Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; A Mensah, G.; Connor, M.; A Bennett, D.; E Moran, A.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef]
- Belda-Lois, J.M.; Horno, S.M.-D.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos-Murguialday, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirstea, C.M. Gait Rehabilitation after Stroke: Should We Re-Evaluate Our Practice? Stroke 2020, 51, 2892–2894. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E.; Zhou, P. Post-stroke Hemiplegic Gait: New Perspective and Insights. Front. Physiol. 2018, 9, 1021. [Google Scholar] [CrossRef] [Green Version]
- Dobkin, B.H. Clinical practice. Rehabilitation after stroke. N. Engl. J. Med. 2005, 352, 1677–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.A.; Coelho, D.B.; Martinelli, A.R.; Teixeira, L.A. Right cerebral hemisphere specialization for quiet and perturbed body balance control: Evidence from unilateral stroke. Hum. Mov. Sci. 2018, 57, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.G.; Lopes, J.A.F.; Brito, C.M.; Alfieri, F.M.; Battistella, L.R. Relationships of Balance, Gait Performance, and Functional Outcome in Chronic Stroke Patients: A Comparison of Left and Right Lesions. Biomed Res. Int. 2015, 2015, 716042. [Google Scholar] [CrossRef]
- Ioffe, M.E.; Chernikova, L.; Umarova, R.; Katsuba, N.A.; Kulikov, M.A. Learning postural tasks in hemiparetic patients with lesions of left versus right hemisphere. Exp. Brain Res. 2010, 201, 753–761. [Google Scholar] [CrossRef]
- Schaefer, S.Y.; Mutha, P.K.; Haaland, K.Y.; Sainburg, R.L. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb. Cortex 2012, 22, 1407–1419. [Google Scholar] [CrossRef]
- Mani, S.; Mutha, P.K.; Przybyla, A.; Haaland, K.Y.; Good, D.C.; Sainburg, R.L. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain 2013, 136, 1288–1303. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.Y.; Haaland, K.Y.; Sainburg, R.L. Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res. 2009, 1298, 78–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, D.B.; Fernandes, C.A.; Martinelli, A.R.; Teixeira, L.A. Right in Comparison to Left Cerebral Hemisphere Damage by Stroke Induces Poorer Muscular Responses to Stance Perturbation Regardless of Visual Information. J. Stroke Cerebrovasc. Dis. 2019, 28, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Chu, H.; Kang, G.-H.; Sung, K.-K.; Kang, D.G.; Lee, H.S.; Lee, S. Difference in gait recovery rate of hemiparetic stroke patients according to paralyzed side: A cross-sectional study based on a retrospective chart review. Medicine 2019, 98, e18023. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Chu, H.; Kang, G.-H.; Kim, K.-H.; Lee, Y.-U.; Lim, H.-S.; Sung, K.-K.; Lee, S. Comparison of gait recovery patterns according to the paralyzed side in stroke patients: An observational study based on a retrospective chart review (STROBE compliant). Medicine 2021, 100, e25212. [Google Scholar] [CrossRef] [PubMed]
- Bonuzzi, G.M.G.; de Freitas, T.B.; Palma, G.C.D.S.; Soares, M.A.A.; Lange, B.; Pompeu, J.E.; Torriani-Pasin, C. Effects of the brain-damaged side after stroke on the learning of a balance task in a non-immersive virtual reality environment. Physiother. Theory Pr. 2022, 38, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Jamal, K.; Cordillet, S.; Leplaideur, S.; Rauscent, H.; Cogné, M.; Bonan, I. Reliability and minimal detectable change of body-weight distribution and body sway between right and left brain-damaged patients at a chronic stage. Disabil. Rehabil. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PM R 2014, 6, 635–642. [Google Scholar] [CrossRef]
- Guzik, A.; Drużbicki, M. Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. J. Biomech. 2020, 99, 109575. [Google Scholar] [CrossRef]
- Wang, Y.; Mukaino, M.; Ohtsuka, K.; Otaka, Y.; Tanikawa, H.; Matsuda, F.; Tsuchiyama, K.; Yamada, J.; Saitoh, E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int. J. Rehabil. Res. 2020, 43, 69–75. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bigoni, M.; Cimolin, V.; Vismara, L.; Tarantino, A.; Clerici, D.; Baudo, S.; Galli, M.; Mauro, A. Relationship between gait profile score and clinical assessments of gait in post-stroke patients. J. Rehabil. Med. 2021, 53, jrm00192. [Google Scholar] [CrossRef]
- Bamford, J.; Sandercock, P.; Dennis, M.; Warlow, C.; Burn, J. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef]
- Davis, R.B., III; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.; Schwartz, M.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The gait profile score and movement analysis profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Celletti, C.; Galli, M.; Cimolin, V.; Castori, M.; Tenore, N.; Albertini, G.; Camerota, F. Use of the gait profile score for the evaluation of patients with joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type. Res. Dev. Disabil. 2013, 34, 4280–4285. [Google Scholar] [CrossRef]
- Pau, M.; Coghe, G.; Atzeni, C.; Corona, F.; Pilloni, G.; Marrosu, M.G.; Cocco, E.; Galli, M. Novel characterization of gait impairments in people with multiple sclerosis by means of the gait profile score. J. Neurol. Sci. 2014, 345, 159–163. [Google Scholar] [CrossRef]
- Schreiber, C.; Armand, S.; Moissenet, F. Influence of normative data’s walking speed on the computation of conventional gait indices. J. Biomech. 2018, 76, 68–73. [Google Scholar] [CrossRef]
- Moreau-Debord, I.; Serrano, É.; Quessy, S.; Dancause, N. Rapid and Bihemispheric Reorganization of Neuronal Activity in Premotor Cortex after Brain Injury. J. Neurosci. 2021, 41, 9112–9128. [Google Scholar] [CrossRef]
- Ekusheva, E.V.; Vendrova, M.I.; Danilov, A.B.; Vein, A.M. The contributions of the right and left hemispheres of the brain to the polymorphism and heterogeneity of pyramidal syndrome. Neurosci. Behav. Physiol. 2005, 35, 229–234. [Google Scholar] [CrossRef]
- Ween, J.E.; Alexander, M.P.; D’Esposito, M.; Roberts, M. Factors predictive of stroke outcome in a rehabilitation setting. Neurology 1996, 47, 388–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringman, J.M.; Saver, J.; Woolson, R.F.; Clarke, W.R.; Adams, H.P. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 2004, 63, 468–474. [Google Scholar] [CrossRef] [PubMed]
- McGilchrist, I. The Master and His Emissary: The Divided Brain and the Making of the Western World; Yale University Press: New Haven, CT, USA, 2012. [Google Scholar]
- Men, W.; Falk, D.; Sun, T.; Chen, W.; Li, J.; Yin, D.; Zang, L.; Fan, M. The corpus callosum of Albert Einstein’s brain: Another clue to his high intelligence? Brain 2014, 137, e268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolman, D. The split brain: A tale of two halves. Nature 2012, 483, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Bütefisch, C.M.; Wessling, M.; Netz, J.; Seitz, R.J.; Hömberg, V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabil. Neural. Repair 2008, 22, 4–21. [Google Scholar] [CrossRef]
- Ekusheva, E.V.; Vendrova, M.I.; Danilov, A.B.; Veĭn, A.M. Vklad pravogo i levogo polushariĭ golovnogo mozga v polimorfizm i geterogennost’ piramidnogo sindroma [Contribution of right and left brain hemispheres to pyramidal syndrome polymorphism and heterogeneity]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2004, 104, 8–12. [Google Scholar]
- Devetak, G.F.; Martello, S.K.; de Almeida, J.C.; Correa, K.P.; Iucksch, D.D.; Manffra, E.F. Reliability and minimum detectable change of the gait profile score for post-stroke patients. Gait Posture 2016, 49, 382–387. [Google Scholar] [CrossRef]
- Feigin, V.L.; A Stark, B.; Johnson, C.O.; A Roth, G.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- de Kovel, C.G.F.; Carrión-Castillo, A.; Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 2019, 9, 584. [Google Scholar] [CrossRef] [Green Version]
Stroke (n = 33) | Control Group (n = 20) | |
---|---|---|
Gender, n (%) | ||
Male | 20 (60.6) | 10 (50) |
Age | 58.24 ± 13.29 | 53.9 ± 11.2 |
Height (m) | 1.68 ± 7.66 | 1.71 ± 8.23 |
Body mass (kg) | 76.97 ± 17.15 | 68.9 ± 13.2 |
Time since stroke (years) | 3.66 (1.84) | |
Stroke type, n (%) | ||
Ischaemic | 33 (100) | |
Affected hemisphere, n (%) | ||
Right | 16 (48.5) | |
Left | 17 (51.5) |
Right Hemiplegia | Left Hemiplegia | Cohen’s d for Paretic Side | Cohen’s d for Non-Paretic Side | Control Group | |||
---|---|---|---|---|---|---|---|
Paretic Side | Non-Paretic Side | Paretic Side | Non-Paretic Side | ||||
Spatio-temporal parameters | |||||||
Gait speed (m/s) | 0.52 (0.13) *+ | 0.61 (0.12)+ | −0.72 | 1.08 (0.17) | |||
% stance (%gc) | 64.94 (11.65)*+ | 70.99 (13.05)+ | 61.80 (6.60)+ | 69.26 (6.20)+ | 0.33 | 0.17 | 58.95 (1.85) |
Step length | 0.24 (0.07)+ | 0.22 (0.07)+ | 0.24 (0.07)+ | 0.24 (0.08)+ | 0 | −0.27 | 0.59 (0.05) |
Cadence (step/min) | 76.23 (23.76) *+ | 90.80 (18.10)+ | −0.69 | 103.00 (8.30) | |||
GPS and GVSs (degrees) | |||||||
GPS | 10.19 (3.09)+ | 10.71 (3.58)+ | 10.74 (2.98)+ | 11.95 (3.53)+ | −0.18 | −0.35 | 7.61 (0.97) |
Pel tilt | 5.79 (3.85) | 5.99 (4.09) | −0.05 | 5.12 (3.28) | |||
Pel obl | 4.01 (2.17) | 4.89 (2.92) | −0.34 | 2.60 (0.93) | |||
Pel rot | 6.31 (3.03) *+ | 9.38 (3.35)+ | −0.96 | 4.70 (1.43) | |||
Hip flex | 10.97 (5.18)+ | 11.56 (6.01)+ | 12.13 (5.62)+ | 11.88 (6.73)+ | −0.21 | −0.05 | 6.86 (3.50) |
Hip abd | 5.26 (3.25) | 7.24 (6.19) | 5.01 (2.50) | 5.60 (3.30) | 0.05 | 0.33 | 5.41 (2.76) |
Hip rot | 14.74 (7.88)+ | 12.99 (7.55) *+ | 12.24 (6.48)+ | 19.77 (10.05)+ | −0.35 | −0.76 | 8.35 (4.37) |
Knee flex | 14.78 (5.44)+ | 14.04 (6.03)+ | 15.47 (5.49)+ | 16.52 (5.01)+ | −0.13 | −0.45 | 7.87 (2.10) |
Ank dorsi | 11.59 (4.09)+ | 13.31 (5.63)+ | 11.17 (3.85)+ | 13.14 (3.60)+ | 0.11 | 0.04 | 5.63 (2.14) |
Foot prog | 6.00 (2.23) * | 8.13 (4.58) | 11.46 (5.15)+ | 6.59 (3.60) | −1.37 | 0.37 | 7.74 (3.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vismara, L.; Cimolin, V.; Buffone, F.; Bigoni, M.; Clerici, D.; Cerfoglio, S.; Galli, M.; Mauro, A. Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions. Brain Sci. 2022, 12, 798. https://doi.org/10.3390/brainsci12060798
Vismara L, Cimolin V, Buffone F, Bigoni M, Clerici D, Cerfoglio S, Galli M, Mauro A. Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions. Brain Sciences. 2022; 12(6):798. https://doi.org/10.3390/brainsci12060798
Chicago/Turabian StyleVismara, Luca, Veronica Cimolin, Francesca Buffone, Matteo Bigoni, Daniela Clerici, Serena Cerfoglio, Manuela Galli, and Alessandro Mauro. 2022. "Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions" Brain Sciences 12, no. 6: 798. https://doi.org/10.3390/brainsci12060798
APA StyleVismara, L., Cimolin, V., Buffone, F., Bigoni, M., Clerici, D., Cerfoglio, S., Galli, M., & Mauro, A. (2022). Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions. Brain Sciences, 12(6), 798. https://doi.org/10.3390/brainsci12060798