Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Code Availability
2.2. Drug Screening, PN Cell Lines, and Primary PN Tissue Gene Expression Data
2.3. Construction of Conserved Gene Regulation Networks
2.4. Construction of Consensus Drug Clustering
2.5. Drug Combination Prediction
3. Results
3.1. Design Principle and Workflow for Prioritized Drug Candidate Lists
3.2. Preserved Network Modules Reveal Biological Consistencies across PN Models
3.3. Preserved Module-Based Drug Fingerprints and Candidate List-1
3.4. Drug-Fingerprint-Guided Combination Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korf, B.R. Plexiform neurofibromas. Am. J. Med. Genet. 1999, 89, 31–37. [Google Scholar] [CrossRef]
- Hirbe, A.C.; Gutmann, D.H. Neurofibromatosis type 1: A multidisciplinary approach to care. Lancet Neurol. 2014, 13, 834–843. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.M.; Widemann, B.C. Clinical trial design in neurofibromatosis type 1 as a model for other tumor predisposition syndromes. Neuro-Oncol. Adv. 2020, 2, i134–i140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, C.; Patel, A.J.; Liao, C.P.; Wang, Y.; Le, L.Q. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 2014, 26, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Dombi, E.; Baldwin, A.; Marcus, L.J.; Fisher, M.J.; Weiss, B.; Kim, A.; Whitcomb, P.; Martin, S.; Aschbacher-Smith, L.E.; Rizvi, T.A.; et al. Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. N. Engl. J. Med. 2016, 375, 2550–2560. [Google Scholar] [CrossRef]
- Ferrer, M.; Gosline, S.J.C.; Stathis, M.; Zhang, X.; Guo, X.; Guha, R.; Ryman, D.A.; Wallace, M.R.; Kasch-Semenza, L.; Hao, H.; et al. Pharmacological and genomic profiling of neurofibromatosis type 1 plexiform neurofibroma-derived schwann cells. Sci. Data 2018, 5, 180106. [Google Scholar] [CrossRef]
- Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov. 2017, 16, 531–543. [Google Scholar] [CrossRef]
- Maki, R.G.; D’Adamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Schuetze, S.M.; Wathen, J.K.; Lucas, D.R.; Choy, E.; Samuels, B.L.; Staddon, A.P.; Ganjoo, K.N.; von Mehren, M.; Chow, W.A.; Loeb, D.M.; et al. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer 2016, 122, 868–874. [Google Scholar] [CrossRef]
- Oldham, M.C.; Horvath, S.; Geschwind, D.H. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl. Acad. Sci. USA 2006, 103, 17973–17978. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, R.; Gustafsson, M. LiPLike: Towards gene regulatory network predictions of high certainty. Bioinformatics 2020, 36, 2522–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.; Feng, Z.C.; Zhang, Y.L.; Liu, X.F.; Ma, Y.; Zhao, Z.M.; Huang, B.; Chen, A.J.; Zhang, D.; Thorsen, F.; et al. Identification of Immune-Related Genes Contributing to the Development of Glioblastoma Using Weighted Gene Co-expression Network Analysis. Front. Immunol. 2020, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Niemira, M.; Collin, F.; Szalkowska, A.; Bielska, A.; Chwialkowska, K.; Reszec, J.; Niklinski, J.; Kwasniewski, M.; Kretowski, A. Molecular Signature of Subtypes of Non-Small-Cell Lung Cancer by Large-Scale Transcriptional Profiling: Identification of Key Modules and Genes by Weighted Gene Co-Expression Network Analysis (WGCNA). Cancers 2019, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Hu, A.X.; Zhao, J.L.; Chen, F.L. Identification of Key Gene Modules in Human Osteosarcoma by Co-Expression Analysis Weighted Gene Co-Expression Network Analysis (WGCNA). J. Cell Biochem. 2017, 118, 3953–3959. [Google Scholar] [CrossRef] [PubMed]
- Argiris, A.; Wang, C.X.; Whalen, S.G.; DiGiovanna, M.P. Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin. Cancer Res. 2004, 10, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.Y.; Lu, T.R.; Yarla, N.S.; Wu, H.Y.; Xu, B.; Ding, J.; Zhu, H. Drug Combination in Clinical Cancer Treatments. Rev. Recent Clin. Trials 2017, 12, 202–211. [Google Scholar] [CrossRef]
- Wheler, J.; Lee, J.J.; Kurzrock, R. Unique molecular landscapes in cancer: Implications for individualized, curated drug combinations. Cancer Res. 2014, 74, 7181–7184. [Google Scholar] [CrossRef] [Green Version]
- Boshuizen, J.; Peeper, D.S. Rational Cancer Treatment Combinations: An Urgent Clinical Need. Mol. Cell 2020, 78, 1002–1018. [Google Scholar] [CrossRef]
- Yesilkanal, A.E.; Johnson, G.L.; Ramos, A.F.; Rosner, M.R. New strategies for targeting kinase networks in cancer. J. Biol. Chem. 2021, 297, 101128. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Payne, P.R.O.; Li, F. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models. Methods Mol. Biol. 2021, 2194, 223–238. [Google Scholar] [CrossRef]
- Malyutina, A.; Majumder, M.M.; Wang, W.; Pessia, A.; Heckman, C.A.; Tang, J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput. Biol. 2019, 15, e1006752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016, 32, 2866–2868. [Google Scholar] [CrossRef] [PubMed]
- Ling, A.; Huang, R.S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat. Commun. 2020, 11, 5848. [Google Scholar] [CrossRef] [PubMed]
- Bruce Hoff, K.L. synapser: R language bindings for Synapse API. Available online: https://www.synapse.org (accessed on 1 November 2020).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan LD, A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Yutani, H.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; Francois, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 1 November 2020).
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Yu, G. enrichplot: Visualization of Functional Enrichment Result. Available online: https://yulab-smu.top/biomedical-knowledge-mining-book/ (accessed on 1 November 2020).
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef] [Green Version]
- Allaway, R.J.; La Rosa, S.; Verma, S.; Mangravite, L.; Guinney, J.; Blakeley, J.; Bakker, A.; Gosline, S.J.C. Engaging a community to enable disease-centric data sharing with the NF Data Portal. Sci. Data 2019, 6, 319. [Google Scholar] [CrossRef] [Green Version]
- Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Kruger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al. The ChEMBL bioactivity database: An update. Nucleic. Acids. Res. 2014, 42, D1083–D1090. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chang, L.J.; Neubauer, D.R.; Muir, D.F.; Wallace, M.R. Immortalization of human normal and NF1 neurofibroma Schwann cells. Lab. Investig. 2016, 96, 1105–1115. [Google Scholar] [CrossRef]
- Jessen, W.J.; Miller, S.J.; Jousma, E.; Wu, J.; Rizvi, T.A.; Brundage, M.E.; Eaves, D.; Widemann, B.; Kim, M.O.; Dombi, E.; et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Investig. 2013, 123, 340–347. [Google Scholar] [CrossRef]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Brown, R.; Farouk Sait, S. Gene Network-Based Drug Discovery in Plexiform Neurofibromas. Available online: https://www.synapse.org/#!Synapse:syn24317288/wiki/608247 (accessed on 16 January 2021).
- Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017, 171, 1678–1691.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Xie, X.P.; Zhang, X.; Wang, Z.; Sait, S.F.; Iyer, S.V.; Chen, Y.J.; Brown, R.; Laks, D.R.; Chipman, M.E.; et al. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell 2021, 28, 1397–1410.e4. [Google Scholar] [CrossRef] [PubMed]
- Ratner, N.; Miller, S.J. A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat. Rev. Cancer 2015, 15, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, Y.R.; Jung, M.; Lim, S.G. Gene regulatory network analysis with drug sensitivity reveals synergistic effects of combinatory chemotherapy in gastric cancer. Sci. Rep. 2020, 10, 3932. [Google Scholar] [CrossRef] [Green Version]
- Friedberg, M.; Saffran, B.; Stinson, T.J.; Nelson, W.; Bennett, C.L. Evaluation of conflict of interest in economic analyses of new drugs used in oncology. JAMA 1999, 282, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Menden, M.P.; Wang, D.; Mason, M.J.; Szalai, B.; Bulusu, K.C.; Guan, Y.; Yu, T.; Kang, J.; Jeon, M.; Wolfinger, R.; et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 2019, 10, 2674. [Google Scholar] [CrossRef] [Green Version]
- Shahbazian, D.; Sznol, J.; Kluger, H.M. Vertical pathway targeting in cancer therapy. Adv. Pharmacol. 2012, 65, 1–26. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Kang, M.H.; Kim, J.H. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. OncoTargets Ther. 2021, 14, 2019–2052. [Google Scholar] [CrossRef]
- Verstovsek, S.; Talpaz, M.; Ritchie, E.; Wadleigh, M.; Odenike, O.; Jamieson, C.; Stein, B.; Uno, T.; Mesa, R.A. A phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis. Leukemia 2017, 31, 393–402. [Google Scholar] [CrossRef]
- Derenzini, E.; Lemoine, M.; Buglio, D.; Katayama, H.; Ji, Y.; Davis, R.E.; Sen, S.; Younes, A. The JAK inhibitor AZD1480 regulates proliferation and immunity in Hodgkin lymphoma. Blood Cancer J. 2011, 1, e46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Keng, V.W.; Patmore, D.M.; Kendall, J.J.; Patel, A.V.; Jousma, E.; Jessen, W.J.; Choi, K.; Tschida, B.R.; Silverstein, K.A.; et al. Insertional Mutagenesis Identifies a STAT3/Arid1b/beta-catenin Pathway Driving Neurofibroma Initiation. Cell Rep. 2016, 14, 1979–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, J.S.; Springer, M.G.; Choi, K.; Jousma, E.; Rizvi, T.A.; Dombi, E.; Kim, M.O.; Wu, J.; Ratner, N. STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene 2019, 38, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Plimack, E.R.; Lorusso, P.M.; McCoon, P.; Tang, W.; Krebs, A.D.; Curt, G.; Eckhardt, S.G. AZD1480: A phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 2013, 18, 819–820. [Google Scholar] [CrossRef] [Green Version]
- Le, L.Q.; Liu, C.; Shipman, T.; Chen, Z.; Suter, U.; Parada, L.F. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res. 2011, 71, 4686–4695. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ren, B.; Chen, M.; Wang, Q.; Zhang, L.; Yan, G. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning. PLoS Comput. Biol. 2016, 12, e1004975. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, Y.; Zhang, L.; Chen, X. Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative Filtering with Global Effect Removal. Mol. Ther. Nucleic Acids 2018, 13, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.N.; Zhao, Y.; Wang, C.C.; Li, J.Q.; Chen, X.; Piao, X. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization. Mol. Ther. Nucleic Acids 2019, 17, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: Databases, web servers and computational models. Brief. Bioinform. 2016, 17, 696–712. [Google Scholar] [CrossRef] [Green Version]
Cluster1 | Cor. | Cluster2 | Cor. | Cluster3 | Cor. | Cluster4 | Cor. | Cluster5 | Cor. | Cluster6 | Cor. |
---|---|---|---|---|---|---|---|---|---|---|---|
Delanzomib | −0.99 | Reserpine | −0.97 | Prostaglandin E2 | −0.87 | Ramipril | −0.98 | Darunavir | −0.89 | Diphenhydramine hydrochloride | −0.97 |
Echinomycin | −0.99 | Sarafloxacin hydrochloride | −0.94 | Methylprednisolone | −0.77 | Cortivazol | −0.98 | Daporinad | −0.85 | Carisoprodol | −0.95 |
Megestrol acetate | −0.99 | Medroxyprogesterone acetate | −0.92 | Indapamide | −0.75 | Nitisinone | −0.95 | BMS−707035 | −0.84 | Naratriptan hydrochloride | −0.95 |
AS−602801 | −0.99 | Mometasone furoate | −0.91 | Eflornithine Hydrochloride | −0.74 | Nimesulide | −0.95 | AZD−1480 | −0.83 | Trazodone hydrochloride | −0.94 |
Crenolanib | −0.99 | Leflunomide | −0.89 | Moroxydine | −0.71 | Enoxolone | −0.95 | Zidovudine | −0.81 | Sulindac | −0.94 |
Sirolimus | −0.99 | Argatroban | −0.88 | Linezolid | −0.70 | Aniracetam | −0.94 | Cinacalcet hydrochloride | −0.80 | Rilmenidine | −0.94 |
Dronedarone hydrochloride | −0.98 | Bortezomib | −0.85 | Crotamiton | −0.70 | Fluocinonide | −0.93 | Doxercalciferol | −0.79 | Torasemide | −0.90 |
Clopidogrel bisulfate | −0.98 | MLN−2238 | −0.85 | Diclofenamide | −0.70 | Ethosuximide | −0.92 | Methyldopa | −0.78 | Calcitriol | −0.90 |
Ixazomib citrate | −0.98 | Ritodrine hydrochloride | −0.80 | Thiamphenicol | −0.69 | Betamethasone | −0.92 | Primidone | −0.78 | Tolvaptan | −0.88 |
Viracept | −0.97 | Budesonide | −0.80 | Varespladib | −0.69 | Diindolylmethane | −0.91 | Atazanavir sulfate | −0.78 | Fluvoxamine maleate | −0.87 |
Temsirolimus | −0.97 | Ispinesib | −0.80 | Tariquidar | −0.69 | Clobetasol propionate | −0.91 | Tipifarnib | −0.77 | Veliparib | −0.86 |
Everolimus | −0.96 | Canertinib | −0.79 | Monatepil | −0.67 | Telotristat etiprate | −0.91 | Ethisterone | −0.77 | Indomethacin | −0.83 |
Teriflunomide | −0.96 | ARRY−520 | −0.78 | Indiplon | −0.67 | Aliskiren hemifumarate | −0.90 | Formestane | −0.74 | CAL−101 | −0.83 |
Mycophenolic acid | −0.96 | Cyclobenzaprine hydrochloride | −0.77 | Nepicastat hydrochloride | −0.66 | Betamethasone valerate | −0.90 | Ritonavir | −0.73 | Sinomenine | −0.83 |
Daunorubicin | −0.95 | Mithramycin | −0.76 | Lubiprostone | −0.65 | Selumetinib | −0.90 | AT−13387AU | −0.72 | Flurbiprofen | −0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, R.M.; Farouk Sait, S.; Dunn, G.; Sullivan, A.; Bruckert, B.; Sun, D. Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas. Brain Sci. 2022, 12, 720. https://doi.org/10.3390/brainsci12060720
Brown RM, Farouk Sait S, Dunn G, Sullivan A, Bruckert B, Sun D. Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas. Brain Sciences. 2022; 12(6):720. https://doi.org/10.3390/brainsci12060720
Chicago/Turabian StyleBrown, Rebecca M., Sameer Farouk Sait, Griffin Dunn, Alanna Sullivan, Benjamin Bruckert, and Daochun Sun. 2022. "Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas" Brain Sciences 12, no. 6: 720. https://doi.org/10.3390/brainsci12060720
APA StyleBrown, R. M., Farouk Sait, S., Dunn, G., Sullivan, A., Bruckert, B., & Sun, D. (2022). Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas. Brain Sciences, 12(6), 720. https://doi.org/10.3390/brainsci12060720