Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
2.3. Assessment of Narrative Abilities
2.4. MRI Acquisition and Processing
2.5. Statistical Analyses
3. Results
3.1. Microlinguistic Features of Narrative Speech
3.2. Between-Group Comparisons on Cortical Thickness
3.3. Correlation between the Semantic Depth Index and the Cortical Thickness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of Primary Progressive Aphasia and Its Variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caine, D.; Breen, N.; Patterson, K. Emergence and Progression of ‘Non-Semantic’ Deficits in Semantic Dementia. Cortex 2009, 45, 483–494. [Google Scholar] [CrossRef]
- Montembeault, M.; Brambati, S.M.; Gorno-Tempini, M.L.; Migliaccio, R. Clinical, Anatomical, and Pathological Features in the Three Variants of Primary Progressive Aphasia: A Review. Front. Neurol. 2018, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Mayberry, E.J.; Sage, K.; Ralph, M.A.L. At the Edge of Semantic Space: The Breakdown of Coherent Concepts in Semantic Dementia Is Constrained by Typicality and Severity but Not Modality. J. Cogn. Neurosci. 2011, 23, 2240–2251. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G.; Ferraccioli, M.; Quaranta, D.; Marra, C. Cross-Modal Recognition Disorders for Persons and Other Unique Entities in a Patient with Right Fronto-Temporal Degeneration. Cortex 2008, 44, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.L.; Wilson, S.M.; Ogar, J.M.; Sidhu, M.S.; Rankin, K.P.; Cattaruzza, T.; Miller, B.L.; Gorno-Tempini, M.L.; Seeley, W.W. Neuropsychological, Behavioral, and Anatomical Evolution in Right Temporal Variant Frontotemporal Dementia: A Longitudinal and Post-Mortem Single Case Analysis. Neurocase 2014, 20, 100–109. [Google Scholar] [CrossRef]
- Gainotti, G. Is the Right Anterior Temporal Variant of Prosopagnosia a Form of “associative Prosopagnosia” or a Form of “Multimodal Person Recognition Disorder”? Neuropsychol. Rev. 2013, 23, 99–110. [Google Scholar] [CrossRef]
- Spinelli, E.G.; Mandelli, M.L.; Miller, Z.A.; Santos-Santos, M.A.; Wilson, S.M.; Agosta, F.; Grinberg, L.T.; Huang, E.J.; Trojanowski, J.Q.; Meyer, M.; et al. Typical and Atypical Pathology in Primary Progressive Aphasia Variants. Ann. Neurol. 2017, 81, 430–443. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Patterson, K.; Nestor, P.J. Logopenic, Mixed, or Alzheimer-Related Aphasia? Neurology 2014, 82, 1127–1131. [Google Scholar] [CrossRef]
- Silveri, M.C.; Pravatà, E.; Brita, A.C.; Improta, E.; Ciccarelli, N.; Rossi, P.; Colosimo, C. Primary Progressive Aphasia: Linguistic Patterns and Clinical Variants. Brain Lang. 2014, 135, 57–65. [Google Scholar] [CrossRef]
- Giannini, L.A.A.; Irwin, D.J.; McMillan, C.T.; Ash, S.; Rascovsky, K.; Wolk, D.A.; Van Deerlin, V.M.; Lee, E.B.; Trojanowski, J.Q.; Grossman, M. Clinical Marker for Alzheimer Disease Pathology in Logopenic Primary Progressive Aphasia. Neurology 2017, 88, 2276–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesulam, M.-M.; Wieneke, C.; Thompson, C.; Rogalski, E.; Weintraub, S. Quantitative Classification of Primary Progressive Aphasia at Early and Mild Impairment Stages. Brain 2012, 135, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Rogalski, E.J.; Wieneke, C.; Hurley, R.S.; Geula, C.; Bigio, E.H.; Thompson, C.K.; Weintraub, S. Primary Progressive Aphasia and the Evolving Neurology of the Language Network. Nat. Rev. Neurol. 2014, 10, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Leyton, C.E.; Savage, S.; Irish, M.; Schubert, S.; Piguet, O.; Ballard, K.J.; Hodges, J.R. Verbal Repetition in Primary Progressive Aphasia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 41, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Ash, S.; Evans, E.; O’Shea, J.; Powers, J.; Boller, A.; Weinberg, D.; Haley, J.; McMillan, C.; Irwin, D.J.; Rascovsky, K.; et al. Differentiating Primary Progressive Aphasias in a Brief Sample of Connected Speech. Neurology 2013, 81, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Leyton, C.E.; Ballard, K.J.; Piguet, O.; Hodges, J.R. Phonologic Errors as a Clinical Marker of the Logopenic Variant of PPA. Neurology 2014, 82, 1620–1627. [Google Scholar] [CrossRef]
- Grossman, M. Linguistic Aspects of Primary Progressive Aphasia. Annu. Rev. Linguist. 2018, 4, 377–403. [Google Scholar] [CrossRef]
- Baldo, J.V.; Schwartz, S.; Wilkins, D.; Dronkers, N.F. Role of Frontal versus Temporal Cortex in Verbal Fluency as Revealed by Voxel-Based Lesion Symptom Mapping. J. Int. Neuropsychol. Soc. 2006, 12, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, D.; Gorno-Tempini, M.L.; Rabinovici, G.D.; Santos-Santos, M.A.; Seeley, W.; Miller, B.L.; Pijnenburg, Y.; Keulen, M.A.; Groot, C.; van Berckel, B.N.M.; et al. Prevalence of Amyloid-β Pathology in Distinct Variants of Primary Progressive Aphasia. Ann. Neurol. 2018, 84, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Linnik, A.; Bastiaanse, R.; Höhle, B. Discourse Production in Aphasia: A Current Review of Theoretical and Methodological Challenges. Aphasiology 2016, 30, 765–800. [Google Scholar] [CrossRef]
- Boschi, V.; Catricalà, E.; Consonni, M.; Chesi, C.; Moro, A.; Cappa, S.F. Connected Speech in Neurodegenerative Language Disorders: A Review. Front. Psychol. 2017, 8, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaduman, A.; Göksun, T.; Chatterjee, A. Narratives of Focal Brain Injured Individuals: A Macro-Level Analysis. Neuropsychologia 2017, 99, 314–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glosser, G.; Deser, T. Patterns of Discourse Production among Neurological Patients with Fluent Language Disorders. Brain Lang. 1991, 40, 67–88. [Google Scholar] [CrossRef]
- Marini, A.; Andreetta, S.; del Tin, S.; Carlomagno, S. A Multi-Level Approach to the Analysis of Narrative Language in Aphasia. Aphasiology 2011, 25, 1372–1392. [Google Scholar] [CrossRef]
- Andreetta, S.; Cantagallo, A.; Marini, A. Narrative Discourse in Anomic Aphasia. Neuropsychologia 2012, 50, 1787–1793. [Google Scholar] [CrossRef]
- Ferstl, E.C.; Neumann, J.; Bogler, C.; von Cramon, D.Y. The Extended Language Network: A Meta-Analysis of Neuroimaging Studies on Text Comprehension. Hum. Brain Mapp. 2008, 29, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Kemeny, S.; Park, G.; Frattali, C.; Braun, A. Language in Context: Emergent Features of Word, Sentence, and Narrative Comprehension. Neuroimage 2005, 25, 1002–1015. [Google Scholar] [CrossRef]
- Troiani, V.; Fernández-Seara, M.A.; Wang, Z.; Detre, J.A.; Ash, S.; Grossman, M. Narrative Speech Production: An FMRI Study Using Continuous Arterial Spin Labeling. Neuroimage 2008, 40, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.M.; Henry, M.L.; Besbris, M.; Ogar, J.M.; Dronkers, N.F.; Jarrold, W.; Miller, B.L.; Gorno-Tempini, M.L. Connected Speech Production in Three Variants of Primary Progressive Aphasia. Brain 2010, 133, 2069–2088. [Google Scholar] [CrossRef] [Green Version]
- Mar, R.A. The Neuropsychology of Narrative: Story Comprehension, Story Production and Their Interrelation. Neuropsychologia 2004, 42, 1414–1434. [Google Scholar] [CrossRef]
- Ash, S.; Moore, P.; Antani, S.; McCawley, G.; Work, M.; Grossman, M. Trying to Tell a Tale: Discourse Impairments in Progressive Aphasia and Frontotemporal Dementia. Neurology 2006, 66, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Meteyard, L.; Patterson, K. The Relation between Content and Structure in Language Production: An Analysis of Speech Errors in Semantic Dementia. Brain Lang. 2009, 110, 121–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajjadi, S.A.; Patterson, K.; Tomek, M.; Nestor, P.J. Abnormalities of Connected Speech in Semantic Dementia vs Alzheimer’s Disease. Aphasiology 2012, 26, 847–866. [Google Scholar] [CrossRef]
- Capasso, R.; Miceli, G. Esame Neuropsicologico per L’afasia (E.N.P.A.); Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- De Mauro, T.; Mancini, F.; Vedovelli, M.; Voghera, M. Lessico Di Frequenza Dell’italiano Parlato; ETASLIBRI: Milan, Italy, 1993. [Google Scholar]
- Fellbaum, C. WordNet. An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Fellbaum, C. WordNet and Wordnets. In Encyclopedia of Language and Linguistics; Barber, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 2–665. [Google Scholar]
- Pianta, E.; Bentivogli, L.; Girardi, C. MultiWordNet Developing an Aligned Multilingual Database. In Proceedings of the 1st International WordNet Conference, Mysore, India, 21–25 January 2002. [Google Scholar]
- Quaranta, D.; Piccininni, C.; Caprara, A.; Malandrino, A.; Gainotti, G.; Marra, C. Semantic Relations in a Categorical Verbal Fluency Test: An Exploratory Investigation in Mild Cognitive Impairment. Front. Psychol. 2019, 10, 2797. [Google Scholar] [CrossRef] [Green Version]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical Surface-Based Analysis. I. Segmentation and Surface Reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, B.; Sereno, M.I.; Dale, A.M. Cortical Surface-Based Analysis. II: Inflation, Flattening, and a Surface-Based Coordinate System. Neuroimage 1999, 9, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb. Cortex 2009, 19, 2767–2796. [Google Scholar] [CrossRef]
- Wang, J.; Conder, J.A.; Blitzer, D.N.; Shinkareva, S.V. Neural Representation of Abstract and Concrete Concepts: A Meta-Analysis of Neuroimaging Studies. Hum. Brain Mapp. 2010, 31, 1459–1468. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Christiansen, J.A. Coherence Violations and Propositional Usage in the Narratives of Fluent Aphasics. Brain Lang. 1995, 51, 291–317. [Google Scholar] [CrossRef] [PubMed]
- Caramazza, A.; Hillis, A.E. Where Do Semantic Errors Come From? Cortex 1990, 26, 95–122. [Google Scholar] [CrossRef]
- Binney, R.J.; Embleton, K.V.; Jefferies, E.; Parker, G.J.M.; Ralph, M.A.L. The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected FMRI, RTMS, and Semantic Dementia. Cereb. Cortex 2010, 20, 2728–2738. [Google Scholar] [CrossRef] [Green Version]
- Patterson, K.; Nestor, P.J.; Rogers, T.T. Where Do You Know What You Know? The Representation of Semantic Knowledge in the Human Brain. Nat. Rev. Neurosci. 2007, 8, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Ralph, M.A.L.; Jefferies, E.; Patterson, K.; Rogers, T.T. The Neural and Computational Bases of Semantic Cognition. Nat. Rev. Neurosci. 2017, 18, 42–55. [Google Scholar] [CrossRef]
- Wong, C.; Gallate, J. The Function of the Anterior Temporal Lobe: A Review of the Empirical Evidence. Brain Res. 2012, 1449, 94–116. [Google Scholar] [CrossRef]
- Lambon Ralph, M.A.; Sage, K.; Jones, R.W.; Mayberry, E.J. Coherent Concepts Are Computed in the Anterior Temporal Lobes. Proc. Natl. Acad. Sci. USA 2010, 107, 2717–2722. [Google Scholar] [CrossRef] [Green Version]
- Rogers, T.T.; Lambon Ralph, M.A.; Garrard, P.; Bozeat, S.; McClelland, J.L.; Hodges, J.R.; Patterson, K. Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation. Psychol. Rev. 2004, 111, 205. [Google Scholar] [CrossRef] [Green Version]
- Lambon Ralph, M.A.; Patterson, K. Generalization and Differentiation in Semantic Memory: Insights from Semantic Dementia. Ann. N. Y. Acad. Sci. 2008, 1124, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Blank, H.; Davis, M.H. Prediction Errors but Not Sharpened Signals Simulate Multivoxel FMRI Patterns during Speech Perception. PLoS Biol. 2016, 14, e1002577. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Schlaggar, B.L.; Lessov-Schlaggar, C.N.; Petersen, S.E. Evidence for Hubs in Human Functional Brain Networks. Neuron 2013, 79, 798–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabsevitz, D.S.; Medler, D.A.; Seidenberg, M.; Binder, J.R. Modulation of the Semantic System by Word Imageability. Neuroimage 2005, 27, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, M.; Ostergaard, S.; Lund, T.E.; Ostergaard, L.; Roepstorff, A. Concrete Spatial Language: See What I Mean? Brain Lang. 2005, 92, 221–233. [Google Scholar] [CrossRef]
- Jefferies, E.; Thompson, H.; Cornelissen, P.; Smallwood, J. The Neurocognitive Basis of Knowledge about Object Identity and Events: Dissociations Reflect Opposing Effects of Semantic Coherence and Control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190300. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.E.; Almaghyuli, A.; Noonan, K.A.; Barak, O.; Lambon Ralph, M.A.; Jefferies, E. The Contribution of Executive Control to Semantic Cognition: Convergent Evidence from Semantic Aphasia and Executive Dysfunction. J. Neuropsychol. 2018, 12, 312–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Varga, D.; Wang, X.; Krieger-Redwood, K.; Gouws, A.; Smallwood, J.; Jefferies, E. Knowing What You Need to Know in Advance: The Neural Processes Underpinning Flexible Semantic Retrieval of Thematic and Taxonomic Relations. Neuroimage 2021, 224, 117405. [Google Scholar] [CrossRef]
- Thye, M.; Geller, J.; Szaflarski, J.P.; Mirman, D. Intracranial EEG Evidence of Functional Specialization for Taxonomic and Thematic Relations. Cortex 2021, 140, 40–50. [Google Scholar] [CrossRef]
svPPA | lvPPA | ||||
---|---|---|---|---|---|
Sociodemographical variable | M | SD | M | SD | |
Age (mean ± SD) years | 72.50 | 8.044 | 74.44 | 7.519 | |
Education (mean ± SD) years | 13.17 | 5.565 | 8.94 | 4.449 | |
Sex (M/F), n, % | 3/3 (50%/50%) | 8/8 (50%/50%) | |||
Neuropsychological test | Cut-off | M | SD | M | SD |
Mini Mental State Examination | <23.80 | 13.92 | 5.92 | 17.20 | 6.78 |
Immediate recall of 15 Rey’s words | <28.53 | 13.86 | 5.64 | 22.89 | 8.48 |
Delayed recall of 15 Rey’s words | <4.69 | 1.96 | 3.51 | 3.38 | 2.76 |
Rey–Osterrieth figure copy | <28.87 | 22.85 | 15.46 | 14.13 | 9.20 |
Rey–Osterrieth figure recall | <9.46 | 3.75 | 3.43 | 3.73 | 4.81 |
Verbal span forward | <4.26 | 3.60 | 0.55 | 3.88 | 1.41 |
Verbal span backward | <2.65 | 3.00 | 1.87 | 2.38 | 1.20 |
Corsi’s test forward | <3.46 | 4.00 | 1.41 | 3.19 | 1.17 |
Corsi’s test backward | <3.08 | 3.40 | 0.89 | 2.69 | 1.14 |
Raven Colored Matrices | <18.96 | 23.75 | 9.98 | 17.55 | 5.81 |
Objet naming (oral) | <28 | 10.20 | 8.14 | 14.94 | 8.24 |
svPPA | lvPPA | |||||
---|---|---|---|---|---|---|
M | SD | M | SD | U | p | |
Number of nouns | 41.83 | 11.86 | 38.69 | 13.22 | 43.500 | 0.747 |
Number of verbs | 53.33 | 8.73 | 36.38 | 12.23 | 12.500 | 0.006 |
Number of adjectives | 17.83 | 8.42 | 7.13 | 3.90 | 14.000 | 0.010 |
Number of open-class words | 285.83 | 78.04 | 161.81 | 55.09 | 8.000 | 0.002 |
Number of close class words | 349.33 | 120.52 | 271.07 | 100.95 | 27.000 | 0.178 |
Correct sentences | 118.00 | 26.07 | 56.06 | 24.90 | 4.000 | 0.000 |
Phonemic paraphasias | 1.50 | 1.87 | 4.88 | 4.10 | 20.500 | 0.040 |
Semantic paraphasias | 3.50 | 1.97 | 2.50 | 2.39 | 29.000 | 0.178 |
Anomic pauses | 6.83 | 1.72 | 8.63 | 4.65 | 31.500 | 0.231 |
CDA | 6.83 | 6.05 | 7.19 | 5.11 | 39.500 | 0.541 |
Number of occurrences | 2.58 | 0.78 | 2.02 | 0.51 | 23.000 | 0.070 |
SDI | 3.99 | 0.32 | 4.42 | 0.37 | 19.000 | 0.033 |
Frequency of use | 689.14 | 105.38 | 768.25 | 209.85 | 34.000 | 0.329 |
svPPA | lvPPA | HC | Pairwise Comparisons (pFDR) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Lobe | Region | Hemisphere | Mean | SD | Mean | SD | Mean | SD | svPPA vs. HC | lvPPA vs. HC |
Temporal lobe-medial aspect | Entorhinal cortex | Left | 1.77 | 0.27 | 2.60 | 0.51 | 3.20 | 0.42 | <0.001 | <0.001 |
Entorhinal cortex | Right | 2.28 | 0.32 | 2.83 | 0.47 | 3.38 | 0.40 | <0.001 | 0.002 | |
Fusiform gyrus | Left | 1.99 | 0.25 | 2.18 | 0.43 | 2.56 | 0.11 | <0.001 | <0.001 | |
Fusiform gyrus | Right | 2.15 | 0.22 | 2.30 | 0.18 | 2.57 | 0.11 | <0.001 | <0.001 | |
Parahippocampal gyrus | Left | 1.88 | 0.24 | 2.25 | 0.46 | 2.58 | 0.26 | <0.001 | 0.005 | |
Parahippocampal gyrus | Right | 2.01 | 0.30 | 2.31 | 0.38 | 2.51 | 0.24 | 0.010 | 0.094 | |
Temporal pole | Left | 2.34 | 0.51 | 3.06 | 0.59 | 3.47 | 0.39 | <0.001 | 0.037 | |
Temporal pole | Right | 2.83 | 0.72 | 3.17 | 0.53 | 3.59 | 0.35 | 0.012 | 0.008 | |
Temporal lobe-lateral aspect | Banks superior temporal sulcus | Left | 1.87 | 0.31 | 1.98 | 0.24 | 2.35 | 0.17 | 0.005 | <0.001 |
Banks superior temporal sulcus | Right | 2.06 | 0.27 | 2.12 | 0.23 | 2.44 | 0.16 | 0.005 | <0.001 | |
Inferior temporal gyrus | Left | 1.99 | 0.31 | 2.30 | 0.37 | 2.66 | 0.19 | <0.001 | <0.001 | |
Inferior temporal gyrus | Right | 2.36 | 0.25 | 2.43 | 0.23 | 2.70 | 0.17 | 0.008 | <0.001 | |
Middle temporal gyrus | Left | 2.04 | 0.33 | 2.34 | 0.35 | 2.70 | 0.18 | <0.001 | <0.001 | |
Middle temporal gyrus | Right | 2.28 | 0.23 | 2.48 | 0.22 | 2.72 | 0.17 | 0.005 | <0.001 | |
Superior temporal gyrus | Left | 1.86 | 0.26 | 2.17 | 0.31 | 2.57 | 0.17 | <0.001 | <0.001 | |
Superior temporal gyrus | Right | 2.16 | 0.26 | 2.34 | 0.21 | 2.60 | 0.19 | 0.005 | <0.001 | |
Transverse temporal cortex | Left | 1.97 | 0.37 | 1.92 | 0.34 | 2.21 | 0.25 | 0.191 | 0.008 | |
Transverse temporal cortex | Right | 2.10 | 0.46 | 2.16 | 0.22 | 2.26 | 0.25 | 0.420 | 0.094 | |
Frontal lobe | Caudal middle frontal gyrus | Left | 2.14 | 0.26 | 2.05 | 0.25 | 2.40 | 0.16 | 0.018 | <0.001 |
Caudal middle frontal gyrus | Right | 2.16 | 0.32 | 2.18 | 0.16 | 2.38 | 0.12 | 0.059 | <0.001 | |
Frontal pole | Left | 2.38 | 0.23 | 2.56 | 0.39 | 2.72 | 0.25 | 0.018 | 0.372 | |
Frontal pole | Right | 2.53 | 0.21 | 2.70 | 0.23 | 2.76 | 0.29 | 0.071 | 0.461 | |
Lateral orbital frontal cortex | Left | 2.27 | 0.30 | 2.50 | 0.34 | 2.57 | 0.15 | 0.023 | 0.981 | |
Lateral orbital frontal cortex | Right | 2.38 | 0.19 | 2.51 | 0.22 | 2.52 | 0.16 | 0.103 | 0.873 | |
Medial orbital frontal cortex | Left | 2.12 | 0.20 | 2.35 | 0.36 | 2.40 | 0.13 | 0.008 | 0.917 | |
Medial orbital frontal cortex | Right | 2.28 | 0.21 | 2.45 | 0.19 | 2.41 | 0.19 | 0.199 | 0.524 | |
Paracentral lobule | Left | 2.05 | 0.30 | 1.96 | 0.32 | 2.23 | 0.25 | 0.104 | 0.004 | |
Paracentral lobule | Right | 2.15 | 0.19 | 2.03 | 0.21 | 2.23 | 0.23 | 0.338 | 0.005 | |
Pars opercularis | Left | 2.22 | 0.26 | 2.21 | 0.24 | 2.45 | 0.13 | 0.040 | <0.001 | |
Pars opercularis | Right | 2.22 | 0.29 | 2.29 | 0.19 | 2.46 | 0.12 | 0.043 | 0.005 | |
Pars orbitalis | Left | 2.34 | 0.35 | 2.43 | 0.32 | 2.54 | 0.14 | 0.199 | 0.476 | |
Pars orbitalis | Right | 2.45 | 0.18 | 2.48 | 0.20 | 2.52 | 0.18 | 0.477 | 0.524 | |
Pars triangularis | Left | 2.13 | 0.28 | 2.12 | 0.27 | 2.30 | 0.13 | 0.155 | 0.025 | |
Pars triangularis | Right | 2.18 | 0.21 | 2.25 | 0.16 | 2.31 | 0.10 | 0.243 | 0.198 | |
Precentral gyrus | Left | 2.13 | 0.30 | 2.04 | 0.30 | 2.38 | 0.24 | 0.063 | <0.001 | |
Precentral gyrus | Right | 2.20 | 0.27 | 2.11 | 0.26 | 2.35 | 0.23 | 0.220 | 0.002 | |
Rostral middle frontal gyrus | Left | 2.01 | 0.25 | 2.07 | 0.24 | 2.27 | 0.11 | 0.017 | 0.002 | |
Rostral middle frontal gyrus | Right | 2.09 | 0.22 | 2.15 | 0.13 | 2.25 | 0.12 | 0.061 | 0.044 | |
Superior frontal gyrus | Left | 2.29 | 0.31 | 2.26 | 0.28 | 2.54 | 0.17 | 0.049 | <0.001 | |
Superior frontal gyrus | Right | 2.33 | 0.26 | 2.35 | 0.14 | 2.52 | 0.14 | 0.070 | <0.001 | |
Parietal lobe | Inferior parietal cortex | Left | 1.93 | 0.27 | 1.91 | 0.28 | 2.29 | 0.13 | 0.005 | <0.001 |
Inferior parietal cortex | Right | 2.09 | 0.20 | 2.01 | 0.20 | 2.32 | 0.14 | 0.017 | <0.001 | |
Postcentral gyrus | Left | 1.78 | 0.13 | 1.72 | 0.17 | 2.00 | 0.15 | 0.008 | <0.001 | |
Postcentral gyrus | Right | 1.81 | 0.17 | 1.82 | 0.13 | 1.97 | 0.18 | 0.059 | 0.002 | |
Precuneus cortex | Left | 1.95 | 0.24 | 1.89 | 0.26 | 2.23 | 0.15 | 0.012 | <0.001 | |
Precuneus cortex | Right | 2.00 | 0.23 | 1.99 | 0.19 | 2.18 | 0.17 | 0.065 | 0.007 | |
Superior parietal cortex | Left | 1.85 | 0.22 | 1.75 | 0.24 | 2.08 | 0.14 | 0.008 | <0.001 | |
Superior parietal cortex | Right | 1.92 | 0.24 | 1.84 | 0.16 | 2.07 | 0.16 | 0.092 | <0.001 | |
Supramarginal gyrus | Left | 2.13 | 0.24 | 1.97 | 0.22 | 2.38 | 0.13 | 0.025 | <0.001 | |
Supramarginal gyrus | Right | 2.21 | 0.16 | 2.08 | 0.12 | 2.36 | 0.17 | 0.050 | <0.001 | |
Occipital lobe | Cuneus cortex | Left | 1.62 | 0.15 | 1.68 | 0.18 | 1.81 | 0.18 | 0.022 | 0.021 |
Cuneus cortex | Right | 1.64 | 0.15 | 1.66 | 0.13 | 1.75 | 0.20 | 0.211 | 0.063 | |
Lateral occipital cortex | Left | 1.94 | 0.15 | 1.86 | 0.21 | 2.01 | 0.15 | 0.179 | 0.008 | |
Lateral occipital cortex | Right | 1.97 | 0.20 | 1.96 | 0.14 | 2.09 | 0.16 | 0.220 | 0.005 | |
Lingual gyrus | Left | 1.80 | 0.13 | 1.75 | 0.22 | 1.91 | 0.16 | 0.104 | 0.017 | |
Lingual gyrus | Right | 1.82 | 0.14 | 1.81 | 0.10 | 1.90 | 0.16 | 0.234 | 0.037 | |
Pericalcarine cortex | Left | 1.54 | 0.17 | 1.51 | 0.17 | 1.55 | 0.20 | 0.966 | 0.662 | |
Pericalcarine cortex | Right | 1.50 | 0.17 | 1.50 | 0.18 | 1.57 | 0.18 | 0.350 | 0.179 | |
Insulary lobe | Insula | Left | 2.51 | 0.29 | 2.55 | 0.37 | 2.91 | 0.21 | 0.012 | <0.001 |
Insula | Right | 2.69 | 0.13 | 2.68 | 0.29 | 2.92 | 0.20 | 0.016 | 0.002 | |
Cingulate cortex | Caudal anterior-cingulate cortex | Left | 2.61 | 0.19 | 2.58 | 0.37 | 2.68 | 0.29 | 0.390 | 0.782 |
Caudal anterior-cingulate cortex | Right | 2.53 | 0.14 | 2.57 | 0.28 | 2.63 | 0.28 | 0.343 | 0.654 | |
Isthmus–cingulate cortex | Left | 2.01 | 0.11 | 1.97 | 0.27 | 2.29 | 0.24 | 0.010 | 0.002 | |
Isthmus–cingulate cortex | Right | 2.11 | 0.13 | 1.99 | 0.16 | 2.26 | 0.17 | 0.092 | <0.001 | |
Posterior-cingulate cortex | Left | 2.09 | 0.24 | 2.11 | 0.34 | 2.40 | 0.20 | 0.017 | 0.005 | |
Posterior-cingulate cortex | Right | 2.24 | 0.18 | 2.19 | 0.18 | 2.38 | 0.19 | 0.112 | 0.008 | |
Rostral anterior cingulate cortex | Left | 2.39 | 0.32 | 2.55 | 0.41 | 2.80 | 0.25 | 0.014 | 0.049 | |
Rostral anterior cingulate cortex | Right | 2.62 | 0.26 | 2.76 | 0.25 | 2.77 | 0.26 | 0.243 | 0.847 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaranta, D.; Di Tella, S.; Marra, C.; Gaudino, S.; L’Abbate, F.; Silveri, M.C. Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia. Brain Sci. 2022, 12, 910. https://doi.org/10.3390/brainsci12070910
Quaranta D, Di Tella S, Marra C, Gaudino S, L’Abbate F, Silveri MC. Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia. Brain Sciences. 2022; 12(7):910. https://doi.org/10.3390/brainsci12070910
Chicago/Turabian StyleQuaranta, Davide, Sonia Di Tella, Camillo Marra, Simona Gaudino, Federica L’Abbate, and Maria Caterina Silveri. 2022. "Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia" Brain Sciences 12, no. 7: 910. https://doi.org/10.3390/brainsci12070910
APA StyleQuaranta, D., Di Tella, S., Marra, C., Gaudino, S., L’Abbate, F., & Silveri, M. C. (2022). Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia. Brain Sciences, 12(7), 910. https://doi.org/10.3390/brainsci12070910