Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation
Abstract
:1. Introduction
2. TMS in Action Selection
2.1. SpTMS
2.2. PpTMS
2.3. Dual-Site TMS
3. TMS in Value-Based Motor Decision Making
4. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Cisek, P.; Kalaska, J.F. Neural Mechanisms for Interacting with a World Full of Action Choices. Annu. Rev. Neurosci. 2010, 32, 269–298. [Google Scholar] [CrossRef] [Green Version]
- Gallivan, J.P.; Chapman, C.S.; Wolpert, D.M.; Flanagan, J.R. Decision-Making in Sensorimotor Control. Nat. Rev. Neurosci. 2018, 19, 519–534. [Google Scholar] [CrossRef]
- Kim, H.E.; Avraham, G.; Ivry, R.B. The Psychology of Reaching: Action Selection, Movement Implementation, and Sensorimotor Learning. Annu. Rev. Psychol. 2021, 72, 61–95. [Google Scholar] [CrossRef]
- Krüger, M.; Hermsdörfer, J. Target Uncertainty During Motor Decision-Making: The Time Course of Movement Variability Reveals the Effect of Different Sources of Uncertainty on the Control of Reaching Movements. Front. Psychol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Rangel, A.; Camerer, C.; Montague, P.R. A Framework for Studying the Neurobiology of Value-Based Decision Making. Nat. Rev. Neurosci. 2008, 9, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.M.; Landy, M.S. Motor Control Is Decision-Making. Curr. Opin. Neurobiol. 2012, 22, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-W.; Delgado, M.R.; Maloney, L.T. Motor Decision-Making. In Social Cognitive Neuroscience, Cognitive Neuroscience, Clinical Brain Mapping; Elsevier: Amsterdam, The Netherlands, 2015; pp. 417–427. [Google Scholar] [CrossRef]
- Padoa-Schioppa, C. Neurobiology of Economic Choice: A Good-Based Model. Annu. Rev. Neurosci. 2011, 34, 333–359. [Google Scholar] [CrossRef] [Green Version]
- Derosiere, G.; Duque, J. Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020, 26, 359–379. [Google Scholar] [CrossRef]
- Bestmann, S.; Duque, J. Transcranial Magnetic Stimulation. Neuroscientist 2016, 22, 392–405. [Google Scholar] [CrossRef]
- Boorman, E.D.; O’Shea, J.; Sebastian, C.; Rushworth, M.F.S.; Johansen-Berg, H. Individual Differences in White-Matter Microstructure Reflect Variation in Functional Connectivity during Choice. Curr. Biol. 2007, 17, 1426–1431. [Google Scholar] [CrossRef] [Green Version]
- Burle, B.; Bonnet, M.; Vidal, F.; Possamai, C.-A.; Hasbroucq, T. A Transcranial Magnetic Stimulation Study of Information Processing in the Motor Cortex: Relationship between the Silent Period and the Reaction Time Delay. Psychophysiology 2002, 39, 207–217. [Google Scholar] [CrossRef]
- Duque, J.; Mazzocchio, R.; Dambrosia, J.; Murase, N.; Olivier, E.; Cohen, L.G. Kinematically Specific Interhemispheric Inhibition Operating in the Process of Generation of a Voluntary Movement. Cereb. Cortex 2005, 15, 588–593. [Google Scholar] [CrossRef]
- Duque, J.; Lew, D.; Mazzocchio, R.; Olivier, E.; Ivry, R.B. Evidence for Two Concurrent Inhibitory Mechanisms during Response Preparation. J. Neurosci. 2010, 30, 3793–3802. [Google Scholar] [CrossRef] [Green Version]
- Duque, J.; Labruna, L.; Cazares, C.; Ivry, R.B. Dissociating the Influence of Response Selection and Task Anticipation on Corticospinal Suppression during Response Preparation. Neuropsychologia 2014, 65, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Duque, J.; Greenhouse, I.; Labruna, L.; Ivry, R.B. Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci. 2017, 40, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Duque, J.; Ivry, R.B. Role of Corticospinal Suppression during Motor Preparation. Cereb. Cortex 2009, 19, 2013–2024. [Google Scholar] [CrossRef]
- Greenhouse, I.; Sias, A.; Labruna, L.; Ivry, R.B. Nonspecific Inhibition of the Motor System during Response Preparation. J. Neurosci. 2015, 35, 10675–10684. [Google Scholar] [CrossRef] [Green Version]
- Hannah, R.; Cavanagh, S.E.; Tremblay, S.; Simeoni, S.; Rothwell, J.C. Selective Suppression of Local Interneuron Circuits in Human Motor Cortex Contributes to Movement Preparation. J. Neurosci. 2018, 38, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Hinder, M.R.; Puri, R.; Kemp, S.; Waitzer, S.; Reissig, P.; Stöckel, T.; Fujiyama, H. Distinct Modulation of Interhemispheric Inhibitory Mechanisms during Movement Preparation Reveals the Influence of Cognition on Action Control. Cortex 2018, 99, 13–29. [Google Scholar] [CrossRef]
- Klein, P.-A.; Duque, J.; Labruna, L.; Ivry, R.B. Comparison of the Two Cerebral Hemispheres in Inhibitory Processes Operative during Movement Preparation. NeuroImage 2016, 125, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Koch, G.; Franca, M.; Fernandez Del Olmo, M.; Cheeran, B.; Milton, R.; Alvarez Sauco, M.; Rothwell, J.C. Time Course of Functional Connectivity between Dorsal Premotor and Contralateral Motor Cortex during Movement Selection. J. Neurosci. 2006, 26, 7452–7459. [Google Scholar] [CrossRef] [Green Version]
- Labruna, L.; Lebon, F.; Duque, J.; Klein, P.-A.; Cazares, C.; Ivry, R.B. Generic Inhibition of the Selected Movement and Constrained Inhibition of Nonselected Movements during Response Preparation. J. Cogn. Neurosci. 2014, 26, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Leocani, L.; Cohen, L.G.; Wassermann, E.M.; Ikoma, K.; Hallett, M. Human Corticospinal Excitability Evaluated with Transcranial Magnetic Stimulation during Different Reaction Time Paradigms. Brain 2000, 123, 1161–1173. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, J.; Sebastian, C.; Boorman, E.D.; Johansen-Berg, H.; Rushworth, M.F.S. Functional Specificity of Human Premotor-Motor Cortical Interactions during Action Selection: PMd-M1 Interactions during Action Selection. Eur. J. Neurosci. 2007, 26, 2085–2095. [Google Scholar] [CrossRef] [Green Version]
- Poole, B.J.; Mather, M.; Livesey, E.J.; Harris, I.M.; Harris, J.A. Motor-Evoked Potentials Reveal Functional Differences between Dominant and Non-Dominant Motor Cortices during Response Preparation. Cortex 2018, 103, 1–12. [Google Scholar] [CrossRef]
- Quoilin, C.; Lambert, J.; Jacob, B.; Klein, P.-A.; Duque, J. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task. PLoS ONE 2016, 11, e0161964. [Google Scholar] [CrossRef]
- Quoilin, C.; Fievez, F.; Duque, J. Preparatory Inhibition: Impact of Choice in Reaction Time Tasks. Neuropsychologia 2019, 129, 212–222. [Google Scholar] [CrossRef]
- Reis, J.; Swayne, O.B.; Vandermeeren, Y.; Camus, M.; Dimyan, M.A.; Harris-Love, M.; Perez, M.A.; Ragert, P.; Rothwell, J.C.; Cohen, L.G. Contribution of Transcranial Magnetic Stimulation to the Understanding of Cortical Mechanisms Involved in Motor Control: TMS and Motor Control. J. Physiol. 2008, 586, 325–351. [Google Scholar] [CrossRef]
- Soto, O.; Valls-Solé, J.; Kumru, H. Paired-Pulse Transcranial Magnetic Stimulation during Preparation for Simple and Choice Reaction Time Tasks. J. Neurophysiol. 2010, 104, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Tandonnet, C.; Davranche, K.; Meynier, C.; Burle, B.; Vidal, F.; Hasbroucq, T. How Does Temporal Preparation Speed up Response Implementation in Choice Tasks? Evidence for an Early Cortical Activation: Temporal Preparation and Response Implementation. Psychophysiology 2012, 49, 252–260. [Google Scholar] [CrossRef]
- Wilhelm, E.; Quoilin, C.; Petitjean, C.; Duque, J. A Double-Coil TMS Method to Assess Corticospinal Excitability Changes at a Near-Simultaneous Time in the Two Hands during Movement Preparation. Front. Hum. Neurosci. 2016, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Klein, P.-A.; Olivier, E.; Duque, J. Influence of Reward on Corticospinal Excitability during Movement Preparation. J. Neurosci. 2012, 32, 18124–18136. [Google Scholar] [CrossRef] [Green Version]
- Cos, I.; Duque, J.; Cisek, P. Rapid Prediction of Biomechanical Costs during Action Decisions. J. Neurophysiol. 2014, 112, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Derosiere, G.; Thura, D.; Cisek, P.; Duque, J. Hasty Sensorimotor Decisions Rely on an Overlap of Broad and Selective Changes in Motor Activity. Neuroscience, 2021; preprint. [Google Scholar] [CrossRef]
- Klein-Flugge, M.C.; Bestmann, S. Time-Dependent Changes in Human Corticospinal Excitability Reveal Value-Based Competition for Action during Decision Processing. J. Neurosci. 2012, 32, 8373–8382. [Google Scholar] [CrossRef] [Green Version]
- Klein-Flugge, M.C.; Nobbs, D.; Pitcher, J.B.; Bestmann, S. Variability of Human Corticospinal Excitability Tracks the State of Action Preparation. J. Neurosci. 2013, 33, 5564–5572. [Google Scholar] [CrossRef] [Green Version]
- Mooshagian, E.; Keisler, A.; Zimmermann, T.; Schweickert, J.M.; Wassermann, E.M. Modulation of Corticospinal Excitability by Reward Depends on Task Framing. Neuropsychologia 2015, 68, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive Brain Stimulation: From Physiology to Network Dynamics and Back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Rossini, P.; Noris Ferilli, M.; Rossini, L.; Ferreri, F. Clinical Neurophysiology of Brain Plasticity in Aging Brain. Curr. Pharm. Des. 2013, 19, 6426–6439. [Google Scholar] [CrossRef]
- Chen, R.; Lozano, A.M.; Ashby, P. Mechanism of the Silent Period Following Transcranial Magnetic Stimulation. Exp. Brain Res. 1999, 128, 539–542. [Google Scholar] [CrossRef]
- Ferreri, F.; Pasqualetti, P.; Määttä, S.; Ponzo, D.; Ferrarelli, F.; Tononi, G.; Mervaala, E.; Miniussi, C.; Rossini, P.M. Human Brain Connectivity during Single and Paired Pulse Transcranial Magnetic Stimulation. NeuroImage 2011, 54, 90–102. [Google Scholar] [CrossRef]
- Derosiere, G.; Vassiliadis, P.; Duque, J. Advanced TMS Approaches to Probe Corticospinal Excitability during Action Preparation. NeuroImage 2020, 213, 116746. [Google Scholar] [CrossRef]
- Daskalakis, Z.J.; Christensen, B.K.; Fitzgerald, P.B.; Roshan, L.; Chen, R. The Mechanisms of Interhemispheric Inhibition in the Human Motor Cortex. J. Physiol. 2002, 543, 317–326. [Google Scholar] [CrossRef]
- Ferbert, A.; Priori, A.; Rothwell, J.C.; Day, B.L.; Colebatch, J.G.; Marsden, C.D. Interhemispheric Inhibition of the Human Motor Cortex. J. Physiol. 1992, 453, 525–546. [Google Scholar] [CrossRef]
- Mochizuki, H.; Huang, Y.-Z.; Rothwell, J.C. Interhemispheric Interaction between Human Dorsal Premotor and Contralateral Primary Motor Cortex: Interhemispheric Interaction of Dorsal Premotor Area. J. Physiol. 2004, 561, 331–338. [Google Scholar] [CrossRef]
- Fernandez, L.; Major, B.P.; Teo, W.-P.; Byrne, L.K.; Enticott, P.G. Assessing Cerebellar Brain Inhibition (CBI) via Transcranial Magnetic Stimulation (TMS): A Systematic Review. Neurosci. Biobehav. Rev. 2018, 86, 176–206. [Google Scholar] [CrossRef]
- Ugawa, Y.; Uesaka, Y.; Terao, Y.; Hanajima, R.; Kanazawa, I. Magnetic Stimulation over the Cerebellum in the Human. Electroencephalogr. Clin. Neurophysiol. 1995, 95, P88. [Google Scholar] [CrossRef]
- Ibáñez, J.; Hannah, R.; Rocchi, L.; Rothwell, J.C. Premovement Suppression of Corticospinal Excitability may be a Necessary Part of Movement Preparation. Cereb. Cortex 2020, 30, 2910–2923. [Google Scholar] [CrossRef]
- Burle, B.; Vidal, F.; Tandonnet, C.; Hasbroucq, T. Physiological Evidence for Response Inhibition in Choice Reaction Time Tasks. Brain Cogn. 2004, 56, 153–164. [Google Scholar] [CrossRef]
- Quoilin, C.; Derosiere, G. Global and Specific Motor Inhibitory Mechanisms during Action Preparation. J. Neurosci. 2015, 35, 16297–16299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumru, H.; Soto, O.; Casanova, J.; Valls-Sole, J. Motor Cortex Excitability Changes during Imagery of Simple Reaction Time. Exp. Brain Res. 2008, 189, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Heise, K.-F.; Steven, B.; Liuzzi, G.; Thomalla, G.; Jonas, M.; Muller-Vahl, K.; Sauseng, P.; Munchau, A.; Gerloff, C.; Hummel, F.C. Altered Modulation of Intracortical Excitability during Movement Preparation in Gilles de La Tourette Syndrome. Brain 2010, 133, 580–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummel, F.C.; Steven, B.; Hoppe, J.; Heise, K.; Thomalla, G.; Cohen, L.G.; Gerloff, C. Deficient Intracortical Inhibition (SICI) during Movement Preparation after Chronic Stroke. Neurology 2009, 72, 1766–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez, J.; Spampinato, D.A.; Paraneetharan, V.; Rothwell, J.C. SICI during Changing Brain States: Differences in Methodology Can Lead to Different Conclusions. Brain Stimul. 2020, 13, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawji, V.; Kaczmarczyk, I.; Rocchi, L.; Fong, P.-Y.; Rothwell, J.C.; Sharma, N. Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sci. 2021, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- Vesia, M.; Barnett-Cowan, M.; Elahi, B.; Jegatheeswaran, G.; Isayama, R.; Neva, J.-L.; Davare, M.; Staines, W.R.; Culham, J.C.; Chen, R. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex 2017, 92, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Neige, C.; Rannaud Monany, D.; Lebon, F. Exploring Cortico-Cortical Interactions during Action Preparation by Means of Dual-Coil Transcranial Magnetic Stimulation: A Systematic Review. Neurosci. Biobehav. Rev. 2021, 128, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Tazoe, T.; Perez, M.A. Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements. J. Neurosci. 2013, 33, 16178–16188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, J.; Murase, N.; Celnik, P.; Hummel, F.; Harris-Love, M.; Mazzocchio, R.; Olivier, E.; Cohen, L.G. Intermanual Differences in Movement-Related Interhemispheric Inhibition. J. Cogn. Neurosci. 2007, 19, 204–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, J.; Bäumer, T.; Jonas, M.; Rothwell, J.C.; Siebner, H.R.; Münchau, A. Charting the Excitability of Premotor to Motor Connections While Withholding or Initiating a Selected Movement: Premotor Cortex Role in Movement Release. Eur. J. Neurosci. 2010, 32, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Kassavetis, P.; Hoffland, B.S.; Saifee, T.A.; Bhatia, K.P.; van de Warrenburg, B.P.; Rothwell, J.C.; Edwards, M.J. Cerebellar Brain Inhibition Is Decreased in Active and Surround Muscles at the Onset of Voluntary Movement. Exp. Brain Res. 2011, 209, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, D.A.; Block, H.J.; Celnik, P.A. Cerebellar–M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific. J. Neurosci. 2017, 37, 2377–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.-C.; Cools, R.; Aron, A.R. Opposing Effects of Appetitive and Aversive Cues on Go/No-Go Behavior and Motor Excitability. J. Cogn. Neurosci. 2014, 26, 1851–1860. [Google Scholar] [CrossRef]
- Vassena, E.; Cobbaert, S.; Andres, M.; Fias, W.; Verguts, T. Unsigned Value Prediction-Error Modulates the Motor System in Absence of Choice. NeuroImage 2015, 122, 73–79. [Google Scholar] [CrossRef]
- Bundt, C.; Abrahamse, E.L.; Braem, S.; Brass, M.; Notebaert, W. Reward Anticipation Modulates Primary Motor Cortex Excitability during Task Preparation. NeuroImage 2016, 142, 483–488. [Google Scholar] [CrossRef]
- Schultz, W. Behavioral Theories and the Neurophysiology of Reward. Annu. Rev. Psychol. 2006, 57, 87–115. [Google Scholar] [CrossRef] [Green Version]
- Cisek, P. Making Decisions through a Distributed Consensus. Curr. Opin. Neurobiol. 2012, 22, 927–936. [Google Scholar] [CrossRef]
- Wispinski, N.J.; Gallivan, J.P.; Chapman, C.S. Models, Movements, and Minds: Bridging the Gap between Decision Making and Action. Ann. N. Y. Acad. Sci. 2020, 1464, 30–51. [Google Scholar] [CrossRef]
- Hadar, A.A.; Rowe, P.; Di Costa, S.; Jones, A.; Yarrow, K. Motor-Evoked Potentials Reveal a Motor-Cortical Readout of Evidence Accumulation for Sensorimotor Decisions: MEPs Reveal Evidence Accumulation in M1. Psychophysiology 2016, 53, 1721–1731. [Google Scholar] [CrossRef]
- Cos, I.; Bélanger, N.; Cisek, P. The Influence of Predicted Arm Biomechanics on Decision Making. J. Neurophysiol. 2011, 105, 3022–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Clinical Utility and Prospective of TMS–EEG. Clin. Neurophysiol. 2019, 130, 802–844. [Google Scholar] [CrossRef] [PubMed]
- Casula, E.P.; Maiella, M.; Pellicciari, M.C.; Porrazzini, F.; D’Acunto, A.; Rocchi, L.; Koch, G. Novel TMS-EEG Indexes to Investigate Interhemispheric Dynamics in Humans. Clin. Neurophysiol. 2020, 131, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, F.; Ponzo, D.; Vollero, L.; Guerra, A.; Di Pino, G.; Petrichella, S.; Benvenuto, A.; Tombini, M.; Rossini, L.; Denaro, L.; et al. Does an Intraneural Interface Short-Term Implant for Robotic Hand Control Modulate Sensorimotor Cortical Integration? An EEG-TMS Co-Registration Study on a Human Amputee. Restor. Neurol. Neurosci. 2014, 32, 281–292. [Google Scholar] [CrossRef]
- Ferreri, F.; Guerra, A.; Vollero, L.; Ponzo, D.; Maatta, S.; Mervaala, E.; Iannello, G.; Di Lazzaro, V. Age-Related Changes of Cortical Excitability and Connectivity in Healthy Humans: Non-Invasive Evaluation of Sensorimotor Network by Means of TMS-EEG. Neuroscience 2017, 357, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, F.; Vecchio, F.; Guerra, A.; Miraglia, F.; Ponzo, D.; Vollero, L.; Iannello, G.; Maatta, S.; Mervaala, E.; Rossini, P.M.; et al. Age Related Differences in Functional Synchronization of EEG Activity as Evaluated by Means of TMS-EEG Coregistrations. Neurosci. Lett. 2017, 647, 141–146. [Google Scholar] [CrossRef]
Reference | Delay Period (Duration—Informativeness of the Warning Cue) | Task-Related TMS Timings | TMS Location | Main Findings and Elements of Novelty |
---|---|---|---|---|
Leocani et al. (2000) [24] | No | Between 20 and 400 ms after go signal | vertex | RP: MEPs facilitation in selected muscles; MEPs suppression in non-selected muscles; left hemispheric dominance for movements |
Burle et al. (2002) [12] | Yes (1000 ms—uninformative) | 1/4, 1/2, 3/4, and the whole first decile of individual RT distribution | left M1 | RP: increase CSP duration in non-selected muscles; decrease CSP duration in selected muscles |
Duque & Ivry (2009) [17] | Yes (between 900 and 1200 ms—informative and uninformative) | 800 ms after warning cue + 70 ms before individual RT | right M1 | DP: stronger MEPs inhibition in (potentially) selected muscles than non-selected muscles |
Duque et al. (2010) [14] | Yes (between 900 and 1200 ms—uninformative, partially and fully informative) | 100, 800 ms after warning cue + 50, 100, 150, 200, 250 ms after go signal | right M1 | DP: MEPs inhibition in (potentially) selected muscles and non-selected muscles, but not irrelevant muscles |
Tandonnet et al. (2012) [31] | Yes (500 or 2500 ms—uninformative) | Go signal + 6 timings between 60 ms after go signal and the first decile of individual RT distribution | left M1 | RP: increase CSP duration in non-selected muscles; decrease CSP duration in selected muscles |
Duque et al. (2014) [15] | No and Yes (900 ms—uninformative) | 890 ms after warning cue + 50, 100, 150, 200, 250 ms after go signal | right M1 | RP: transient MEPs inhibition in selected muscles (inhibition in selected muscles not restricted to the delay period of choice RT tasks) |
Labruna et al. (2014) [23] | Yes (900 ms—informative) | 800 ms after warning cue | right M1 | DP: MEPs inhibition in selected muscles; MEPs inhibition in non-selected muscles is constrained by anatomical and/or functional similarity |
Greenhouse et al. (2015) [18] | No and Yes (900 ms—informative) | 800 ms after warning cue + 150 ms after go signal | right M1 | DP: MEPs inhibition in selected muscles, non-selected muscles and irrelevant muscles |
Klein et al. (2016) [21] | No and Yes (500 ms—partially and fully informative) | 450 ms after warning cue + 75, 125, 175, 225, 275 ms after go signal | right and left M1 | DP: similar inhibitory changes in left and right M1 RP: constant and milder inhibition of MEPs in left non-selected muscles; initial facilitation and later stronger inhibition of MEPs in right non-selected muscles; left hemispheric dominance for movements |
Quoilin et al. (2016) [27] | Yes (between 1000 and 1200 ms—informative) | 950 ms after warning cue | right and left M1 | DP: MEPs changes in selected muscles are sensitive to task design |
Hannah et al. (2018) [19] | Yes (500 ms—uninformative) | Warning cue + 250 ms after warning cue + go signal + 35%, 70% of mean RT | left M1 | DP and RP: MEPs inhibition pertains to a specific set of excitatory inputs, instead of being global; greater inhibition leads to faster RT |
Poole et al. (2018) [26] | No and Yes (500 ms—informative) | 200, 300, 400 ms after warning cue | right and left M1 | DP: unchanged MEPs in dominant selected muscles, MEPs inhibition in non-dominant non-selected muscles; MEPs facilitation in non-dominant selected muscles, MEPs inhibition in dominant non-selected muscles; effects are sensitive to task experience |
Quoilin et al. (2019) [28] | No | Go signal + 80, 130, 250, 300, 350 ms after go signal | right and left M1 | RP: MEPs facilitation in selected muscles; unchanged MEPs in non-selected muscles; MEPs inhibition in irrelevant muscles of the non-responding hand |
Reference | Brain Mechanism Targeted | ISI (ms) | Delay Period (Duration—Informativeness of the Warning Cue) | Task-Related TMS Timings | TMS Location | Main Findings and Elements of Novelty |
---|---|---|---|---|---|---|
Koch et al. (2006) [22] | PMd–M1 * | 8 | Yes (between 1000 and 3000 ms—uninformative) | 50, 75, 100, 125, 150, 200 ms after go signal | CP: left (right) PMd TP: right (left) M1 | RP: left PMd facilitates MEPs in left selected muscles and suppresses MEPs in left non-selected muscles; right PMd suppresses MEPs in right non-selected muscles |
Boorman et al. (2007) [11] | PMd–M1 | 8 | No | 50, 75, 100 ms after go signal | CP: left (right) PMd TP: right (left) M1 | RP: PMd facilitates MEPs |
O’Shea et al. (2007) [25] | PMd–M1* | 8 | No | 50, 75, 100, 125, 150 ms after go signal | CP: left (right) PMd TP: right (left) M1 | RP: PMd facilitates MEPs; absence of hemispheric asymmetries in PMd–M1 interactions |
Duque & Ivry (2009) [17] | SICI | 3 | Yes (between 900 and 1200 ms—informative and uninformative) | 800 ms after warning cue | right M1 | DP: SICI release in selected muscles; unchanged SICI in non-selected muscles |
Soto et al. (2010) [30] | SICI | 2.5 | Yes (between 500 and 1800 ms—uninformative) | Go signal + 125, 100, 75, 50, 25 ms before individual RT | left M1 | RP: SICI release in selected muscles; unchanged SICI in non-selected muscles |
Hinder et al. (2018) [20] | IHI | 10, 40 | Yes (500 ms—informative and uninformative) | Warning cue + go signal + 25%, 50%, 80% of individual RT | CP: left M1 TP: right M1 | RP: IHI (ISI10) release in selected muscles and non-selected muscles for uninformative warning cues; IHI (ISI10) release in selected muscles and unchanged IHI in non-selected muscles for informative warning cues. Effects are sensitive to ISIs |
Reference | Task and Features | Task-Related TMS Timings | TMS Location | Main Findings and Elements of Novelty |
---|---|---|---|---|
Klein et al. (2012) [33] | Hand selection task with ambiguous and unambiguous trials | Go signal + 0.17, 0.33, 0.50, 0.67 × 66% of individual median RT | Right M1 | Larger left MEPs in the rewardbiased, compared to rewardneutral (especially in ambiguous trials); link between reward-induced effects on MEP and movement preferences |
Klein-Flügge & Bestmann (2012) [36] | Value-decision task with choice and forced choice trials | Forced choice trials: 10%, 35%, 50%, 60%, 70%, 80% of individual mean forced choice RT (FC-RT). Choice trials: 10%, 45% FC-RT, 45% FC-RT + 0.25*RT difference between choice and forced choice trials (ΔRT), 45% FC-RT + 0.5*ΔRT, 45% FC-RT + 0.75*ΔRT, 45% FC-RT + ΔRT | Left M1 | MEPs differences between selected and non-selected muscles during the decision period in choice trials; MEPs in choice trials vary as a function of the expected value difference for alternative responses |
Cos et al. (2014) [34] | Reach-decision task for movements with different biomechanical costs | 1, 150, 200, 250, 300, 350 ms after stimuli onset | M1 | The predicted cost associated with action alternatives is reflected in MEP changes (larger MEPs for less effortful movements early in the trial) |
Mooshagian et al. (2015) [38] | Decision-making task manipulating reward probability/uncertainty and task framing | 250 ms after stimuli onset | Left M1 | MEPs linearly increase with reward probability in the find condition; varying the degree of outcome uncertainty does not result in MEPs modulation |
Derosiere et al. (2022) [35] | Tokens task with rewards and penalties | After 1, 4, 7 token jumps | Right and left M1 | Hasty motor decisions are supported by a broad motor facilitation in the selected body side together with a local suppression of motor representations surrounding the selected effector |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tecilla, M.; Guerra, A.; Rocchi, L.; Määttä, S.; Bologna, M.; Herrojo Ruiz, M.; Biundo, R.; Antonini, A.; Ferreri, F. Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sci. 2022, 12, 639. https://doi.org/10.3390/brainsci12050639
Tecilla M, Guerra A, Rocchi L, Määttä S, Bologna M, Herrojo Ruiz M, Biundo R, Antonini A, Ferreri F. Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sciences. 2022; 12(5):639. https://doi.org/10.3390/brainsci12050639
Chicago/Turabian StyleTecilla, Margherita, Andrea Guerra, Lorenzo Rocchi, Sara Määttä, Matteo Bologna, Maria Herrojo Ruiz, Roberta Biundo, Angelo Antonini, and Florinda Ferreri. 2022. "Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation" Brain Sciences 12, no. 5: 639. https://doi.org/10.3390/brainsci12050639
APA StyleTecilla, M., Guerra, A., Rocchi, L., Määttä, S., Bologna, M., Herrojo Ruiz, M., Biundo, R., Antonini, A., & Ferreri, F. (2022). Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sciences, 12(5), 639. https://doi.org/10.3390/brainsci12050639