D. The anterior hippocampus is associated with spatial memory encoding. Brain Res. 2020, 1732, 146696. [Google Scholar] [CrossRef] [PubMed]
- Shrager, Y.; Bayley, P.J.; Bontempi, B.; Hopkins, R.O.; Squire, L.R. Spatial memory and the human hippocampus. Proc. Natl. Acad. Sci. USA 2007, 104, 2961–2966. [Google Scholar] [CrossRef] [Green Version]
- Schmahmann, J.D. Vascular Syndromes of the Thalamus. Stroke 2003, 34, 2264–2278. [Google Scholar] [CrossRef]
- Sherman, S.M.; Guillery, R.W. Exploring the Thalamus and Its Role in Cortical Function; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Van Erp, T.G.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.; Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 2016, 21, 547–553. [Google Scholar] [CrossRef]
- Van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Busatto, G.F.; Calderoni, S.; Daly, E.; Deruelle, C.; Di Martino, A.; et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. Am. J. Psychiatry 2018, 175, 359–369. [Google Scholar] [CrossRef]
- Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef]
- Wang, L.; Alpert, K.I.; Calhoun, V.D.; Cobia, D.J.; Keator, D.; King, M.D.; Kogan, A.; Landis, D.; Tallis, M.; Turner, M.D.; et al. SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration. NeuroImage 2016, 124, 1155–1167. [Google Scholar] [CrossRef] [Green Version]
- Riddle, K.; Cascio, C.J.; Woodward, N.D. Brain structure in autism: A voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE). Brain Imaging Behav. 2017, 11, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Groen, W.; Mennes, M.; Greven, C.; Buitelaar, J.; Rommelse, N. Revisiting subcortical brain volume correlates of autism in the ABIDE dataset: Effects of age and sex. Psychol. Med. 2018, 48, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.M.; Peyre, H.; Toro, R.; Beggiato, A.; Ramus, F. Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder. Hum. Brain Mapp. 2020, 41, 4610–4629. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Oh, B.-L.; Lee, K.-U.; Chae, J.-H.; Yun, K. Identifying Schizophrenia Using Structural MRI with a Deep Learning Algorithm. Front. Psychiatry 2020, 11, 16. [Google Scholar] [CrossRef]
- McCrimmon, A.W.; Rostad, K. Test Review: Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) Manual (Part II): Toddler Module. J. Psychoeduc. Assess. 2014, 32, 88–92. [Google Scholar] [CrossRef]
- García-Alba, J.; Rubio-Valdehita, S.; Sánchez, M.J.; García, A.I.M.; Esteba-Castillo, S.; Gómez-Caminero, M. Cognitive training in adults with intellectual disability: Pilot study applying a cognitive tele-rehabilitation program. Int. J. Dev. Disabil. 2020, 1–7. [Google Scholar] [CrossRef]
- Di Martino, A.; O’connor, D.; Chen, B.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Balsters, J.H.; Baxter, L.; Beggiato, A.; Bernaerts, S.; et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 2017, 4, 170010. [Google Scholar] [CrossRef] [Green Version]
- Cabral, C.; Kambeitz-Ilankovic, L.; Kambeitz, J.; Calhoun, V.D.; Dwyer, D.B.; Von Saldern, S.; Urquijo, M.F.; Falkai, P.; Koutsouleris, N. Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition Analysis: Evaluating the Impact of Individual Clinical Profiles on the Neurodiagnostic Performance. Schizophr. Bull. 2016, 42, S110–S117. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, D. Wechsler Abbreviated Scale of Intelligence (WASI-II), 2nd ed.; NCS Pearson: San Antonio, TX, USA, 2011. [Google Scholar]
- Bruni, T.P. Test Review: Social Responsiveness Scale–Second Edition (SRS-2). J. Psychoeduc. Assess. 2014, 32, 365–369. [Google Scholar] [CrossRef]
- Mayer, J.; Saloyev, P.; Caruso, D. The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT); Multi-Health Systems: Toronto, ON, Canada, 2002. [Google Scholar]
- Kleinhans, N.M.; Müller, R.-A.; Cohen, D.N.; Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008, 1221, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Herbert, M.R.; Ziegler, D.A.; Deutsch, C.K.; O’Brien, L.M.; Kennedy, D.N.; Filipek, P.A.; Bakardjiev, A.I.; Hodgson, J.; Takeoka, M.; Makris, N.; et al. Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain 2005, 128, 213–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.M.; Cannon, T.D.; Narr, K.L.; Van Erp, T.; Poutanen, V.-P.; Huttunen, M.; Lönnqvist, J.; Standertskjöld-Nordenstam, C.-G.; Kaprio, J.; Khaledy, M.; et al. Genetic influences on brain structure. Nat. Neurosci. 2001, 4, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, L.; Tanner, C.; Van Dongen, E.V.; Greven, C.U.; Bralten, J.; Zwiers, M.P.; Franke, B.; Heslenfeld, D.; Oosterlaan, J.; Hoekstra, P.J.; et al. Decreased Left Caudate Volume Is Associated with Increased Severity of Autistic-Like Symptoms in a Cohort of ADHD Patients and Their Unaffected Siblings. PLoS ONE 2016, 11, e0165620. [Google Scholar] [CrossRef] [PubMed]
- Herculano-Houzel, S.; Collins, C.E.; Wong, P.; Kaas, J.H. Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. USA 2007, 104, 3562–3567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, A.; Basson, M.A. The neuroanatomy of autism—A developmental perspective. J. Anat. 2017, 230, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Haar, S.; Berman, S.; Behrmann, M.; Dinstein, I. Anatomical Abnormalities in Autism? Cereb. Cortex 2016, 26, 1440–1452. [Google Scholar] [CrossRef] [Green Version]
- Howard, M.; Cowell, P.; Boucher, J.; Broks, P.; Mayes, A.; Farrant, A.; Roberts, N. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 2000, 11, 2931–2935. [Google Scholar] [CrossRef]
- Mosconi, M.W.; Cody-Hazlett, H.; Poe, M.D.; Gerig, G.; Gimpel-Smith, R.; Piven, J. Longitudinal Study of Amygdala Volume and Joint Attention in 2- to 4-Year-Old Children with Autism. Arch. Gen. Psychiatry 2009, 66, 509–516. [Google Scholar] [CrossRef]
- Munson, J.; Dawson, G.; Abbott, R.; Faja, S.; Webb, S.J.; Friedman, S.D.; Shaw, D.; Artru, A.; Dager, S.R. Amygdalar Volume and Behavioral Development in Autism. Arch. Gen. Psychiatry 2006, 63, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Groen, W.; Teluij, M.; Buitelaar, J.; Tendolkar, I. Amygdala and Hippocampus Enlargement during Adolescence in Autism. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 552–560. [Google Scholar]
- Nordahl, C.W.; Scholz, R.; Yang, X.; Buonocore, M.H.; Simon, T.; Rogers, S.; Amaral, D.G. Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: A longitudinal study. Arch. Gen. Psychiatry 2012, 69, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, C.M.; Hamstra, J.; Goodlin-Jones, B.L.; Lotspeich, L.J.; Kwon, H.; Buonocore, M.H.; Lammers, C.R.; Reiss, A.L.; Amaral, D.G. The Amygdala Is Enlarged in Children but Not Adolescents with Autism; the Hippocampus Is Enlarged at All Ages. J. Neurosci. 2004, 24, 6392–6401. [Google Scholar] [CrossRef] [PubMed]
- Sparks, B.F.; Friedman, S.D.; Shaw, D.W.; Aylward, E.H.; Echelard, D.; Artru, A.A.; Maravilla, K.R.; Giedd, J.N.; Munson, J.; Dawson, G.; et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.H.; Minshew, N.J.; Goldstein, G.; Honeycutt, N.A.; Augustine, A.M.; Yates, K.O.; Barta, P.E.; Pearlson, G.D. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 1999, 53, 2145. [Google Scholar] [CrossRef] [PubMed]
- Nacewicz, B.M.; Dalton, K.M.; Johnstone, T.; Long, M.T.; McAuliff, E.M.; Oakes, T.R.; Alexander, A.L.; Davidson, R. Amygdala Volume and Nonverbal Social Impairment in Adolescent and Adult Males with Autism. Arch. Gen. Psychiatry 2006, 63, 1417–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, J.D.; Maddox, B.B.; Kerns, C.M.; Rump, K.; Worley, J.A.; Bush, J.C.; McVey, A.J.; Schultz, R.T.; Miller, J.S. Amygdala Volume Differences in Autism Spectrum Disorder Are Related to Anxiety. J. Autism Dev. Disord. 2017, 47, 3682–3691. [Google Scholar] [CrossRef] [PubMed]
- Haznedar, M.M.; Buchsbaum, M.S.; Wei, T.-C.; Hof, P.R.; Cartwright, C.; Bienstock, C.A.; Hollander, E. Limbic Circuitry in Patients with Autism Spectrum Disorders Studied with Positron Emission Tomography and Magnetic Resonance Imaging. Am. J. Psychiatry 2000, 157, 1994–2001. [Google Scholar] [CrossRef]
- Barnea-Goraly, N.; Frazier, T.W.; Piacenza, L.; Minshew, N.J.; Keshavan, M.S.; Reiss, A.L.; Hardan, A.Y. A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 124–128. [Google Scholar] [CrossRef]
- Nicolson, R.; De Vito, T.J.; Vidal, C.N.; Sui, Y.; Hayashi, K.M.; Drost, D.J.; Williamson, P.C.; Rajakumar, N.; Toga, A.W.; Thompson, P. Detection and mapping of hippocampal abnormalities in autism. Psychiatry Res. Neuroimaging 2006, 148, 11–21. [Google Scholar] [CrossRef]
- Maier, S.; van Elst, L.T.; Beier, D.; Ebert, D.; Fangmeier, T.; Radtke, M.; Perlov, E.; Riedel, A. Increased hippocampal volumes in adults with high functioning autism spectrum disorder and an IQ>100: A manual morphometric study. Psychiatry Res. Neuroimaging 2015, 234, 152–155. [Google Scholar] [CrossRef]
- Sato, W.; Kubota, Y.; Kochiyama, T.; Uono, S.; Yoshimura, S.; Sawada, R.; Sakihama, M.; Toichi, M. Increased Putamen Volume in Adults with Autism Spectrum Disorder. Front. Hum. Neurosci. 2014, 8, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, N.; Travers, B.G.; Bigler, E.D.; Prigge, M.B.; Froehlich, A.L.; Nielsen, J.; Cariello, A.N.; Zielinski, B.A.; Anderson, J.; Fletcher, P.T.; et al. Longitudinal Volumetric Brain Changes in Autism Spectrum Disorder Ages 6–35 Years. Autism Res. 2015, 8, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Ni, H.-C.; Lai, M.-C.; Tseng, W.-Y.I.; Gau, S.S.-F. Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Mol. Autism 2015, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, M.M.T.; Keynton, R.S.; Mostapha, M.M.M.O.; ElTanboly, A.H.; Casanova, M.F.; Gimel’Farb, G.L.; El-Baz, A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front. Hum. Neurosci. 2016, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Tsatsanis, K.D.; Rourke, B.P.; Klin, A.; Volkmar, F.R.; Cicchetti, D.; Schultz, R.T. Reduced thalamic volume in high-functioning individuals with autism. Biol. Psychiatry 2003, 53, 121–129. [Google Scholar] [CrossRef]
- Schuetze, M.; Park, M.T.; Cho, I.Y.; MacMaster, F.; Chakravarty, M.M.; Bray, S.L. Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder. Neuropsychopharmacology 2016, 41, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Garman, H.D.; Spaulding, C.J.; Webb, S.J.; Mikami, A.; Morris, J.P.; Lerner, M.D. Wanting it Too Much: An Inverse Relation Between Social Motivation and Facial Emotion Recognition in Autism Spectrum Disorder. Child Psychiatry Hum. Dev. 2016, 47, 890–902. [Google Scholar] [CrossRef] [Green Version]
- Sasson, N.J.; Morrison, K.E.; Kelsven, S.; Pinkham, A.E. Social cognition as a predictor of functional and social skills in autistic adults without intellectual disability. Autism Res. 2020, 13, 259–270. [Google Scholar] [CrossRef]
- Ward, K.E.; Friedman, L.; Wise, A.; Schulz, S. Meta-analysis of brain and cranial size in schizophrenia. Schizophr. Res. 1996, 22, 197–213. [Google Scholar] [CrossRef]
- Nelson, M.D.; Saykin, A.; Flashman, L.A.; Riordan, H.J. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: A meta-analytic study. Arch. Gen. Psychiatry 1998, 55, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Wright, I.C.; Rabe-Hesketh, S.; Woodruff, P.W.; David, A.S.; Murray, R.; Bullmore, E. Meta-Analysis of Regional Brain Volumes in Schizophrenia. Am. J. Psychiatry 2000, 157, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Haijma, S.V.; Van Haren, N.; Cahn, W.; Koolschijn, P.C.M.P.; Hulshoff Pol, H.E.; Kahn, R.S. Brain volumes in schizophrenia: A meta-analysis in over 18,000 subjects. Schizophr. Bull. 2013, 39, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.-H.; Ryan, L.; Bever, T.G. Role of the striatum in language: Syntactic and conceptual sequencing. Brain Lang. 2013, 125, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Hartberg, C.B.; Sundet, K.; Rimol, L.M.; Haukvik, U.K.; Lange, E.H.; Nesvåg, R.; Melle, I.; Andreassen, O.A.; Agartz, I. Subcortical brain volumes relate to neurocognition in schizophrenia and bipolar disorder and healthy controls. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Xiang, H.; Tan, S.; Yang, F.; Fan, H.; Guo, H.; Kochunov, P.; Wang, Z.; Hong, L.E.; Tan, Y. Subcortical structures and cognitive dysfunction in first episode schizophrenia. Psychiatry Res. Neuroimaging 2019, 286, 69–75. [Google Scholar] [CrossRef]
- Carroll, C.A.; Boggs, J.; O’Donnell, B.F.; Shekhar, A.; Hetrick, W.P. Temporal processing dysfunction in schizophrenia. Brain Cogn. 2008, 67, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D.; Simpson, E.; Richards, V.L.; Deo, G.; Taylor, K.; Glendinning, I.J.; Kandel, E.R.; Balsam, P.D. Dissociation of Hedonic Reaction to Reward and Incentive Motivation in an Animal Model of the Negative Symptoms of Schizophrenia. Neuropsychopharmacology 2012, 37, 1699–1707. [Google Scholar] [CrossRef] [Green Version]
- Koziol, L.F.; Budding, D.E. Subcortical Structures and Cognition: Implications for Neuropsychological Assessment; Springer: New York, NY, USA, 2009. [Google Scholar]
- Lang, P.J. The Emotion Probe: Studies of Motivation and Attention. Am. Psychol. 1995, 50, 372. [Google Scholar] [CrossRef]
- Leisman, G.; Braun-Benjamin, O.; Melillo, R. Cognitive-motor interactions of the basal ganglia in development. Front. Syst. Neurosci. 2014, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- DeLisi, L.E. The Significance of Age of Onset for Schizophrenia. Schizophr. Bull. 1992, 18, 209–215. [Google Scholar] [CrossRef]
- Wojtalik, J.; Eack, S.M.; Keshavan, M.S. Structural neurobiological correlates of Mayer–Salovery–Caruso Emotional Intelligence Test performance in early course schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 40, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Subcortical Structure | Function |
---|---|
Caudate nucleus | Directed movements [32], working memory [33,34], language [35,36], learning [37], Goal-directed action [38,39]. |
Putamen | Motor skills [40,41], learning [42,43,44] |
Pallidum | Voluntary movement [45], reward and motivation [46,47] |
Nucleus accumbens | Motivation, reward, locomotor activity, learning, memory [48,49] |
Amygdala | Emotional learning [50], memory modulation [51] |
Hippocampus | Episodic memory [52,53], response inhibition, spatial cognition [54,55] |
Thalamus | Relay sensory signals, arousal and pain regulation, motor, language function, mood and motivation, cognition [56,57] |
Parameter | ASD N = 29 Mean (SD) | ASD- NT N = 29 Mean (SD) | p-Value | SZ N = 51 Mean (SD) | SZ-NT N = 51 Mean (SD) | p-Value |
---|---|---|---|---|---|---|
Age (years) | 37.5 (16) | 39.6 (15) | 0.6037 | 36.9 (14) | 37.6 (13) | 0.8997 |
Gender (m/f) | 29/0 | 29/0 | 41/10 | 38/13 | ||
FIQ a | 107.6 (13) | 112.5 (12) | 0.1756 | 106.6 (14) | 109.8 (12) | <0.1667 |
SRS Social Cognition b | 73.2 (10) | 50.1 (13) | <0.0001 | - | - | |
MSCEIT c | - | - | 44.7 (11) | 53.1 (9) | <0.0001 |
ASD-NT Males N = 29 Mean (SD) | SZ-NT Males N = 38 Mean (SD) | p-Value | |
---|---|---|---|
SNR | 21.6 (3) | 18.7 (2) | <0.0001 |
CNR | 1.4 (0.08) | 1.4 (0.09) | 0.9759 |
voxWM | 57,432 (13,963) | 53,285 (12,866) | 0.2152 |
mWM | 104.3 (0.77) | 102.2 (0.95) | <0.0001 |
stdWM | 4.9 (0.60) | 5.6 (0.93) | 0.0009 |
tGM | 634,018 (47,821) | 668,310 (62,118) | 0.0159 |
sGM | 62,567 (4839) | 64,541 (6135) | 0.1567 |
cWM | 516,466 (47,997) | 503,904 (61,055) | 0.3626 |
CSF | 1195 (190.2) | 1111 (308.1) | 0.2002 |
eTIV | 1,604,009 (106,800) | 1,683,745 (137,571) | 0.0117 |
Correlation | ASD | ASD-TD |
---|---|---|
Left Amygdala vs. FIQ | r = 0.08, p = 0.668 | r = −0.53, p = 0.002 |
Right Amygdala vs. FIQ | r = −0.11, p = 0.552 | r = −0.52, p = 0.004 |
Left Amygdala vs. SRS Social Cognition | r = −0.39, p = 0.038 | r = −0.30, p = 0.117 |
Correlation | SZ | SZ-TD |
---|---|---|
Left Caudate vs. FIQ | r = 0.26, p = 0.061 | r = −0.33, p = 0.018 |
Right Caudate vs. FIQ | r = 0.29, p = 0.039 | r = −0.41, p = 0.003 |
Right Putamen vs. FIQ | r = 0.02, p = 0.883 | r = −0.35, p = 0.013 |
Right Pallidum vs. FIQ | r = −0.04, p = 0.759 | r = −0.37, p = 0.007 |
Left Hippocampus vs. FIQ | r = 0.15, p = 0.289 | r = −0.32, p = 0.021 |
Left Accumbens vs. FIQ | r = 0.23, p = 0.110 | r = −0.27, p = 0.057 |
Right Accumbens vs. FIQ | r = 0.21, p = 0.213 | r = −0.27, p = 0.053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weerasekera, A.; Ion-Mărgineanu, A.; Nolan, G.; Mody, M. Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sci. 2022, 12, 439. https://doi.org/10.3390/brainsci12040439
Weerasekera A, Ion-Mărgineanu A, Nolan G, Mody M. Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sciences. 2022; 12(4):439. https://doi.org/10.3390/brainsci12040439
Chicago/Turabian StyleWeerasekera, Akila, Adrian Ion-Mărgineanu, Garry Nolan, and Maria Mody. 2022. "Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia" Brain Sciences 12, no. 4: 439. https://doi.org/10.3390/brainsci12040439
APA StyleWeerasekera, A., Ion-Mărgineanu, A., Nolan, G., & Mody, M. (2022). Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sciences, 12(4), 439. https://doi.org/10.3390/brainsci12040439