Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Activation Likelihood Estimation
3. Results
3.1. PWNS Group
3.2. PWS Group
3.3. Overlap between PWNS and PWS Group
4. Discussion
4.1. General Network of Speech Production
4.2. Distinct Neural Underpinnings in PWS
4.3. The Role of Cerebellum in Speech Processing
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, A. Handbook on stuttering. Folia Phoniatr. Et Logop. 2001, 53, 110–111. [Google Scholar] [CrossRef]
- Ardila, A.; Bateman, J.R.; Nino, C.R.; Pulido, E.; Rivera, D.B.; Vanegas, C.J. An epidemiologic study of stuttering. J. Commun. Disord. 1994, 27, 37–48. [Google Scholar] [CrossRef]
- Craig, A.; Hancock, K.; Tran, Y.; Craig, M.; Peters, K. Epidemiology of stuttering in the community across the entire life span. J. Speech Lang. Hear. Res. 2002, 45, 1097–1105. [Google Scholar] [CrossRef]
- Craig, A.; Blumgart, E.; Tran, Y. The impact of stuttering on the quality of life in adults who stutter. J. Fluen. Disord. 2009, 34, 61–71. [Google Scholar] [CrossRef]
- Iverach, L.; O’Brian, S.; Jones, M.; Block, S.; Lincoln, M.; Harrison, E.; Hewat, S.; Menzies, R.G.; Packman, A.; Onslow, M. Prevalence of anxiety disorders among adults seeking speech therapy for stuttering. J. Anxiety Disord. 2009, 23, 928–934. [Google Scholar] [CrossRef]
- Langevin, M.; Packman, A.; Onslow, M. Parent perceptions of the impact of stuttering on their preschoolers and themselves. J. Commun. Disord. 2010, 43, 407–423. [Google Scholar] [CrossRef]
- Packman, A.; Attanasio, J.S. A model of the mechanisms underpinning early interventions for stuttering. In Proceedings of the Seminar Presentation at the Annual Convention of the American Speech-Language and Hearing Association, Philadelphia, PA, USA, 18–20 November; 2010. [Google Scholar]
- Smith, A.; Weber, C. How Stuttering Develops: The Multifactorial Dynamic Pathways Theory. J Speech Lang Hear Res 2017, 60, 2483–2505. [Google Scholar] [CrossRef] [PubMed]
- Starkweather, C.W. Fluency and Stuttering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Starkweather, C.W.; Gottwald, S.R. The demands and capacities model II: Clinical applications. J. Fluen. Disord. 1990, 15, 143–157. [Google Scholar] [CrossRef]
- Brignell, A.; Krahe, M.; Downes, M.; Kefalianos, E.; Reilly, S.; Morgan, A. Interventions for children and adolescents who stutter: A systematic review, meta-analysis, and evidence map. J. Fluen. Disord. 2021, 70, 105843. [Google Scholar] [CrossRef] [PubMed]
- Franken, M.-C.J.; Schalk, C.J.K.-V.d.; Boelens, H. Experimental treatment of early stuttering: A preliminary study. J. Fluen. Disord. 2005, 30, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.R.; Varga, M.; Stager, S.; Schulz, G.; Selbie, S.; Maisog, J.M.; Carson, R.E.; Ludlow, C.L. Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 1997, 120, 761–784. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.T.; Ingham, R.J.; Ingham, J.C.; Zamarripa, F.; Xiong, J.H.; Lancaster, J.L. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis. Brain 2000, 123, 1985–2004. [Google Scholar] [CrossRef]
- Neumann, K.; Euler, H.A.; von Gudenberg, A.W.; Giraud, A.L.; Lanfermann, H.; Gall, V.; Preibisch, C. The nature and treatment of stuttering as revealed by fMRI-A within- and between-group comparison. J. Fluen. Disord. 2003, 28, 381–410. [Google Scholar] [CrossRef] [PubMed]
- Preibisch, C.; Neumann, K.; Raab, P.; Euler, H.A.; von Gudenberg, A.W.; Lanfermann, H.; Giraud, A.L. Evidence for compensation for stuttering by the right frontal operculum. Neuroimage 2003, 20, 1356–1364. [Google Scholar] [CrossRef]
- Ingham, R.J.; Fox, P.T.; Ingham, J.C.; Xiong, J.; Zamarripa, F.; Hardies, L.J.; Lancaster, J.L. Brain correlates of stuttering and syllable production: Gender comparison and replication. J. Speech Lang. Hear. Res. 2004, 47, 321–341. [Google Scholar] [CrossRef]
- De Nil, L.F.; Beal, D.S.; Lafaille, S.J.; Kroll, R.M.; Crawley, A.P.; Gracco, V.L. The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults. Brain Lang. 2008, 107, 114–123. [Google Scholar] [CrossRef]
- Lu, C.; Ning, N.; Peng, D.; Ding, G.; Li, K.; Yang, Y.; Lin, C. The role of large-scale neural interactions for developmental stuttering. Neuroscience 2009, 161, 1008–1026. [Google Scholar] [CrossRef]
- Ward, D.; Connally, E.L.; Pliatsikas, C.; Bretherton-Furness, J.; Watkins, K.E. The neurological underpinnings of cluttering: Some initial findings. J. Fluen. Disord. 2015, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Wang, Z.; Zhao, G.; Huo, Y.; Herder, C.L.; Sikora, C.O.; Peterson, B.S. Functional neural circuits that underlie developmental stuttering. PLoS ONE 2017, 12, e0179255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankford, S.A.; Heller Murray, E.S.; Masapollo, M.; Cai, S.; Tourville, J.A.; Nieto-Castanon, A.; Guenther, F.H. The neural circuitry underlying the "Rhythm Effect" in stuttering. J. Speech Lang. Hear. Res. 2021, 64, 2325–2346. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Ingham, R.J.; Ingham, J.C.; Laird, A.R.; Fox, P.T. Stuttered and fluent speech production: An ALE meta-analysis of functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Foundas, A.L.; Bollich, A.M.; Corey, D.M.; Hurley, M.; Heilman, K.M. Anomalous anatomy of speech–language areas in adults with persistent developmental stuttering. Neurology 2001, 57, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Jäncke, L.; Hänggi, J.; Steinmetz, H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sommer, M.; Koch, M.A.; Paulus, W.; Weiller, C.; Büchel, C. Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 2002, 360, 380–383. [Google Scholar] [CrossRef]
- Foundas, A.L.; Bollich, A.M.; Feldman, J.; Corey, D.M.; Hurley, M.; Lemen, L.C.; Heilman, K.M. Aberrant auditory processing and atypical planum temporale in developmental stuttering. Neurology 2004, 63, 1640–1646. [Google Scholar] [CrossRef]
- Packman, A.; Code, C.; Onslow, M. On the cause of stuttering: Integrating theory with brain and behavioral research. J. Neurolinguist. 2007, 20, 353–362. [Google Scholar] [CrossRef]
- Levelt, W.J.M.; Roelofs, A.; Meyer, A.S. A theory of lexical access in speech production. Behav. Brain Sci. 1999, 22, 1–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postma, A.; Kolk, H. The covert repair hypothesis: Prearticulatory repair processes in normal and stuttered disfluencies. J. Speech Lang. Hear. Res. 1993, 36, 472–487. [Google Scholar] [CrossRef]
- Brocklehurst, P.H. A review of evidence for the covert repair hypothesis of stuttering. Contemp. Issues Commun. Sci. Disord. 2008, 35, 25–43. [Google Scholar] [CrossRef]
- Howell, P.; Au-Yeung, J. The EXPLAN theory of fluency control applied to the diagnosis of stuttering. Pathol. Ther. Speech Disord. 2002, 4, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Christenfeld, N. Effects of a metronome on the filled pauses of fluent speakers. J. Speech Lang. Hear. Res. 1996, 39, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Vasic, N.; Wijnen, F. Stuttering as a monitoring deficit. In Phonological Encoding and Monitoring in Normal and Pathological Speech; Psychology Press: London, UK, 2005; p. 226. [Google Scholar]
- Bohland, J.W.; Bullock, D.; Guenther, F.H. Neural representations and mechanisms for the performance of simple speech sequences. J. Cogn. Neurosci. 2010, 22, 1504–1529. [Google Scholar] [CrossRef] [PubMed]
- Guenther, F.H.; Ghosh, S.S.; Tourville, J.A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 2006, 96, 280–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.E.; Guenther, F.H. Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering. Front. Psychol. 2019, 10, 3088. [Google Scholar] [CrossRef]
- Houde, J.; Nagarajan, S. Speech production as state feedback control. Front. Hum. Neurosci. 2011, 5, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niziolek, C.A.; Nagarajan, S.S.; Houde, J.F. What does motor efference copy represent? Evidence from speech production. J. Neurosci. 2013, 33, 16110–16116. [Google Scholar] [CrossRef]
- Hickok, G.; Houde, J.; Rong, F. Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron 2011, 69, 407–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyk, M.; Kraft, S.J.; Brown, S. Stuttering as a trait or state-an ALE meta-analysis of neuroimaging studies. Eur. J. Neurosci. 2015, 41, 275–284. [Google Scholar] [CrossRef]
- Belyk, M.; Kraft, S.J.; Brown, S. Stuttering as a trait or a state revisited: Motor system involvement in persistent developmental stuttering. Eur. J. Neurosci. 2017, 45, 622–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nil, L.F.; Kroll, R.M.; Kapur, S.; Houle, S. A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. J. Speech Lang. Hear. Res. 2000, 43, 1038–1053. [Google Scholar] [CrossRef]
- De Nil, L.F.; Kroll, R.M.; Lafaille, S.J.; Houle, S. A positron emission tomography study of short- and long-term treatment effects on functional brain activation in adults who stutter. J. Fluen. Disord. 2003, 28, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Halag-Milo, T.; Stoppelman, N.; Kronfeld-Duenias, V.; Civier, O.; Amir, O.; Ezrati-Vinacour, R.; Ben-Shachar, M. Beyond production: Brain responses during speech perception in adults who stutter. Neuroimage Clin. 2016, 11, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Long, Y.; Zheng, L.; Shi, G.; Liu, L.; Ding, G.; Howell, P. Relationship between speech production and perception in people who stutter. Front. Hum. Neurosci. 2016, 10, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kell, C.A.; Neumann, K.; von Kriegstein, K.; Posenenske, C.; von Gudenberg, A.W.; Euler, H.; Giraud, A.L. How the brain repairs stuttering. Brain 2009, 132, 2747–2760. [Google Scholar] [CrossRef] [PubMed]
- Giraud, A.-L.; Neumann, K.; Bachoud-Levi, A.-C.; von Gudenberg, A.W.; Euler, H.A.; Lanfermann, H.; Preibisch, C. Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain Lang. 2008, 104, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, S.B.; Nichols, T.E.; Laird, A.R.; Hoffstaedter, F.; Amunts, K.; Fox, P.T.; Bzdok, D.; Eickhoff, C.R. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 2016, 137, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Watkins, K.E.; Smith, S.M.; Davis, S.; Howell, P. Structural and functional abnormalities of the motor system in developmental stuttering. Brain 2008, 131, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-E.; Kenney, M.K.; Loucks, T.M.J.; Ludlow, C.L. Brain activation abnormalities during speech and non-speech in stuttering speakers. Neuroimage 2009, 46, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, N.; Masuda, S.; Shimotomai, T.; Mori, K. Brain activation in adults who stutter under delayed auditory feedback: An fMRI study. Int. J. Speech-Lang. Pathol. 2009, 11, 2–11. [Google Scholar] [CrossRef]
- Toyomura, A.; Fujii, T.; Kuriki, S. Effect of external auditory pacing on the neural activity of stuttering speakers. Neuroimage 2011, 57, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Howell, P.; Jiang, J.; Peng, D.; Lu, C. Neural control of rising and falling tones in Mandarin speakers who stutter. Brain Lang. 2012, 123, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Ingham, R.J.; Grafton, S.T.; Bothe, A.K.; Ingham, J.C. Brain activity in adults who stutter: Similarities across speaking tasks and correlations with stuttering frequency and speaking rate. Brain Lang. 2012, 122, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Toyomura, A.; Fujii, T.; Kuriki, S. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers. Neuroimage 2015, 109, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Neef, N.E.; Buetfering, C.; Anwander, A.; Friederici, A.D.; Paulus, W.; Sommer, M. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. Neuroimage 2016, 142, 628–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Zheng, L.; Long, Y.; Yan, Q.; Ding, G.; Liu, L.; Peng, D.; Howell, P. Reorganization of brain function after a short-term behavioral intervention for stuttering. Brain Lang. 2017, 168, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Jia, F.; Siok, W.T.; Tan, L.H. The role of anxiety in stuttering: Evidence from functional connectivity. Neuroscience 2017, 346, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Connally, E.L.; Ward, D.; Pliatsikas, C.; Finnegan, S.; Jenkinson, M.; Boyles, R.; Watkins, K.E. Separation of trait and state in stuttering. Hum. Brain Mapp. 2018, 39, 3109–3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, K.; Euler, H.A.; Kob, M.; von Gudenberg, A.W.; Giraud, A.-L.; Weissgerber, T.; Kell, C.A. Assisted and unassisted recession of functional anomalies associated with dysprosody in adults who stutter. J. Fluen. Disord. 2018, 55, 120–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sares, A.G.; Deroche, M.L.D.; Ohashi, H.; Shiller, D.M.; Gracco, V.L. Neural correlates of vocal pitch compensation in Iindividuals who stutter. Front. Hum. Neurosci. 2020, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, S.B.; Bzdok, D.; Laird, A.R.; Kurth, F.; Fox, P.T. Activation likelihood estimation meta-analysis revisited. Neuroimage 2012, 59, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Eickhoff, S.B.; Laird, A.R.; Grefkes, C.; Wang, L.E.; Zilles, K.; Fox, P.T. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 2009, 30, 2907–2926. [Google Scholar] [CrossRef] [Green Version]
- Turkeltaub, P.E.; Eickhoff, S.B.; Laird, A.R.; Fox, M.; Wiener, M.; Fox, P. Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum. Brain Mapp. 2012, 33, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, J.L.; Tordesillas-Gutierrez, D.; Martinez, M.; Salinas, F.; Evans, A.; Zilles, K.; Mazziotta, J.C.; Fox, P.T. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 2007, 28, 1194–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indefrey, P. The spatial and temporal signatures of word production components: A critical update. Front. Psychol. 2011, 2, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indefrey, P.; Levelt, W.J.M. The neural correlates of language production. In The New Cognitive Ceurosciences, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000; pp. 845–865. [Google Scholar]
- Levelt, W.J. Speaking: From Intention to Articulation; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- de Zubicaray, G.I.; Wilson, S.J.; McMahon, K.L.; Muthiah, S. The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Hum. Brain Mapp. 2001, 14, 218–227. [Google Scholar] [CrossRef]
- Maess, B.; Friederici, A.D.; Damian, M.; Meyer, A.S.; Levelt, W.J. Semantic category interference in overt picture naming: Sharpening current density localization by PCA. J. Cogn. Neurosci. 2002, 14, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmelin, R.; Hari, R.; Lounasmaa, O.; Sams, M. Dynamics of brain activation during picture naming. Nature 1994, 368, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Hocking, J.; Price, C.J. Dissociating verbal and nonverbal audiovisual object processing. Brain Lang. 2009, 108, 89–96. [Google Scholar] [CrossRef]
- Abel, S.; Dressel, K.; Bitzer, R.; Kümmerer, D.; Mader, I.; Weiller, C.; Huber, W. The separation of processing stages in a lexical interference fMRI-paradigm. Neuroimage 2009, 44, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Schnur, T.T.; Schwartz, M.F.; Kimberg, D.Y.; Hirshorn, E.; Coslett, H.B.; Thompson-Schill, S.L. Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proc. Natl. Acad. Sci. USA 2009, 106, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spalek, K.; Thompson-Schill, S.L. Task-dependent semantic interference in language production: An fMRI study. Brain Lang. 2008, 107, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Dressel, K.; Weiller, C.; Huber, W. Enhancement and suppression in a lexical interference fMRI-paradigm. Brain Behav. 2012, 2, 109–127. [Google Scholar] [CrossRef]
- de Zubicaray, G.I.; McMahon, K.L.; Eastburn, M.M.; Wilson, S.J. Orthographic/phonological facilitation of naming responses in the picture–word task: An event-related fMRI study using overt vocal responding. Neuroimage 2002, 16, 1084–1093. [Google Scholar] [CrossRef] [Green Version]
- de Zubicaray, G.I.; McMahon, K.L. Auditory context effects in picture naming investigated with event-related fMRI. Cogn. Affect. Behav. Neurosci. 2009, 9, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.T.; Hogstrom, L.J.; Zhuang, J.; Voyvodic, J.T.; Johnson, M.A.; Camblin, C.C. Written distractor words influence brain activity during overt picture naming. Front. Hum. Neurosci. 2014, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Balota, D.A.; Petersen, S.E.; Schlaggar, B.L. Manipulation of length and lexicality localizes the functional neuroanatomy of phonological processing in adult readers. J. Cogn. Neurosci. 2011, 23, 1475–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, L.B.; Tregellas, J.R.; Slason, E.; Pasko, B.E.; Rojas, D.C. Implicit phonological priming during visual word recognition. Neuroimage 2011, 55, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Rizio, A.A.; Moyer, K.J.; Diaz, M.T. Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age-related differences in picture-word interference. Brain Behav. 2017, 7, e00660. [Google Scholar] [CrossRef] [PubMed]
- Munding, D.; Dubarry, A.-S.; Alario, F.-X. On the cortical dynamics of word production: A review of the MEG evidence. Lang. Cogn. Neurosci. 2016, 31, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Criaud, M.; Boulinguez, P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci. Biobehav. Rev. 2013, 37, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, R.; Windischberger, C.; Deecke, L.; Moser, E. The preparation and execution of self-initiated and externally-triggered movement: A study of event-related fMRI. Neuroimage 2002, 15, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Pugh, K.R.; Shaywitz, B.A.; Shaywitz, S.E.; Fulbright, R.K.; Byrd, D.; Skudlarski, P.; Shankweiler, D.P.; Katz, L.; Constable, R.T.; Fletcher, J. Auditory selective attention: An fMRI investigation. Neuroimage 1996, 4, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Sakai, K.L. Brain activations during conscious self-monitoring of speech production with delayed auditory feedback: An fMRI study. Hum. Brain Mapp. 2003, 20, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Riecke, L.; Peters, J.C.; Valente, G.; Kemper, V.G.; Formisano, E.; Sorger, B. Frequency-selective attention in auditory scenes recruits frequency representations throughout human superior temporal cortex. Cereb. Cortex 2017, 27, 3002–3014. [Google Scholar] [CrossRef]
- Domínguez-Borràs, J.; Trautmann, S.-A.; Erhard, P.; Fehr, T.; Herrmann, M.; Escera, C. Emotional context enhances auditory novelty processing in superior temporal gyrus. Cereb. Cortex 2009, 19, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Huang, F.; Zhou, Y.; Zhuang, L.; Xu, J.; Gao, C.; Qin, S.; Luo, J. The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. Neuroimage 2020, 214, 116751. [Google Scholar] [CrossRef]
- Visser, M.; Jefferies, E.; Embleton, K.V.; Lambon Ralph, M.A. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 2012, 24, 1766–1778. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.; Thompson, H.E.; Hallam, G.; Karapanagiotidis, T.; Murphy, C.; De Caso, I.; Krieger-Redwood, K.; Bernhardt, B.C.; Smallwood, J.; Jefferies, E. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage 2016, 137, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-E.; Horwitz, B.; Ostuni, J.; Reynolds, R.; Ludlow, C.L. Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter. Cereb. Cortex 2011, 21, 2507–2518. [Google Scholar] [CrossRef]
- Guenther, F.H.; Ghosh, S.S. A model of cortical and cerebellar function in speech. In Proceedings of the XVth International Congress of Phonetic Sciences, Barcelona, Spain, 3–9 August 2003; pp. 169–173. [Google Scholar]
- Alm, P.A. Stuttering and the basal ganglia circuits: A critical review of possible relations. J. Commun. Disord. 2004, 37, 325–369. [Google Scholar] [CrossRef] [PubMed]
- Lehéricy, S.; Benali, H.; Van de Moortele, P.-F.; Pélégrini-Issac, M.; Waechter, T.; Ugurbil, K.; Doyon, J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl. Acad. Sci. USA 2005, 102, 12566–12571. [Google Scholar] [CrossRef] [Green Version]
- Grahn, J.A.; Henry, M.J.; McAuley, J.D. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. Neuroimage 2011, 54, 1231–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahn, J.A.; Rowe, J.B. Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity. Cereb. Cortex 2013, 23, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Liu, G.; Wei, D.; Liu, Y.; Yuan, G.; Wang, G. Distinct neuronal entrainment to beat and meter: Revealed by simultaneous EEG-fMRI. Neuroimage 2019, 194, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Gaura, V.; Bachoud-Lévi, A.C.; Ribeiro, M.J.; Nguyen, J.P.; Frouin, V.; Baudic, S.; Brugières, P.; Mangin, J.F.; Boissé, M.F.; Palfi, S. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004, 127, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Kassubek, J.; Juengling, F.; Kioschies, T.; Henkel, K.; Karitzky, J.; Kramer, B.; Ecker, D.; Andrich, J.; Saft, C.; Kraus, P. Topography of cerebral atrophy in early Huntington’s disease: A voxel based morphometric MRI study. J. Neurol. Neurosurg. Psychiatry 2004, 75, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Laird, A.R.; Glahn, D.C.; Blangero, J.; Sanghera, M.K.; Pessoa, L.; Fox, P.M.; Uecker, A.; Friehs, G.; Young, K.A. The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral filtering. Neuroimage 2012, 60, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, B.E. The cerebellum and language: Historical perspective and review. Cortex 2010, 46, 858–868. [Google Scholar] [CrossRef]
- Argyropoulos, G.P. The cerebellum, internal models and prediction in ‘non-motor’aspects of language: A critical review. Brain Lang. 2016, 161, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Mariën, P.; Borgatti, R. Language and the cerebellum. Handb. Clin. Neurol. 2018, 154, 181–202. [Google Scholar]
- Kellett, K.A.; Stevenson, J.L.; Gernsbacher, M.A. What role does the cerebellum play in language processing. Handb. Neuropsychol. Lang. 2012, 1, 294–316. [Google Scholar]
- Carreiras, M.; Mechelli, A.; Estévez, A.; Price, C.J. Brain activation for lexical decision and reading aloud: Two sides of the same coin? J. Cogn. Neurosci. 2007, 19, 433–444. [Google Scholar] [CrossRef]
- Gauthier, C.T.; Duyme, M.; Zanca, M.; Capron, C. Sex and performance level effects on brain activation during a verbal fluency task: A functional magnetic resonance imaging study. Cortex 2009, 45, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Seki, A.; Okada, T.; Koeda, T.; Sadato, N. Phonemic manipulation in Japanese: An fMRI study. Cogn. Brain Res. 2004, 20, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Desmond, J.E.; Gabrieli, J.D.; Glover, G.H. Dissociation of frontal and cerebellar activity in a cognitive task: Evidence for a distinction between selection and search. Neuroimage 1998, 7, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Perani, D.; Cappa, S.F.; Schnur, T.; Tettamanti, M.; Collina, S.; Rosa, M.M.; Fazio1, F. The neural correlates of verb and noun processing: A PET study. Brain 1999, 122, 2337–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seger, C.A.; Desmond, J.E.; Glover, G.H.; Gabrieli, J.D. Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology 2000, 14, 361. [Google Scholar] [CrossRef] [PubMed]
- Tyler, L.K.; Bright, P.; Fletcher, P.; Stamatakis, E.A. Neural processing of nouns and verbs: The role of inflectional morphology. Neuropsychologia 2004, 42, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D.; Fiebach, C.J.; Schlesewsky, M.; Bornkessel, I.D.; Von Cramon, D.Y. Processing linguistic complexity and grammaticality in the left frontal cortex. Cereb. Cortex 2006, 16, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Stowe, L.A.; Paans, A.M.; Wijers, A.A.; Zwarts, F. Activations of “motor” and other non-language structures during sentence comprehension. Brain Lang. 2004, 89, 290–299. [Google Scholar] [CrossRef]
- Giraud, A.-L.; Truy, E.; Frackowiak, R.S.; Grégoire, M.-C.; Pujol, J.-F.; Collet, L. Differential recruitment of the speech processing system in healthy subjects and rehabilitated cochlear implant patients. Brain 2000, 123, 1391–1402. [Google Scholar] [CrossRef] [Green Version]
- Mariën, P.; Ackermann, H.; Adamaszek, M.; Barwood, C.H.; Beaton, A.; Desmond, J.; De Witte, E.; Fawcett, A.J.; Hertrich, I.; Küper, M. Consensus paper: Language and the cerebellum: An ongoing enigma. Cerebellum 2014, 13, 386–410. [Google Scholar] [CrossRef] [PubMed]
- Ito, M. The Cerebellum and Neural Control; Raven press: New York, NY, USA, 1984. [Google Scholar]
- Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 2008, 9, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, N. The primate cortico-cerebellar system: Anatomy and function. Nat. Rev. Neurosci. 2006, 7, 511–522. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Miall, R.C.; Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 1998, 2, 338–347. [Google Scholar] [CrossRef]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef] [PubMed]
- Krienen, F.M.; Buckner, R.L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 2009, 19, 2485–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courchesne, E.; Allen, G. Prediction and preparation, fundamental functions of the cerebellum. Learn. Mem. 1997, 4, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jia, F.; Siok, W.T.; Tan, L.H. Altered functional connectivity in persistent developmental stuttering. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
First Author of Publication | Comparison | # Subjects | # Foci | ||
---|---|---|---|---|---|
PWS | PWNS | PWS | PWNS | ||
Braun [13] | Orolaryngeal motor task > Rest Dysfluent language > Motor Fluent language > Motor | 18 | 20 | 46 | 22 |
de Nil [43] | Oral reading > silent reading | 10 | 10 | 4 | 4 |
Fox [14] | Speech-motor positive correlations with syllable rate | 10 | 10 | 31 | 12 |
de Nil [44] | Oral reading > silent reading Pre-, post- and 1-year after treatment (3 exp) | 13 | 10 | 33 | 8 |
Neumann [15] | Overt reading After therapy > before | 5 | 16 | 35 | 9 |
Preibisch [16] | Overt reading > viewing meaningless signs | 16 | 16 | 13 | 3 |
de Nil [18] | Repeating words > passive listening | 15 | 15 | 19 | 15 |
Watkins [50] | Production with fluency or auditory feedback | 10 | 10 | 11 | 21 |
Chang [51] | Speech production > non-speech production | 20 | 20 | 27 | 59 |
Kell [47] | Overt > covert reading | 26 | 13 | 32 | 0 |
Lu [19] | Covert picture naming > passive viewing | 9 | 9 | 46 | 46 |
Sakai [52] | Speech production with auditory feedback > passive reading Speech production with auditory feedback > delayed feedback | 8 | 10 | 14 | 18 |
Toyomura [53] | Reading sentences with auditory stimulus (rhythm/chorus) > solo | 12 | 12 | 33 | 8 |
Howell [54] | Producing rising or falling tones | 9 | 9 | 14 | 2 |
Ingham [55] | Overtly reading texts > monologue Monologue > overtly reading texts | 18 | 12 | 17 | 20 |
Toyomura [56] | Oral reading > listening Oral reading > rest | 10 | 10 | 22 | 9 |
Ward [20] | Picture describing > rest Sentence reading > rest | 17 | 17 | 38 | 6 |
Lu [46] | Picture naming > rest | 13 | 13 | 1 | 0 |
Neef [57] | Covert speaking > rest Covert humming a melody > rest | 15 | 17 | 3 | 6 |
Lu [58] | Post-intervention > pre-intervention | 26 | 13 | 3 | 0 |
Yang [59] | Stutter state anxiety > rest | 19 | 19 | 19 | 2 |
Connally [60] | Speech production > rest | 17 | 17 | 30 | 16 |
Neumann [61] | Linguistic prosody > neutral prosody Emotional prosody > neutral prosody | 26 | 13 | 36 | 0 |
Sares [62] | Shifted pitch > unshifted pitch | 13 | 15 | 0 | 3 |
Cluster | Volume (mm3) | Weighted Center (X,Y,Z) | Maximum ALE Value (X,Y,Z) | ALE Value (10−2) | Anatomical Label | BA |
---|---|---|---|---|---|---|
1 | 31,928 | −50.8, −9.3, 14.7 | −54, −16, 2 | 2.39 | L Superior Temporal Gyrus | 22 |
−48, −4, 32 | 1.67 | L Precentral Gyrus | 6 | |||
−50,−4,42 | 1.43 | L Precentral Gyrus | 4 | |||
−32, 20, −2 | 1.34 | L Claustrum | / | |||
−42, 24, 16 | 1.26 | L Middle Frontal Gyrus | 46 | |||
−54, 8, 22 | 1.46 | L Inferior Frontal Gyrus | 9 | |||
−58, −34, −4 | 0.92 | L Middle Temporal Gyrus | 21 | |||
−48, 20, −12 | 0.90 | L Inferior Frontal Gyrus | 47 | |||
−54, −36, 22 | 0.84 | L Insula | 13 | |||
−54, −22, 22 | 0.84 | L Postcentral Gyrus | 40 | |||
−30, −12, 8 | 0.71 | L Putamen | / | |||
−66, −44, −12 | 0.66 | L Middle Temporal Gyrus | 20 | |||
2 | 10,616 | −3.5, −73.2, −14.5 | 12, −76, −14 | 1.20 | R Cerebellum Declive | / |
−8, −82, −14 | 1.11 | L Cerebellum Declive | / | |||
−10, −66, −20 | 1.06 | L Cerebellum Fastigium | / | |||
−22, −64, −26 | 0.99 | L Cerebellum Culmen | / | |||
−22, −74, −26 | 0.94 | L Cerebellum Uvula | / | |||
−6, −94, −4 | 0.91 | L Lingual Gyrus | 17 | |||
−20, −64, −38 | 0.66 | L Cerebellum Tonsil | / |
Cluster | Volume (mm3) | Weighted Center (X,Y,Z) | Maximum ALE Value (X,Y,Z) | ALE Value (10−2) | Anatomical Label | BA |
---|---|---|---|---|---|---|
1 | 47,408 | 46.1, −2.5, 10.2 | 56, −2, 28 | 2.70 | R Postcentral Gyrus | 6 |
46,22,10 | 1.95 | R Inferior Frontal Gyrus | 45 | |||
60, −6, −2 | 1.92 | R Superior Temporal Gyrus | 22 | |||
50, 6, 8 | 1.79 | R Precentral Gyrus | 44 | |||
20, −2, −2 | 1.65 | R Globus Pallidus | / | |||
46, −26, 12 | 1.55 | R Transverse Temporal Gyrus | 41 | |||
42, −6, 14 | 1.54 | R Insula | 13 | |||
18, 12, −14 | 1.76 | R Putamen | / | |||
66, −2, 20 | 1.51 | R Precentral Gyrus | 4 | |||
14, 8, 2 | 1.38 | R Caudate | / | |||
42, −14, −6 | 1.38 | R Claustrum | / | |||
50, 16, −10 | 1.23 | R Inferior Frontal Gyrus | 47 | |||
44, −18, 44 | 1.22 | R Postcentral Gyrus | 3 | |||
54, −4, −14 | 0.94 | R Superior Temporal Gyrus | 38 | |||
56, −32, 0 | 0.94 | R Middle Temporal Gyrus | 21 | |||
58, −30, 32 | 0.83 | R Inferior Parietal Lobule | 40 | |||
2 | 36,528 | −46.8, −9.2, 15 | −52, −8, 30 | 2.53 | L Precentral Gyrus | 6 |
−56, −4, 20 | 1.73 | L Precentral Gyrus | 4 | |||
−24, 2, 6 | 1.62 | L Putamen | / | |||
−66, −20, −2 | 1.56 | L Superior Temporal Gyrus | 22 | |||
−48, −42, 20 | 1.43 | L Superior Temporal Gyrus | 13 | |||
−38, 20, 4 | 1.43 | L Insula | 13 | |||
−12, −16, 10 | 1.41 | L Thalamus | / | |||
−58, −32, 12 | 1.37 | L Superior Temporal Gyrus | 42 | |||
−46, 26, 4 | 1.32 | L Inferior Frontal Gyrus | 13 | |||
−52, 36, 2 | 1.23 | L Inferior Frontal Gyrus | 46 | |||
−56, 8, 24 | 0.99 | L Inferior Frontal Gyrus | 9 | |||
−52, −16, 46 | 0.84 | L Postcentral Gyrus | 2 | |||
−50, −26, 32 | 0.83 | L Inferior Parietal Lobule | 40 | |||
−58, −48, 22 | 0.77 | L Supramarginal Gyrus | 40 | |||
−50, 24, 14 | 0.70 | L Inferior Frontal Gyrus | 45 | |||
3 | 11,744 | −0.2, 6.2, 48.8 | −6, 4, 52 | 2.02 | L Medial Frontal Gyrus | 6 |
0,4, 48 | 1.76 | L Cingulate Gyrus | 24 | |||
6, 4, 50 | 1.59 | R Medial Frontal Gyrus | 6 | |||
6, −8, 48 | 1.05 | R Paracentral Lobule | 31 | |||
−14, 20, 48 | 0.93 | L Superior Frontal Gyrus | 6 | |||
0, −14, 48 | 0.77 | R Paracentral Lobule | 31 | |||
4 | 11,664 | −16.9, −61.7, −17.6 | −6, −66, −18 | 2.00 | L Cerebellum Declive | / |
2, −38, −8 | 1.20 | L Cerebellum Culmen | / | |||
−36, −72, −26 | 1.18 | L Cerebellum Uvula | / | |||
10, −52, −18 | 1.16 | R Cerebellum Culmen | / | |||
−44, −72, −12 | 1.05 | L Fusiform Gyrus | 19 | |||
8, −48, −10 | 0.89 | R Cerebellum Cerebellar Lingual | / | |||
−14, −36, 0 | 0.85 | L Parahippocampal Gyrus | 27 |
Cluster | Volume (mm3) | Weighted Center (X,Y,Z) | Maximum ALE Value (X,Y,Z) | ALE Value (10−2) | Anatomical Label | BA |
---|---|---|---|---|---|---|
1 | 6536 | −50, −5.9, 28 | −14, −36, 0 | 1.56 | L Precentral Gyrus | 6 |
−56, 8, 22 | 0.98 | L Inferior Frontal Gyrus | 9 | |||
2 | 2600 | −59.6, −31.2, 12.2 | −58, −34, 12 | 1.57 | L Superior Temporal Gyrus | 22 |
−62, −34, 18 | 1.27 | L Superior Temporal Gyrus | 42 | |||
3 | 1152 | −8.9, −66.4, −19.2 | −10, −66, −20 | 1.01 | L Cerebellum Fastigium | / |
4 | 368 | −34.4, 19.5, 4 | −34, 20, 2 | 1.00 | L Insula | 13 |
5 | 248 | −26.4, −67.7, −17.3 | −26, −68, −16 | 0.67 | L Cerebellum Declive | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Yin, Y.; Jiang, Y.; Huang, C. Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis. Brain Sci. 2022, 12, 1030. https://doi.org/10.3390/brainsci12081030
Zhang N, Yin Y, Jiang Y, Huang C. Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis. Brain Sciences. 2022; 12(8):1030. https://doi.org/10.3390/brainsci12081030
Chicago/Turabian StyleZhang, Ning, Yulong Yin, Yuchen Jiang, and Chenxu Huang. 2022. "Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis" Brain Sciences 12, no. 8: 1030. https://doi.org/10.3390/brainsci12081030
APA StyleZhang, N., Yin, Y., Jiang, Y., & Huang, C. (2022). Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis. Brain Sciences, 12(8), 1030. https://doi.org/10.3390/brainsci12081030