Finger-Based Numerical Training Increases Sensorimotor Activation for Arithmetic in Children—An fNIRS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Finger-Based Intervention
2.3. Experimental Task
2.4. Procedure
2.5. fNIRS Data Acquisition
2.6. Data Analysis
3. Results
3.1. Behavioral Data
3.2. fNIRS Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butterworth, B. The Mathematical Brain; Macmillan: London, UK, 1999. [Google Scholar]
- Barrocas, R.; Roesch, S.; Gawrilow, C.; Moeller, K. Putting a Finger on Numerical Development—Reviewing the Contributions of Kindergarten Finger Gnosis and Fine Motor Skills to Numerical Abilities. Front. Psychol. 2020, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Roesch, S.; Moeller, K. Considering Digits in a Current Model of Numerical Development. Front. Hum. Neurosci. 2015, 8, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soylu, F.; Lester, F.K.; Newman, S.D. You Can Count on Your Fingers: The Role of Fingers in Early Mathematical Development. J. Numer. Cogn. 2018, 4, 107–135. [Google Scholar] [CrossRef] [Green Version]
- Domahs, F.; Krinzinger, H.; Willmes, K. Mind the Gap between Both Hands: Evidence for Internal Finger-Based Number Representations in Children’s Mental Calculation. Cortex 2008, 44, 359–367. [Google Scholar] [CrossRef]
- Klein, E.; Moeller, K.; Willmes, K.; Nuerk, H.-C.; Domahs, F. The Influence of Implicit Hand-Based Representations on Mental Arithmetic. Front. Psychol. 2011, 2, 197. [Google Scholar] [CrossRef] [Green Version]
- Domahs, F.; Moeller, K.; Huber, S.; Willmes, K.; Nuerk, H.-C. Embodied Numerosity: Implicit Hand-Based Representations Influence Symbolic Number Processing across Cultures. Cognition 2010, 116, 251–266. [Google Scholar] [CrossRef]
- Fischer, M.H.; Brugger, P. When Digits Help Digits: Spatial-Numerical Associations Point to Finger Counting as Prime Example of Embodied Cognition. Front. Psychol. 2011, 2, 260. [Google Scholar] [CrossRef] [Green Version]
- Moeller, K.; Fischer, U.; Link, T.; Wasner, M.; Huber, S.; Cress, U.; Nuerk, H.-C. Learning and Development of Embodied Numerosity. Cogn. Process. 2012, 13, 271–274. [Google Scholar] [CrossRef]
- Wilson, M. Six Views of Embodied Cognition. Psychon. Bull. Rev. 2002, 9, 625–636. [Google Scholar] [CrossRef]
- Andres, M.; Seron, X.; Olivier, E. Contribution of Hand Motor Circuits to Counting. J. Cogn. Neurosci. 2007, 19, 563–576. [Google Scholar] [CrossRef]
- Andres, M.; Michaux, N.; Pesenti, M. Common Substrate for Mental Arithmetic and Finger Representation in the Parietal Cortex. Neuroimage 2012, 62, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Krinzinger, H.; Koten, J.W.; Horoufchin, H.; Kohn, N.; Arndt, D.; Sahr, K.; Konrad, K.; Willmes, K. The Role of Finger Representations and Saccades for Number Processing: An FMRI Study in Children. Front. Psychol. 2011, 2, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusconi, E.; Walsh, V.; Butterworth, B. Dexterity with Numbers: RTMS over Left Angular Gyrus Disrupts Finger Gnosis and Number Processing. Neuropsychologia 2005, 43, 1609–1624. [Google Scholar] [CrossRef] [PubMed]
- Tschentscher, N.; Hauk, O.; Fischer, M.H.; Pulvermüller, F. You Can Count on the Motor Cortex: Finger Counting Habits Modulate Motor Cortex Activation Evoked by Numbers. NeuroImage 2012, 59, 3139–3148. [Google Scholar] [CrossRef] [Green Version]
- Hohol, M.; Woloszyn, K.; Nuerk, H.-C.; Cipora, K. A Large-Scale Survey on Finger Counting Routines, Their Temporal Stability and Flexibility in Educated Adults. PeerJ 2018, 6, e5878. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three Parietal Circuits for Number Processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.; Moeller, K.; Glauche, V.; Weiller, C.; Willmes, K. Processing Pathways in Mental Arithmetic-Evidence from Probabilistic Fiber Tracking. PLoS ONE 2013, 8, e55455. [Google Scholar] [CrossRef] [Green Version]
- Simon, O.; Mangin, J.F.; Cohen, L.; Le Bihan, D.; Dehaene, S. Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe. Neuron 2002, 33, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, L.; Vogel, S.E.; Wood, G.; Kremser, C.; Schocke, M.; Zimmerhackl, L.-B.; Koten, J.W. A Developmental FMRI Study of Nonsymbolic Numerical and Spatial Processing. Cortex 2008, 44, 376–385. [Google Scholar] [CrossRef]
- Roux, F.E.; Boetto, S.; Sacko, O.; Chollet, F.; Trémoulet, M. Writing, Calculating, and Finger Recognition in the Region of the Angular Gyrus: A Cortical Stimulation Study of Gerstmann Syndrome. J. Neurosurg. 2003, 99, 716–727. [Google Scholar] [CrossRef]
- Frey, M. Die Bedeutsamkeit Fingerbasierter Repräsentationen auf Numerische Fähigkeiten—Ergebnisse Einer Intervention zu Beginn der Grundschule und Differenzierung Struktureller Merkmale; University of Tuebingen: Tuebingen, Germany, 2017. [Google Scholar]
- Simon, O.; Kherif, F.; Flandin, G.; Poline, J.B.; Rivière, D.; Mangin, J.F.; Le Bihan, D.; Dehaene, S. Automatized Clustering and Functional Geometry of Human Parietofrontal Networks for Language, Space, and Number. NeuroImage 2004, 23, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Obersteiner, A.; Dresler, T.; Reiss, K.; Vogel, A.C.M.; Pekrun, R.; Fallgatter, A.J. Bringing Brain Imaging to the School to Assess Arithmetic Problem Solving: Chances and Limitations in Combining Educational and Neuroscientific Research. ZDM Math. Educ. 2010, 42, 541–554. [Google Scholar] [CrossRef]
- Lenart, F.; Schaupp, H.; Holzer, N. Eggenberger Rechentest 0+ (ERT 0+); Verlag Hans Huber: Bern, Switzerland, 2013. [Google Scholar]
- Weiß, R.H.; Osterland, J. Grundintelligenztest Skala 1—Revision (CFT 1-R); Hogrefe: Göttingen, Germany, 2013. [Google Scholar]
- Artemenko, C.; Soltanlou, M.; Dresler, T.; Ehlis, A.-C.; Nuerk, H.-C. The Neural Correlates of Arithmetic Difficulty Depend on Mathematical Ability: Evidence from Combined FNIRS and ERP. Brain Struct. Funct. 2018, 223, 2561–2574. [Google Scholar] [CrossRef] [PubMed]
- Rorden, C.; Brett, M. Stereotaxic Display of Brain Lesions. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef]
- Singh, A.K.; Okamoto, M.; Dan, H.; Jurcak, V.; Dan, I. Spatial Registration of Multichannel Multi-Subject FNIRS Data to MNI Space without MRI. NeuroImage 2005, 27, 842–851. [Google Scholar] [CrossRef]
- Tsuzuki, D.; Jurcak, V.; Singh, A.K.; Okamoto, M.; Watanabe, E.; Dan, I. Virtual Spatial Registration of Stand-Alone FNIRS Data to MNI Space. NeuroImage 2007, 34, 1506–1518. [Google Scholar] [CrossRef]
- Fishburn, F.A.; Ludlum, R.S.; Vaidya, C.J.; Medvedev, A. V Temporal Derivative Distribution Repair (TDDR): A Motion Correction Method for FNIRS. NeuroImage 2020, 184, 171–179. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Reiss, A.L. Functional near Infrared Spectroscopy (NIRS) Signal Improvement Based on Negative Correlation between Oxygenated and Deoxygenated Hemoglobin Dynamics. NeuroImage 2010, 49, 3039–3046. [Google Scholar] [CrossRef] [Green Version]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion Artifacts in Functional Near-Infrared Spectroscopy: A Comparison of Motion Correction Techniques Applied to Real Cognitive Data. NeuroImage 2014, 85, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegrant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Patro, K.; Nuerk, H.C.; Cress, U. Does Your Body Count? Embodied Influences on the Preferred Counting Direction of Preschoolers. J. Cogn. Psychol. 2015, 27, 413–425. [Google Scholar] [CrossRef]
- Wasner, M.; Moeller, K.; Fischer, M.H.; Nuerk, H.-C.H.C. Aspects of Situated Cognition in Embodied Numerosity: The Case of Finger Counting. Cogn. Process. 2014, 15, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Artemenko, C.; Soltanlou, M.; Ehlis, A.C.; Nuerk, H.C.; Dresler, T. The Neural Correlates of Mental Arithmetic in Adolescents: A Longitudinal FNIRS Study. Behav. Brain Funct. 2018, 14, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björklund, C.; Kullberg, A.; Kempe, U.R. Structuring versus counting: Critical ways of using fingers in subtraction. ZDM Math. Educ. 2019, 51, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Bugden, S.; Ansari, D. Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition 2011, 118, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Gattegno, C. The Common Sense of Teaching Mathematics; Educational Solutions: New York, NY, USA, 1974. [Google Scholar]
- Kullberg, A.; Björklund, C.; Brkovic, I.; Kempe, U.R. Effects of learning addition and subtraction in preschool by making the first ten numbers and their relations visible with finger patterns. Educ. Stud. Math. 2020, 103, 157–172. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artemenko, C.; Wortha, S.M.; Dresler, T.; Frey, M.; Barrocas, R.; Nuerk, H.-C.; Moeller, K. Finger-Based Numerical Training Increases Sensorimotor Activation for Arithmetic in Children—An fNIRS Study. Brain Sci. 2022, 12, 637. https://doi.org/10.3390/brainsci12050637
Artemenko C, Wortha SM, Dresler T, Frey M, Barrocas R, Nuerk H-C, Moeller K. Finger-Based Numerical Training Increases Sensorimotor Activation for Arithmetic in Children—An fNIRS Study. Brain Sciences. 2022; 12(5):637. https://doi.org/10.3390/brainsci12050637
Chicago/Turabian StyleArtemenko, Christina, Silke Maria Wortha, Thomas Dresler, Mirjam Frey, Roberta Barrocas, Hans-Christoph Nuerk, and Korbinian Moeller. 2022. "Finger-Based Numerical Training Increases Sensorimotor Activation for Arithmetic in Children—An fNIRS Study" Brain Sciences 12, no. 5: 637. https://doi.org/10.3390/brainsci12050637
APA StyleArtemenko, C., Wortha, S. M., Dresler, T., Frey, M., Barrocas, R., Nuerk, H. -C., & Moeller, K. (2022). Finger-Based Numerical Training Increases Sensorimotor Activation for Arithmetic in Children—An fNIRS Study. Brain Sciences, 12(5), 637. https://doi.org/10.3390/brainsci12050637