Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 2009, 10, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Breton-Provencher, V.; Drummond, G.T.; Sur, M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front. Neural Circuits 2021, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Roussel, B.; Buguet, A.; Bobillier, P.; Jouvet, M. Locus ceruleus, paradoxal sleep, and cerebral noradrena-line. CR Seances Soc. Biol. Fil. 1967, 161, 2537–2541. [Google Scholar]
- Aston-Jones, G.; Shipley, M.; Chouvet, G.; Ennis, M.; Van Bockstaele, E.; Pieribone, V.; Shiekhattar, R.; Akaoka, H.; Drolet, G.; Astier, B. Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. Prog. Brain Res. 1991, 88, 47–75. [Google Scholar]
- Mallick, B.N.; Pandi-Perumal, S.; Mccarley, R.W.; Morrison, A.R. Rapid Eye Movement Sleep: Regulation and Function; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Aston-Jones, G.; Chiang, C.; Alexinsky, T. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog. Brain Res. 1991, 88, 501–520. [Google Scholar] [CrossRef]
- Li, Y.; Hickey, L.; Perrins, R.; Werlen, E.; Patel, A.A.; Hirschberg, S.; Jones, M.; Salinas, S.; Kremer, E.; Pickering, A.E. Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Res. 2016, 1641, 274–290. [Google Scholar] [CrossRef]
- Zerbi, V.; Floriou-Servou, A.; Markicevic, M.; Vermeiren, Y.; Sturman, O.; Privitera, M.; Von Ziegler, L.; Ferrari, K.D.; Weber, B.; De Deyn, P.P.; et al. Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019, 103, 702–718. [Google Scholar] [CrossRef]
- Oyarzabal, E.A.; Hsu, L.-M.; Das, M.; Harry Chao, T.-H.; Zhou, J.; Song, S.; Zhang, W.; Smith, K.G.; Scio-Lino, N.R.; Evsyukova, I.Y.; et al. Chemogenetic Stimulation of Tonic Locus Coeruleus Activity Strengthens the Default Mode Network. bioRxiv 2021. [Google Scholar] [CrossRef]
- Eschenko, O.; Sara, S.J. Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: Brain stem-cortex interplay for memory consolidation? Cereb. Cortex 2008, 18, 2596–2603. [Google Scholar] [CrossRef]
- Liu, K.Y.; Marijatta, F.; Hämmerer, D.; Acosta-Cabronero, J.; Düzel, E.; Howard, R.J. Magnetic resonance imaging of the human locus coeruleus: A systematic review. Neurosci. Biobehav. Rev. 2017, 83, 325–355. [Google Scholar] [CrossRef]
- Kelberman, M.; Keilholz, S.; Weinshenker, D. What’s That (Blue) Spot on my MRI? Multimodal Neuroim-aging of the Locus Coeruleus in Neurodegenerative Disease. Front. Neurosci. 2020, 14, 583421. [Google Scholar] [CrossRef]
- Schmidt, K.; Bari, B.; Ralle, M.; Washington-Hughes, C.; Muchenditsi, A.; Maxey, E.; Lutsenko, S. Localization of the Locus Coeruleus in the Mouse Brain. J. Vis. Exp. 2019, 145, e58652. [Google Scholar] [CrossRef]
- Zeng, H.; Jiang, Y.; Beer-Hammer, S.; Yu, X. Awake Mouse fMRI and Pupillary Recordings in the Ultra-High Magnetic Field. Front. Neurosci. 2022, 16, 1028. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R.; et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef]
- Bandettini, P.A.; Wong, E.C.; Hinks, R.S.; Tikofsky, R.S.; Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992, 25, 390–397. [Google Scholar] [CrossRef]
- Yu, X.; Glen, D.; Wang, S.; Dodd, S.; Hirano, Y.; Saad, Z.; Reynolds, R.; Silva, A.C.; Koretsky, A.P. Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex. NeuroImage 2012, 59, 1451–1460. [Google Scholar] [CrossRef]
- Gati, J.S.; Menon, R.S.; Ugurbil, K.; Rutt, B.K. Experimental determination of the BOLD field strength de-pendence in vessels and tissue. Magn. Reson. Med. 1997, 38, 296–302. [Google Scholar] [CrossRef]
- Donahue, M.J.; Hoogduin, H.; Smith, S.; Siero, J.; Chappell, M.; Petridou, N.; Jezzard, P.; Luijten, P.R.; Hendrikse, J. Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study. Hum. Brain Mapp. 2012, 33, 511–522. [Google Scholar] [CrossRef]
- Fera, F.; Yongbi, M.N.; Van Gelderen, P.; Frank, J.A.; Mattay, V.S.; Duyn, J.H. EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: Sensitivity dependence on echo time and acquisition bandwidth. J. Magn. Reson. Imaging 2004, 19, 19–26. [Google Scholar] [CrossRef]
- Baltes, C.; Radzwill, N.; Bosshard, S.; Marek, D.; Rudin, M. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 2009, 22, 834–842. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Choi, S.; Zeng, H.; Takahashi, K.; Qian, C.; Yu, X. Focal fMRI signal enhancement with implantable inductively coupled detectors. NeuroImage 2022, 247, 118793. [Google Scholar] [CrossRef]
- Yu, X.; He, Y.; Wang, M.; Merkle, H.; Dodd, S.J.; Silva, A.C.; Koretsky, A. Sensory and optogenetically driven single-vessel fMRI. Nat. Chem. Biol. 2016, 13, 337–340. [Google Scholar] [CrossRef]
- Yu, X.; Qian, C.; Chen, D.-Y.; Dodd, S.J.; Koretsky, A.P. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat. Methods 2014, 11, 55–58. [Google Scholar] [CrossRef]
- Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-Aron, B.; Sijbers, J.; Fieremans, E. Denoising of diffusion MRI using random matrix theory. NeuroImage 2016, 142, 394–406. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, X.; Zhu, X.-H.; Ugurbil, K.; Chen, W.; Wu, X. Denoise Functional Magnetic Resonance Imaging with Random Matrix Theory Based Principal Component Analysis. IEEE Trans. Biomed. Eng. 2022, 1. [Google Scholar] [CrossRef]
- Hike, D.C.; Liu, X.; Xie, Z.; Choi, S.; Jiang, Y.; Yu, X. Implanted RF coils enable 100um isotropic resolution EPI-fMRI images at ultra-high preclinical MRI scanner. Proc. Soc. Neurosci. 2022. [Google Scholar]
- Fernandes, P.; Regala, J.; Correia, F.; Gonçalves-Ferreira, A.J. The human locus coeruleus 3-D stere-otactic anatomy. Surg. Radiol. Anat. 2012, 34, 879–885. [Google Scholar] [CrossRef]
- Vizioli, L.; Moeller, S.; Grant, A.; Tavaf, N.; Dowdle, L.; Sadeghi-Tarakameh, A.; Eryaman, Y.; Radder, J.; Lagore, R.; Van De Moortele, P.; et al. Ultra-High Resolution Human Functional Imaging Using 10.5 Tesla. In Proceedings of the High Field ISMRM Workshop, Champalimaud Foundation, Lisbon, Portugal, 19–22 March 2022. [Google Scholar]
- Belliveau, J.W.; Kennedy, D.N.; McKinstry, R.C.; Buchbinder, B.R.; Weisskoff, R.M.; Cohen, M.S.; Vevea, J.M.; Brady, T.J.; Rosen, B.R. Functional Mapping of the Human Visual Cortex by Magnetic Resonance Imaging. Science 1991, 254, 716–719. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, M.; Chen, X.; Pohmann, R.; Polimeni, J.; Scheffler, K.; Rosen, B.R.; Kleinfeld, D.; Yu, X. Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals. Neuron 2018, 97, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Y.; Choi, S.; Pohmann, R.; Scheffler, K.; Kleinfeld, D.; Yu, X. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol. 2021, 19, e3000923. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, B.; Hutchinson, E.; Yakovleva, V.; Schram, V.; Russell, J.T.; Belluscio, L.; Koretsky, A.; Silva, A.C. Functional Reactivity of Cerebral Capillaries. J. Cereb. Blood Flow Metab. 2008, 28, 961–972. [Google Scholar] [CrossRef]
- Hirsch, S.; Reichold, J.; Schneider, M.; Szekely, G.; Weber, B. Topology and hemodynamics of the cortical cerebrovascular system. J. Cereb. Blood Flow Metab. 2012, 32, 952–967. [Google Scholar] [CrossRef]
- Hlushchuk, R.; Haberthür, D.; Soukup, P.; Barré, S.F.; Khoma, O.-Z.; Schittny, J.; Haghayegh Jahromi, N.; Bouchet, A.; Engelhardt, B.; Djonov, V. Innovative high-resolution microCT imaging of animal brain vasculature. Brain Struct. Funct. 2020, 225, 2885–2895. [Google Scholar] [CrossRef]
- Uludag, K.; Müller-Bierl, B.; Uğurbil, K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. NeuroImage 2009, 48, 150–165. [Google Scholar] [CrossRef]
- Weber, B.; Keller, A.L.; Reichold, J.; Logothetis, N.K. The microvascular system of the striate and ex-trastriate visual cortex of the macaque. Cereb. Cortex 2008, 18, 2318–2330. [Google Scholar] [CrossRef]
- Leenders, K.L.; Perani, D.; Lammertsma, A.; Heather, J.D.; Buckingham, P.; Healy, M.J.R.; Gibbs, J.M.; Wise, R.J.S.; Hatazawa, J.; Herold, S.; et al. Cerebral Blood Flow, Blood Volume and Oxygen Utilization. Normal Values and Effect of Age. Brain 1990, 113, 27–47. [Google Scholar] [CrossRef]
- Blinder, P.; Tsai, P.S.; Kaufhold, J.; Knutsen, P.M.; Suhl, H.; Kleinfeld, D. The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 2013, 16, 889–897. [Google Scholar] [CrossRef]
- Tanner, J.E.; Stejskal, E.O. Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method. J. Chem. Phys. 1968, 49, 1768–1777. [Google Scholar] [CrossRef]
- Levitt, M.H.; Freeman, R. NMR population inversion using a composite pulse. J. Magn. Reson. 1979, 33, 473–476. [Google Scholar] [CrossRef]
- Yacoub, E.; Duong, T.Q.; Van de Moortele, P.-F.; Lindquist, M.; Adriany, G.; Kim, S.-G.; Ugurbil, K.; Hu, X. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn. Reson. Med. 2003, 49, 655–664. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Eschenko, O.; Murayama, Y.; Augath, M.; Steudel, T.; Evrard, H.C.; Besserve, M.; Oeltermann, A. Hippocampal–cortical interaction during periods of subcortical silence. Nature 2012, 491, 547–553. [Google Scholar] [CrossRef]
- Tsurugizawa, T.; Tamada, K.; Ono, N.; Karakawa, S.; Kodama, Y.; Debacker, C.; Hata, J.; Okano, H.; Kitamura, A.; Zalesky, A.; et al. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Sci. Adv. 2020, 6, eaav4520. [Google Scholar] [CrossRef]
- Henderson, L.A.; Macey, P.M.; Richard, C.A.; Runquist, M.L.; Harper, R.M. Functional magnetic resonance imaging during hypotension in the developing animal. J. Appl. Physiol. 2004, 97, 2248–2257. [Google Scholar] [CrossRef]
- Boido, D.; Rungta, R.L.; Osmanski, B.-F.; Roche, M.; Tsurugizawa, T.; Le Bihan, D.; Ciobanu, L.; Charpak, S. Mesoscopic and microscopic imaging of sensory responses in the same animal. Nat. Commun. 2019, 10, 1110. [Google Scholar] [CrossRef]
- Deffieux, T.; Demene, C.; Pernot, M.; Tanter, M. Functional ultrasound neuroimaging: A review of the pre-clinical and clinical state of the art. Curr. Opin. Neurobiol. 2018, 50, 128–135. [Google Scholar] [CrossRef]
- Macé, E.; Montaldo, G.; Cohen, I.; Baulac, M.; Fink, M.; Tanter, M. Functional ultrasound imaging of the brain. Nat. Methods 2011, 8, 662–664. [Google Scholar] [CrossRef]
- Liao, L.-D.; Lin, C.-T.; Shih, Y.-Y.I.; Duong, T.Q.; Lai, H.-Y.; Wang, P.-H.; Wu, R.; Tsang, S.; Chang, J.-Y.; Li, M.-L.; et al. Transcranial Imaging of Functional Cerebral Hemodynamic Changes in Single Blood Vessels using in vivo Photoacoustic Microscopy. J. Cereb. Blood Flow Metab. 2012, 32, 938–951. [Google Scholar] [CrossRef]
- Yao, J.; Xia, J.; Wang, L.V. Multiscale Functional and Molecular Photoacoustic Tomography. Ultrason. Imaging 2016, 38, 44–62. [Google Scholar] [CrossRef]
- Gottschalk, S.; Fehm, T.F.; Deán-Ben, X.L.; Tsytsarev, V.; Razansky, D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 2017, 4, 11007. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.A.; Jiang, Y.; Napadow, V.; Yu, X. Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sci. 2022, 12, 1085. https://doi.org/10.3390/brainsci12081085
Zhou XA, Jiang Y, Napadow V, Yu X. Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sciences. 2022; 12(8):1085. https://doi.org/10.3390/brainsci12081085
Chicago/Turabian StyleZhou, Xiaoqing Alice, Yuanyuan Jiang, Vitaly Napadow, and Xin Yu. 2022. "Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI" Brain Sciences 12, no. 8: 1085. https://doi.org/10.3390/brainsci12081085
APA StyleZhou, X. A., Jiang, Y., Napadow, V., & Yu, X. (2022). Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sciences, 12(8), 1085. https://doi.org/10.3390/brainsci12081085