The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Literature Review
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Study Quality and Risk of Bias Assessment
2.6. Data Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Meta-Analysis
3.3.1. Overall Meta-Analysis
3.3.2. rTMS
3.3.3. tDCS
3.4. Evaluation of Moderators
3.4.1. Subgroup Analysis
3.4.2. Meta-Regression Analysis
3.5. Quality and Risk of Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.A. Emotion Regulation: A Theme in Search of Definition. Monogr. Soc. Res. Child Dev. 1994, 59, 25. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J. Antecedent- and Response-Focused Emotion Regulation: Divergent Consequences for Experience, Expression, and Physiology. J. Personal. Soc. Psychol. 1998, 74, 224–237. [Google Scholar] [CrossRef]
- Braunstein, L.M.; Gross, J.J.; Ochsner, K.N. Explicit and implicit emotion regulation: A multi-level framework. Soc. Cogn. Affect. Neurosci. 2017, 12, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Gotlib, I.H.; Joormann, J. Cognition and Depression: Current Status and Future Directions. Annu. Rev. Clin. Psychol. 2010, 6, 285–312. [Google Scholar] [CrossRef]
- Rowland, J.E.; Hamilton, M.K.; Lino, B.J.; Ly, P.; Denny, K.; Hwang, E.-J.; Mitchell, P.B.; Carr, V.J.; Green, M.J. Cognitive regulation of negative affect in schizophrenia and bipolar disorder. Psychiatry Res. 2013, 208, 21–28. [Google Scholar] [CrossRef]
- Gross, J.J.; Jazaieri, H. Emotion, Emotion Regulation, and Psychopathology. Clin. Psychol. Sci. 2014, 2, 387–401. [Google Scholar] [CrossRef]
- Joormann, J.; Vanderlind, W.M. Emotion Regulation in Depression. Clin. Psychol. Sci. 2014, 2, 402–421. [Google Scholar] [CrossRef]
- Vanderlind, W.M.; Everaert, J.; Joormann, J. Positive emotion in daily life: Emotion regulation and depression. Emotion 2021. [Google Scholar] [CrossRef]
- Schäfer, J.; Naumann, E.; Holmes, E.A.; Tuschen-Caffier, B.; Samson, A. Emotion Regulation Strategies in Depressive and Anxiety Symptoms in Youth: A Meta-Analytic Review. J. Youth Adolesc. 2016, 46, 261–276. [Google Scholar] [CrossRef]
- Daros, A.R.; Williams, G.E. A Meta-analysis and Systematic Review of Emotion-Regulation Strategies in Borderline Personality Disorder. Harv. Rev. Psychiatry 2019, 27, 217–232. [Google Scholar] [CrossRef]
- Bartolomeo, L.A.; Culbreth, A.J.; Ossenfort, K.L.; Strauss, G.P. Neurophysiological evidence for emotion regulation impairment in schizophrenia: The role of visual attention and cognitive effort. J. Abnorm. Psychol. 2020, 129, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Reyes, N.M.; Pickard, K.; Reaven, J. Emotion regulation: A treatment target for autism spectrum disorder. Bull. Menn. Clin. 2019, 83, 205–234. [Google Scholar] [CrossRef] [PubMed]
- Afif, I.Y.; Manik, A.R.; Munthe, K.; Maula, M.I.; Ammarullah, M.I.; Jamari, J.; Winarni, T.I. Physiological Effect of Deep Pressure in Reducing Anxiety of Children with ASD during Traveling: A Public Transportation Setting. Bioengineering 2022, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Afif, I.Y.; Farkhan, M.; Kurdi, O.; Maula, M.I.; Ammarullah, M.I.; Setiyana, B.; Jamari, J.; Winarni, T.I. Effect of Short-Term Deep-Pressure Portable Seat on Behavioral and Biological Stress in Children with Autism Spectrum Disorders: A Pilot Study. Bioengineering 2022, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.; Rekshan, W.; Williams, L.M.; Cooper, N.; Gross, J.J. Effects of antidepressant medication on emotion regulation in depressed patients: An iSPOT-D report. J. Affect. Disord. 2014, 159, 127–132. [Google Scholar] [CrossRef]
- Rubin-Falcone, H.; Weber, J.; Kishon, R.; Ochsner, K.; Delaparte, L.; Doré, B.; Zanderigo, F.; Oquendo, M.A.; Mann, J.J.; Miller, J.M. Longitudinal effects of cognitive behavioral therapy for depression on the neural correlates of emotion regulation. Psychiatry Res. Neuroimaging 2017, 271, 82–90. [Google Scholar] [CrossRef]
- Renna, M.E.; Quintero, J.M.; Fresco, D.M.; Mennin, D.S. Emotion Regulation Therapy: A Mechanism-Targeted Treatment for Disorders of Distress. Front. Psychol. 2017, 8, 98. [Google Scholar] [CrossRef]
- Gupta, A.; Kashyap, A.; Sidana, A. Dialectical Behavior Therapy in Emotion Dysregulation—Report of Two Cases. Indian J. Psychol. Med. 2019, 41, 578–581. [Google Scholar] [CrossRef]
- Cook, S.C.; Schwartz, A.C.; Kaslow, N.J. Evidence-Based Psychotherapy: Advantages and Challenges. Neurotherapeutics 2017, 14, 537–545. [Google Scholar] [CrossRef]
- Nitsche, M.N.; Liebetanz, D.; Antal, A.; Lang, N.; Tergau, F.; Paulus, W. Modulation of cortical excitability by weak direct current stimulation—Technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 2003, 56, 255–276. [Google Scholar]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed]
- Kan, R.L.D.; Zhang, B.B.B.; Zhang, J.J.Q.; Kranz, G.S. Non-invasive brain stimulation for posttraumatic stress disorder: A systematic review and meta-analysis. Transl. Psychiatry 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Osoegawa, C.; Gomes, J.S.; Grigolon, R.; Brietzke, E.; Gadelha, A.; Lacerda, A.L.; Dias, A.; Cordeiro, Q.; Laranjeira, R.; de Jesus, D.; et al. Non-invasive brain stimulation for negative symptoms in schizophrenia: An updated systematic review and meta-analysis. Schizophr. Res. 2018, 197, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Senço, N.M.; Huang, Y.; D’Urso, G.; Parra, L.C.; Bikson, M.; Mantovani, A.; Shavitt, R.G.; Hoexter, M.Q.; Miguel, E.C.; Brunoni, A.R. Transcranial direct current stimulation in obsessive–compulsive disorder: Emerging clinical evidence and considerations for optimal montage of electrodes. Expert Rev. Med. Devices 2015, 12, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Allida, S.; Cox, K.L.; Hsieh, C.-F.; Lang, H.; House, A.; Hackett, M.L. Pharmacological, psychological, and non-invasive brain stimulation interventions for treating depression after stroke. Cochrane Database Syst. Rev. 2020, 1, CD003437. [Google Scholar] [CrossRef]
- Yang, C.-C.; Mauer, L.; Völlm, B.; Khalifa, N. The Effects of Non-invasive Brain Stimulation on Impulsivity in People with Mental Disorders: A Systematic Review and Explanatory Meta-Analysis. Neuropsychol. Rev. 2020, 30, 499–520. [Google Scholar] [CrossRef]
- Herringa, R.J. Trauma, PTSD, and the Developing Brain. Curr. Psychiatry Rep. 2017, 19, 69. [Google Scholar] [CrossRef]
- Nakao, T.; Okada, K.; Kanba, S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 2014, 68, 587–605. [Google Scholar] [CrossRef]
- Lueken, U.; Hahn, T. Functional neuroimaging of psychotherapeutic processes in anxiety and depression. Curr. Opin. Psychiatry 2016, 29, 25–31. [Google Scholar] [CrossRef]
- Müller, V.I.; Cieslik, E.C.; Serbanescu, I.; Laird, A.; Fox, P.T.; Eickhoff, S.B. Altered Brain Activity in Unipolar Depression Revisited. JAMA Psychiatry 2017, 74, 47–55. [Google Scholar] [CrossRef]
- Demirtas-Tatlidede, A.; Vahabzadeh-Hagh, A.M.; Pascual-Leone, A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 2012, 64, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Luber, B.; Lisanby, S.H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage 2013, 85, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Shanmugalingam, A.; McIntyre, A.; Burhan, A. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 227. [Google Scholar] [CrossRef]
- Begemann, M.J.; Brand, B.A.; Ćurčić-Blake, B.; Aleman, A.; Sommer, I.E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef] [PubMed]
- De Boer, N.S.; Schluter, R.S.; Daams, J.G.; van der Werf, Y.D.; Goudriaan, A.E.; van Holst, R.J. The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 125, 122–147. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Schwippel, T.; Wolz, I.; Svaldi, J. Meta-analysis of the effects of transcranial direct current stimulation on inhibitory control. Brain Stimul. 2020, 13, 1159–1167. [Google Scholar] [CrossRef]
- Smits, F.M.; Schutter, D.J.L.G.; Van Honk, J.; Geuze, E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc. Cogn. Affect. Neurosci. 2020, 15, 23–51. [Google Scholar] [CrossRef]
- O’Driscoll, C.; Laing, J.; Mason, O. Cognitive emotion regulation strategies, alexithymia and dissociation in schizophrenia, a review and meta-analysis. Clin. Psychol. Rev. 2014, 34, 482–495. [Google Scholar] [CrossRef]
- Ludwig, L.; Werner, D.; Lincoln, T.M. The relevance of cognitive emotion regulation to psychotic symptoms—A systematic review and meta-analysis. Clin. Psychol. Rev. 2019, 72, 101746. [Google Scholar] [CrossRef]
- Molavi, P.; Aziziaram, S.; Basharpoor, S.; Atadokht, A.; Nitsche, M.A.; Salehinejad, M.A. Repeated transcranial direct current stimulation of dorsolateral-prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: A randomized, sham-controlled, parallel-group study. J. Affect. Disord. 2020, 274, 93–102. [Google Scholar] [CrossRef]
- Kelley, N.J.; Hortensius, R.; Harmon-Jones, E. When Anger Leads to Rumination. Psychol. Sci. 2013, 24, 475–481. [Google Scholar] [CrossRef] [PubMed]
- De Witte, S.; Baeken, C.; Pulópulos, M.M.; Josephy, H.; Schiettecatte, J.; Anckaert, E.; De Raedt, R.; Vanderhasselt, M.-A. The effect of neurostimulation applied to the left dorsolateral prefrontal cortex on post-stress adaptation as a function of depressive brooding. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 96, 109687. [Google Scholar] [CrossRef] [PubMed]
- Douw, L.; Quaak, M.; Fitzsimmons, S.; De Wit, S.J.; van der Werf, Y.; Heuvel, O.A.V.D.; Vriend, C. Static and dynamic network properties of the repetitive transcranial magnetic stimulation target predict changes in emotion regulation in obsessive-compulsive disorder. Brain Stimul. 2019, 13, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Schutter, D.J.L.G.; van Honk, J. The Cerebellum in Emotion Regulation: A Repetitive Transcranial Magnetic Stimulation Study. Cerebellum 2008, 8, 28–34. [Google Scholar] [CrossRef]
- Sanchez-Lopez, A.; De Raedt, R.; Puttevils, L.; Koster, E.H.; Baeken, C.; Vanderhasselt, M.-A. Combined effects of tDCS over the left DLPFC and gaze-contingent training on attention mechanisms of emotion regulation in low-resilient individuals. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 108, 110177. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Thompson, R.J. Selection and implementation of emotion regulation strategies in major depressive disorder: An integrative review. Clin. Psychol. Rev. 2017, 57, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mo, L.; Bi, R.; He, Z.; Chen, Y.; Xu, F.; Xie, H.; Zhang, D. The VLPFC versus the DLPFC in Downregulating Social Pain Using Reappraisal and Distraction Strategies. J. Neurosci. 2021, 41, 1331–1339. [Google Scholar] [CrossRef]
- Cao, D.; Li, Y.; Tang, Y. Functional specificity of the left ventrolateral prefrontal cortex in positive reappraisal: A single-pulse transcranial magnetic stimulation study. Cogn. Affect. Behav. Neurosci. 2021, 21, 793–804. [Google Scholar] [CrossRef]
- Powers, J.P.; Davis, S.W.; Neacsiu, A.D.; Beynel, L.; Appelbaum, L.G.; LaBar, K.S. Examining the Role of Lateral Parietal Cortex in Emotional Distancing Using TMS. Cogn. Affect. Behav. Neurosci. 2020, 20, 1090–1102. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Zhao, J.; Elliott, R.; Zhang, D. Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychol. Med. 2019, 50, 2768–2779. [Google Scholar] [CrossRef]
- Jansen, J.M.; van den Heuvel, O.A.; van der Werf, Y.D.; De Wit, S.J.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E. The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Emotion Processing, Reappraisal, and Craving in Alcohol Use Disorder Patients and Healthy Controls: A Functional Magnetic Resonance Imaging Study. Front. Psychiatry 2019, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- De Wit, S.J.; van der Werf, Y.D.; Mataix-Cols, D.; Trujillo, J.P.; van Oppen, P.; Veltman, D.J.; Heuvel, O.A.V.D. Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder. Psychol. Med. 2015, 45, 3059–3073. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Potenza, M.N.; Zhou, N.; Kober, H.; Shi, X.-H.; Yip, S.W.; Xu, J.-H.; Zhu, L.; Wang, R.; Liu, G.-Q.; et al. A role for the right dorsolateral prefrontal cortex in enhancing regulation of both craving and negative emotions in internet gaming disorder: A randomized trial. Eur. Neuropsychopharmacol. 2020, 36, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, W.O.; Chrysikou, E.G. Effects of unilateral tDCS over left prefrontal cortex on emotion regulation in depression: Evidence from concurrent functional magnetic resonance imaging. Cogn. Affect. Behav. Neurosci. 2021, 21, 14–34. [Google Scholar] [CrossRef]
- Marques, L.M.; Morello, L.; Boggio, P.S. Ventrolateral but not Dorsolateral Prefrontal Cortex tDCS effectively impact emotion reappraisal—Effects on Emotional Experience and Interbeat Interval. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Moeyaert, M.; Ugille, M.; Beretvas, S.N.; Ferron, J.; Bunuan, R.; Noortgate, W.V.D. Methods for dealing with multiple outcomes in meta-analysis:a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int. J. Soc. Res. Methodol. 2016, 20, 559–572. [Google Scholar] [CrossRef]
- Holgado, D.; Vadillo, M.; Sanabria, D. The effects of transcranial direct current stimulation on objective and subjective indexes of exercise performance: A systematic review and meta-analysis. Brain Stimul. 2018, 12, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Domes, G.; Balschat, J.; Thome, J.; Höppner, J. Effects of prefrontal rTMS on autonomic reactions to affective pictures. J. Neural Transm. 2015, 124, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Zimmermann, T. Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacol. Ther. 2012, 133, 98–107. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Van Houwelingen, H.C.; Arends, L.R.; Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 2002, 21, 589–624. [Google Scholar] [CrossRef]
- Li, S.; Xie, H.; Zheng, Z.; Chen, W.; Xu, F.; Hu, X.; Zhang, D. The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. Hum. Brain Mapp. 2022, 43, 2898–2910. [Google Scholar] [CrossRef]
- He, Z.; Zhao, J.; Shen, J.; Muhlert, N.; Elliott, R.; Zhang, D. The right VLPFC and downregulation of social pain: A TMS study. Hum. Brain Mapp. 2020, 41, 1362–1371. [Google Scholar] [CrossRef]
- He, Z.; Lin, Y.; Xia, L.; Liu, Z.; Zhang, D.; Elliott, R. Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Soc. Cogn. Affect. Neurosci. 2018, 13, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.; Exner, C. Does Transcranial Direct Current Stimulation (tDCS) Improve Disgust Regulation Through Imagery Rescripting? Front. Hum. Neurosci. 2019, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Feeser, M.; Prehn, K.; Kazzer, P.; Mungee, A.; Bajbouj, M. Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimul. 2014, 7, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.J.F.; Van Bockstaele, B.; Marinovic, W.; Howell, J.A.; Boyes, M.E.; Notebaert, L. The effects of left DLPFC tDCS on emotion regulation, biased attention, and emotional reactivity to negative content. Cogn. Affect. Behav. Neurosci. 2020, 20, 1323–1335. [Google Scholar] [CrossRef]
- Clarke, P.J.F.; Haridas, S.M.P.; Van Bockstaele, B.; Chen, N.T.M.; Salemink, E.; Notebaert, L. Frontal tDCS and Emotional Reactivity to Negative Content: Examining the Roles of Biased Interpretation and Emotion Regulation. Cogn. Ther. Res. 2021, 45, 19–30. [Google Scholar] [CrossRef]
- Chrysikou, E.G.; Wing, E.K.; van Dam, W.O. Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Depression Modulates Cortical Excitability in Emotion Regulation Regions as Measured by Concurrent Functional Magnetic Resonance Imaging: An Exploratory Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 7, 85–94. [Google Scholar] [CrossRef]
- Doerig, N.; Seinsche, R.J.; Moisa, M.; Seifritz, E.; Ruff, C.C.; Kleim, B. Enhancing reappraisal of negative emotional memories with transcranial direct current stimulation. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Kohn, N.; Eickhoff, S.B.; Scheller, M.; Laird, A.; Fox, P.; Habel, U. Neural network of cognitive emotion regulation—An ALE meta-analysis and MACM analysis. NeuroImage 2014, 87, 345–355. [Google Scholar] [CrossRef]
- Koush, Y.; Meskaldji, D.-E.; Pichon, S.; Rey, G.; Rieger, S.W.; Linden, D.E.; Van De Ville, D.; Vuilleumier, P.; Scharnowski, F. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback. Cereb. Cortex 2015, 27, 1193–1202. [Google Scholar] [CrossRef]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Fertonani, A.; Miniussi, C. Transcranial Electrical Stimulation. Neurosci. 2016, 23, 109–123. [Google Scholar] [CrossRef]
- Peña-Gómez, C.; Vidal-Piñeiro, D.; Clemente, I.C.; Leone, P.; Bartrés-Faz, D. Down-Regulation of Negative Emotional Processing by Transcranial Direct Current Stimulation: Effects of Personality Characteristics. PLoS ONE 2011, 6, e22812. [Google Scholar] [CrossRef] [PubMed]
- Siegle, G.J.; Thompson, W.; Carter, C.S.; Steinhauer, S.; Thase, M.E. Increased Amygdala and Decreased Dorsolateral Prefrontal BOLD Responses in Unipolar Depression: Related and Independent Features. Biol. Psychiatry 2007, 61, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Baeken, C.; Vanderhasselt, M.; Remue, J.; Rossi, V.; Schiettecatte, J.; Anckaert, E.; De Raedt, R. One left dorsolateral prefrontal cortical HF-rTMS session attenuates HPA-system sensitivity to critical feedback in healthy females. Neuropsychologia 2014, 57, 112–121. [Google Scholar] [CrossRef]
- Pulopulos, M.M.; Schmausser, M.; De Smet, S.; Vanderhasselt, M.-A.; Baliyan, S.; Venero, C.; Baeken, C.; De Raedt, R. The effect of HF-rTMS over the left DLPFC on stress regulation as measured by cortisol and heart rate variability. Horm. Behav. 2020, 124, 104803. [Google Scholar] [CrossRef] [PubMed]
- De Raedt, R.; Leyman, L.; Baeken, C.; Van Schuerbeek, P.; Luypaert, R.; Vanderhasselt, M.-A.; Dannlowski, U. Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: An event-related fMRI study. Biol. Psychol. 2010, 85, 487–495. [Google Scholar] [CrossRef]
- Guse, B.; Falkai, P.; Wobrock, T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: A systematic review. J. Neural Transm. 2009, 117, 105–122. [Google Scholar] [CrossRef]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar] [CrossRef]
- Gyurak, A.; Gross, J.J.; Etkin, A. Explicit and implicit emotion regulation: A dual-process framework. Cogn. Emot. 2011, 25, 400–412. [Google Scholar] [CrossRef]
- Cocchi, L.; Zalesky, A.; Fornito, A.; Mattingley, J. Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn. Sci. 2013, 17, 493–501. [Google Scholar] [CrossRef]
- Morawetz, C.; Bode, S.; Derntl, B.; Heekeren, H. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2017, 72, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation. Neuron 2008, 59, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.C.; Vakhtin, A.; Clark, V.P.; Abbott, C.C.; Quinn, D.K. Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sci. 2022, 12, 112. [Google Scholar] [CrossRef] [PubMed]
Reference | Design, Sample Type, Size n(Active)|n(Control) | Age (M ± SD or Range), Sex Ratio (M/F) | Coil Position (Localization Method) | Control Condition | Stimulation Frequency, Quantity | Protocol | Experiment Stimuli | Task (Emotion Regulation Strategy) | Outcome Measure | |
---|---|---|---|---|---|---|---|---|---|---|
HF- rTMS | Zhao et al. 2021 [47] a | Between-subject, Healthy, 30|30 | 19.8 ± 1.6, (15/15) 1 | Right VLPFC (F8) | Control site stimulation (vertex, Cz) | 10 Hz, 624 pulses | Offline | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
Zhao et al. 2021 [47] b | Between-subject, Healthy, 30|30 | 19.2 ± 1.4, (15/15) 1 | Right DLPFC (F4) | Control site stimulation (vertex, Cz) | 10 Hz, 624 pulses | Offline | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) | |
Zhao et al. 2021 [47] c | Between-subject, Healthy, 30|30 | 19.8 ± 1.6, (15/15) 1 | Right VLPFC (F8) | Control site stimulation (vertex, Cz) | 10 Hz, 624 pulses | Offline | Social exclusion pictures | ERT (Distraction) | Perceived negative emotion in picture (Likert: 1–9) | |
Zhao et al. 2021 [47] d | Between-subject, Healthy, 30|30 | 19.2 ± 1.4, (15/15) 1 | Right DLPFC (F4) | Control site stimulation (vertex, Cz) | 10 Hz, 624 pulses | Offline | Social exclusion pictures | ERT (Distraction) | Perceived negative emotion in picture (Likert: 1–9) | |
He et al. 2020 [70] | Between-subject, Healthy, 30|29 | 21.3 ± 1.8, (17/13) 1 | Right VLPFC (F8) | Coil tilted at 90° | 10 Hz, 1170 pulses | Offline | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) | |
De Wit et al. 2015 [52] a | Between-subject, OCD, 19|20 | 38.4 ± 10.0, (21/22) 2 | Left DLPFC (Individual) | Control site stimulation (vertex) | 10 Hz, 3000 pulses | Offline | Fearful IAPS pictures | ERT (Reappraisal) | Distress (Likert: 1–100) | |
Jansen et al. 2019 [51] a | Between-subject, AUD, 19|20 | 41.64 ± 8.63, (26/13) 2 | Right DLPFC (Individual) | Coil tilted at 90° | 10 Hz, 3000 pulses | Offline | Negative IAPS images | ERT (Reappraisal) | Negative emotional experience (VAS: 0–100) | |
Jansen et al. 2019 [51] b | Between-subject, Healthy, 19|17 | 43.75 ± 10.90, (20/16) 2 | Right DLPFC (Individual) | Coil tilted at 90° | 10 Hz, 3000 pulses | Offline | Negative IAPS images | ERT (Reappraisal) | Negative emotional experience (VAS: 0–100) | |
single-pulse TMS | Cao et al. 2021 [48] a | Within-subject, Healthy, 15|~ | 23.53 ± 4.44, (9/6) 1 | Left VLPFC (between AF7 and F7) | Control site stimulation (vertex, Cz) | single pulse, at 300 ms after picture stimuli onset | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) |
Cao et al. 2021 [48] b | Within-subject, Healthy, 15|~ | 23.53 ± 4.44, (9/6) 1 | Left VLPFC (between AF7 and F7) | Control site stimulation (vertex, Cz) | single pulse, at 300 ms after picture stimuli onset | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) | |
Cao et al. 2021 [48] c | Within-subject, Healthy, 15|~ | 23.53 ± 4.44, (9/6) 1 | Left VLPFC (between AF7 and F7) | Control site stimulation (vertex, Cz) | double pulse, at 300\3300 ms after picture stimuli onset | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) | |
LF- rTMS | De Wit et al. 2015 [52] b | Between-subject, Healthy, 19|18 | 39.6 ± 11.4, (18/20) 2 | Left DLPFC (Individual) | Control site stimulation (vertex) | 1 Hz, 3000 pulses | Offline | Fearful IAPS pictures | ERT (Reappraisal) | Distress (Likert: 1–100) |
cTBS | Powers et al. 2020 [49] a | Within-subject, Healthy, 30|~ | 18–39, ~ 2 | TPJ (Individual) | Sham coil | bursts of 3 pulses at 50 Hz delivered at a rate of 5 Hz, 300 pulses | Offline | Negative IAPS images | ODT (Objective distancing) | Negative emotional experience (Likert: 1–7) |
Powers et al. 2020 [49] b | Within-subject, Healthy,30|~ | 18–39, ~ 2 | TPJ (Individual) | Sham coil | bursts of 3 pulses at 50 Hz delivered at a rate of 5 Hz, 300 pulses | Offline | Negative IAPS images | ODT (Distraction) | Negative emotional experience (Likert: 1–7) |
Reference | Design, Sample Type, Size n(Active)|n(Control) | Age (M ± SD or Range), Sex Ratio (M/F) | Electrode Positions (Localization Method) | Control Condition | Current Intensity, Size, Quantity | Protocol | Experiment Stimuli | Task (Emotion Regulation Strategy) | Outcome Measure |
---|---|---|---|---|---|---|---|---|---|
Wu et al. 2020 [53] | Within-subject, IGD, 33|~ | 21.21 ± 2.27, ~ 1 | Right DLPFC (anode, F4; cathode, trapezius muscle) | Applied for only 60 s | 1.5 mA, 5 × 7 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
Dam et al. 2021 [54] a | Between-subject, MDD, 11|8 | 24.11 ± 5.53, (2/17) 2 | Left DLPFC (anode, F3; cathode, contralateral mastoid) | Applied for only 180 s | 1.5 mA, 5 × 5 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–4) |
Dam et al. 2021 [54] b | Between-subject, Healthy, 11|7 | 23.94 ± 4.57, (6/12) 2 | Left DLPFC (anode, F3; cathode, contralateral mastoid) | Applied for only 180 s | 1.5 mA, 5 × 5 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–4) |
He et al. 2019 [50] | Between-subject, Healthy, 95|95 | 20.8 ± 2.3, (48/47) 1 | Right VLPFC (anode, F6; cathode, FP1) | Applied for only 30 s | 2.5 mA, 5 × 5 cm2, 34 min | Online | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
He et al. 2018 [71] a | Between-subject, Healthy, 23|21 | 20.87 ± 1.4, (10/13) 1 | Right VLPFC (anode, F6; cathode, FP1) | Applied for only 30 s | 2.5 mA, 5 × 5 cm2, 24 min | Online | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
He et al. 2018 [71] b | Between-subject, Healthy, 20|20 | 21.5 ± 1.4, (9/11) 1 | Right VLPFC (anode, F6; cathode, FP1) | Applied for only 30 s | 2.5 mA, 5 × 5 cm2, 24 min | Online | Social exclusion pictures | ERT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
Feeser et al. 2014 [73] | Between-subject, Healthy, 23|25 | 29.8 ± 6.2, (23/25) 2 | Right DLPFC (anode, F4; cathode, left supraorbital) | Applied for only 30 s | 1.5 mA, 35 cm2, 20 min | Online | Negative IAPS images | CRT (Reappraisal) | Perceived negative emotion in picture (Likert: 1–9) |
Clarke et al. 2021 [75] | Between-subject, Healthy, 37|36 | 23.17 ± 6.77, (25/54) 2 | Left DLPFC (anode, F3; cathode, left superior trapezius) | Applied for only 60 s | 2.0 mA, 4 × 6 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Negative emotional experience (Likert: 0–12) |
Marques et al. 2018 [55] a | Between-subject, Healthy, 30|30 | 23.1 ± 0.6, ~ 1 | Left DLPFC (anode, F3; cathode, F4) | Applied for only 30 s | 1.5 mA, 16 cm2, 20 min | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) |
Marques et al. 2018 [55] b | Between-subject, Healthy, 30|30 | 22.0 ± 0.6, ~ 1 | Right DLPFC (anode, F4; cathode, F3) | Applied for only 30 s | 1.5 mA, 16 cm2, 20 min | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) |
Marques et al. 2018 [55] c | Between-subject, Healthy, 29|30 | 20.62 ± 0.6, ~ 1 | Left VLPFC (anode, F7; cathode, F8) | Applied for only 30 s | 1.5 mA, 16 cm2, 20 min | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) |
Marques et al. 2018 [55] d | Between-subject, Healthy, 30|30 | 21.1 ± 0.59, ~ 1 | Right VLPFC (anode, F8; cathode, F7) | Applied for only 30 s | 1.5 mA, 16 cm2, 20 min | Online | Negative IAPS images | CRT (Reappraisal) | Negative emotional experience (Likert: 1–9) |
Chrysikou et al. 2019 [76] a | Between-subject, MDD, 10|10 | 24.20 ± 6.31, (6/14) 2 | Left DLPFC (anode, F3; cathode, F4) | Applied for only 120 s | 1.5 mA, 5 × 5 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Perceived emotion in picture (Likert: 0–8) |
Chrysikou et al. 2019 [76] b | Between-subject, Healthy, 10|10 | 24 ± 4.38, (6/14) 2 | Left DLPFC (anode, F3; cathode, F4) | Applied for only 120 s | 1.5 mA, 5 × 5 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Perceived emotion in picture (Likert: 0–8) |
Fink et al. 2019 [72] a | Within-subject, Healthy, 29|~ | 22.55 ± 5.44, (21/8) 2 | VC (anode, Oz; cathode, Cz) | Applied for only 40 s | 1mA, 25 cm2, 20 min | Online | Disgust-inducing pictures | ERT (Reappraisal) | Distress (Likert: 1–7) |
Fink et al. 2019 [72] b | Within-subject, Healthy, 29|~ | 22.38 ± 3.43, (21/8) 2 | Left DLPFC (anode, F3; cathode, Fp2) | Applied for only 40 s | 1 mA, 25 cm2, 20 min | Online | Disgust-inducing pictures | ERT (Reappraisal) | Distress (Likert: 1–7) |
Clarke et al. 2020 [74] | Between-subject, Healthy, 59|57 | 21.95 ± 5.88, (18/41) 1 | Left DLPFC (anode, F3; cathode, left superior trapezius) | Applied for only 60 s | 2.0 mA, 4 × 6 cm2, 20 min | Online | Negative IAPS images | ERT (Reappraisal) | Negative emotional experience (Likert: 0–12) |
Doerig et al. 2021 [77] | Between-subject, Healthy, 25|25 | 24.36 ± 1.47, (16/9) 1 | Right DLPFC (anode, F4; cathode, Cz) | Applied for only 15 s | 1.5 mA, 5 × 7 cm2, 30 min | Online | Negative emotional memory | RT (Reappraisal) | Negative emotional experience (Likert: 1–10) |
Variable | k | Hedges’ g (95% CI) a | z | p b | Q | p c |
---|---|---|---|---|---|---|
Target electrode placement *** | 49.79 | 0.000 | ||||
lDLPFC | 6 | −0.11 (−0.19 to 0.42) | 0.71 | 0.479 | ||
rVLPFC * | 4 | −0.45 (−0.81 to −0.08) | −2.41 | 0.016 | ||
rDLPFC ** | 3 | −0.69 (−1.11 to −0.27) | −3.24 | 0.001 | ||
lVLPFC *** | 1 | −2.42 (−3.21 to −1.69) | −6.31 | 0.000 | ||
VC | 1 | −0.02 (−0.67 to 0.64) | −0.05 | 0.959 | ||
Return electrode placement * | 11.84 | 0.019 | ||||
Supraorbital * | 5 | −0.60 (−1.08 to −0.12) | −2.43 | 0.015 | ||
Opposite brain area (bilateral tDCS) | 5 | −0.55 (−1.29 to 0.19) | −1.45 | 0.147 | ||
Extracephalic • | 3 | 0.55 (−0.07 to 1.16) | 1.75 | 0.080 | ||
Vertex • | 2 | −0.57 (−1.19 to 0.06) | −1.78 | 0.074 |
Variable | β | SE | LL | UL | z | p a | Q | p b |
---|---|---|---|---|---|---|---|---|
Current intensity | 0.00 | 0.991 | ||||||
Intercept | −0.26 | 0.93 | −2.08 | 1.56 | −0.28 | 0.783 | ||
Slope | 0.00 | 0.51 | −0.99 | 1.00 | 0.01 | 0.991 | ||
Target electrode size | 1.36 | 0.243 | ||||||
Intercept | 0.94 | 1.04 | −1.10 | 2.97 | 0.90 | 0.367 | ||
Slope | −0.05 | 0.04 | −0.13 | 0.03 | −1.16 | 0.243 | ||
Duration of intervention | 0.57 | 0.451 | ||||||
Intercept | 0.56 | 1.10 | −1.59 | 2.72 | 0.51 | 0.609 | ||
Slope | −0.04 | 0.04 | −0.13 | 0.06 | −0.75 | 0.451 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, X.; Liu, X.; Liu, S.; Zhang, M.; Liu, Y.; Zhu, C.; Wang, K. The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis. Brain Sci. 2022, 12, 786. https://doi.org/10.3390/brainsci12060786
Zhang Q, Li X, Liu X, Liu S, Zhang M, Liu Y, Zhu C, Wang K. The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis. Brain Sciences. 2022; 12(6):786. https://doi.org/10.3390/brainsci12060786
Chicago/Turabian StyleZhang, Qingqing, Xiaoming Li, Xinying Liu, Shanshan Liu, Mengzhu Zhang, Yueling Liu, Chunyan Zhu, and Kai Wang. 2022. "The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis" Brain Sciences 12, no. 6: 786. https://doi.org/10.3390/brainsci12060786
APA StyleZhang, Q., Li, X., Liu, X., Liu, S., Zhang, M., Liu, Y., Zhu, C., & Wang, K. (2022). The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis. Brain Sciences, 12(6), 786. https://doi.org/10.3390/brainsci12060786