Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Quality Assessment and Data Extraction
2.3. Voxel-Wise Meta-Analysis
2.4. Heterogeneity, Sensitivity, and Publication Bias Assessment
2.5. Meta-Regression Analysis
3. Results
3.1. Characteristics of Studies Included
3.2. Main Analysis of GMV Abnormality between CRPS Patients and HCs
3.3. Heterogeneity and Publication Bias Assessment
3.4. Meta-Regression Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pleger, B.; Draganski, B.; Schwenkreis, P.; Lenz, M.; Nicolas, V.; Maier, C.; Tegenthoff, M. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex. PLoS ONE 2014, 9, e85372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruehl, S. Complex regional pain syndrome. BMJ 2015, 351, h2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, H.; Rose, J.; Halle, S.; Shekane, P. Complex regional pain syndrome: A narrative review for the practising clinician. Br. J. Anaesth. 2019, 123, e424–e433. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; McDonnell, P.; Gershwin, M.E. Complex regional pain syndrome—False hopes and miscommunications. Autoimmun. Rev. 2019, 18, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Halicka, M.; Vittersø, A.D.; Proulx, M.J.; Bultitude, J.H. Neuropsychological Changes in Complex Regional Pain Syndrome (CRPS). Behav. Neurol. 2020, 2020, 4561831. [Google Scholar] [CrossRef] [PubMed]
- Becerra, L.; Schwartzman, R.J.; Kiefer, R.T.; Rohr, P.; Moulton, E.A.; Wallin, D.; Pendse, G.; Morris, S.; Borsook, D. CNS Measures of Pain Responses Pre- and Post-Anesthetic Ketamine in a Patient with Complex Regional Pain Syndrome. Pain Med. 2009, 16, 2368–2385. [Google Scholar] [CrossRef]
- Diers, M. Neuroimaging the pain network—Implications for treatment. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101418. [Google Scholar] [CrossRef]
- Marinus, J.; Moseley, G.L.; Birklein, F.; Baron, R.; Maihöfner, C.; Kingery, W.S.; van Hilten, J.J. Clinical features and pathophysiology of Complex Regional Pain Syndrome—Current state of the art. Lancet Neurol. 2011, 10, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.; Nelson, S.; Lewis, J.; McCabe, C.S. Imaging and clinical evidence of sensorimotor problems in CRPS: Utilizing novel treatment approaches. J. Neuroimmune Pharmacol. 2013, 8, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. Neuroimage 2000, 11, 805–821. [Google Scholar] [CrossRef] [Green Version]
- Geha, P.Y.; Baliki, M.N.; Harden, R.N.; Bauer, W.R.; Parrish, T.B.; Apkarian, A.V. The Brain in Chronic CRPS Pain: Abnormal Gray-White Matter Interactions in Emotional and Autonomic Regions. Neuron 2008, 60, 570–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokouhi, M.; Clarke, C.; Morley-Forster, P.; Moulin, D.E.; Davis, K.D.; St. Lawrence, K. Structural and Functional Brain Changes at Early and Late Stages of Complex Regional Pain Syndrome. J. Pain 2018, 19, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Barad, M.J.; Ueno, T.; Younger, J.; Chatterjee, N.; Mackey, S. Complex Regional Pain Syndrome Is Associated with Structural Abnormalities in Pain-Related Regions of the Human Brain. J. Pain 2014, 15, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domin, M.; Strauss, S.; McAuley, J.H.; Lotze, M. Complex Regional Pain Syndrome: Thalamic GMV Atrophy and Associations of Lower GMV with Clinical and Sensorimotor Performance Data. Front. Neurol. 2021, 12, 722334. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Luo, C.; Li, Q.; Hu, N.; Xiao, Y.; Liu, N.; Lui, S.; Gong, Q. White Matter Abnormalities in Patients with Parkinson’s Disease: A Meta-Analysis of Diffusion Tensor Imaging Using Tract-Based Spatial Statistics. Front. Aging Neurosci. 2020, 12, 610962. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Chen, Z.; Long, J.; Dai, J.; Huang, X.; Lui, S.; Radua, J.; Vieta, E.; Kemp, G.J.; et al. Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacology 2020, 45, 703–712. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, B.; Luo, Q.; Qiu, L.; Wang, S. Gray Matter Structural Alterations in Social Anxiety Disorder: A Voxel-Based Meta-Analysis. Front. Psychiatry 2018, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Wollman, S.C.; Alhassoon, O.M.; Hall, M.G.; Stern, M.J.; Connors, E.J.; Kimmel, C.L.; Allen, K.E.; Stephan, R.A.; Radua, J. Gray matter abnormalities in opioid-dependent patients: A neuroimaging meta-analysis. Am. J. Drug Alcohol Abus. 2017, 43, 505–517. [Google Scholar] [CrossRef]
- Radua, J.; Rubia, K.; Canales-Rodríguez, E.J.; Pomarol-Clotet, E.; Fusar-Poli, P.; Mataix-Cols, D. Anisotropic Kernels for Coordinate-Based Meta-Analyses of Neuroimaging Studies. Front. Psychiatry 2014, 5, 13. [Google Scholar] [CrossRef]
- Radua, J.; Mataix-Cols, D.; Phillips, M.L.; El-Hage, W.; Kronhaus, D.M.; Cardoner, N.; Surguladze, S. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur. Psychiatry 2012, 27, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lai, H.; Li, J.; Becker, B.; Zhao, Y.; Cheng, B.; Wang, S. Gray matter structures associated with neuroticism: A meta-analysis of whole-brain voxel-based morphometry studies. Hum. Brain Mapp. 2021, 42, 2706–2721. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.; Cheung, C.; Yu, K.; Yip, B.; Sham, P.; Li, Q.; Chua, S.; McAlonan, G. Gray Matter in First-Episode Schizophrenia Before and After Antipsychotic Drug Treatment. Anatomical Likelihood Estimation Meta-Analyses with Sample Size Weighting. Schizophr. Bull. 2016, 37, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Norman, L.J.; Carlisi, C.; Lukito, S.; Hart, H.; Mataix-Cols, D.; Radua, J.; Rubia, K. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder. JAMA Psychiatry 2016, 73, 815–825. [Google Scholar] [CrossRef]
- Boisgueheneuc, F.D.; Levy, R.; Volle, E.; Seassau, M.; Duffau, H.; Kinkingnehun, S.; Samson, Y.; Zhang, S.; Dubois, B. Functions of the left superior frontal gyrus in humans: A lesion study. Brain 2006, 129, 3315–3328. [Google Scholar] [CrossRef] [Green Version]
- Leng, K.; Li, E.; Eser, R.; Piergies, A.; Sit, R.; Tan, M.; Neff, N.; Li, S.H.; Rodriguez, R.D.; Suemoto, C.K.; et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 2021, 24, 276–287. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, L.; Xie, W.; Yang, Z.Y.; Zhu, X.Z.; Cheung, E.F.; Sørensenci, T.A.; Raymond, A.M.; Chan, C.K. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity. Psychiatry Res. Neuroimaging 2018, 276, 65–72. [Google Scholar] [CrossRef]
- Zou, H.; Yang, J. Temporal Variability-Based Functional Brain Lateralization Study in ADHD. J. Atten. Disord. 2021, 25, 839–847. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Howes, O.; Bechdolf, A.; Borgwardt, S. Mapping vulnerability to bipolar disorder: A systematic review and meta-analysis of neuroimaging studies. J. Psychiatry Neurosci. 2012, 37, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef]
- Li, J. Pain and depression comorbidity: A preclinical perspective. Behav. Brain Res. 2015, 276, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Nielsen, B.E.; Boxer, E.E.; Aoto, J.; Ford, C.P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron 2021, 109, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.W.; LaFaver, K.; Limachia, G.S.; Capitan, G.; Ameli, R.; Sinclair, S.; Epstein, S.A.; Hallett, M.; Horovitz, S.G. Gray matter differences in patients with functional movement disorders. Neurology 2018, 91, e1870–e1879. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Hou, Y.; Shang, H. A Voxel-Wise Meta-Analysis of Gray Matter Abnormalities in Essential Tremor. Front. Neurol. 2018, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.J.; Stopyra, M.A.; Mönning, E.; Sailer, S.; Lavandier, N.; Kihm, L.P.; Bendszus, M.; Preissl, H.; Herzog, W.; Friederich, H.-C. Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity. J. Clin. Investig. 2020, 130, 4094–4103. [Google Scholar] [CrossRef] [Green Version]
- Billot, B.; Bocchetta, M.; Todd, E.; Dalca, A.V.; Rohrer, J.D.; Iglesias, J.E. Automated segmentation of the hypothalamus and associated subunits in brain MRI. Neuroimage 2020, 223, 117287. [Google Scholar] [CrossRef]
- May, A.; Burstein, R. Hypothalamic regulation of headache and migraine. Cephalalgia 2019, 39, 1710–1719. [Google Scholar] [CrossRef]
- Pan, P.L.; Zhong, J.G.; Shang, H.F.; Zhu, Y.L.; Xiao, P.R.; Dai, Z.Y.; Shi, H.C. Quantitative meta-analysis of grey matter anomalies in neuropathic pain. Eur. J. Pain 2015, 19, 1224–1231. [Google Scholar] [CrossRef]
- Wang, W.; Tang, S.; Li, C.; Chen, J.N.; Li, H.F.; Su, Y.L.; Ning, B. Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume. J. Neurotraum. 2019, 36, 2348–2357. [Google Scholar] [CrossRef]
- Krainik, A.; Lehericy, S.; Duffau, H.; Vlaicu, M.; Poupon, F.; Capelle, L.; Cornu, P.; Clemenceau, S.; Sahel, M.; Valery, C.-A.; et al. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 2001, 57, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Schramm, S.; Albers, L.; Ille, S.; Schröder, A.; Meyer, B.; Sollmann, N.; Krieg, S.M. Navigated transcranial magnetic stimulation of the supplementary motor cortex disrupts fine motor skills in healthy adults. Sci. Rep. 2019, 9, 17744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, S.M.; Guillery, R.W. The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 1695–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, M.A. The role of the thalamus in motor control. Curr. Opin. Neurobiol. 2003, 13, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamani, C.; Dostrovsky, J.O.; Lozano, A.M. The motor thalamus in neurosurgery. Neurosurgery 2006, 58, 146–158. [Google Scholar] [CrossRef]
- Dumurgier, J.; Crivello, F.; Mazoyer, B.; Ahmed, I.; Tavernier, B.; Grabli, D.; François, C.; Tzourio-Mazoyer, N.; Tzourio, C.; Elbaz, A. MRI atrophy of the caudate nucleus and slower walking speed in the elderly. Neuroimage 2012, 60, 871–878. [Google Scholar] [CrossRef]
- Villablanca, J.R. Why do we have a caudate nucleus? Acta Neurobiol. Exp. 2010, 70, 95–105. [Google Scholar]
- Çırak, M.; Yağmurlu, K.; Kearns, K.N.; Ribas, E.C.; Urgun, K.; Shaffrey, M.E.; Kalani, M.Y.S. The Caudate Nucleus: Its Connections, Surgical Implications, and Related Complications. World Neurosurg. 2020, 139, e428–e438. [Google Scholar] [CrossRef]
- Shah, C.; Zhang, W.; Xiao, Y.; Yao, L.; Zhao, Y.; Gao, X.; Liu, L.; Liu, J.; Li, S.; Tao, B.; et al. Common pattern of gray-matter abnormalities in drug-naive and medicated first-episode schizophrenia: A multimodal meta-analysis. Psychol. Med. 2017, 47, 401–413. [Google Scholar] [CrossRef]
- Shi, H.; Yuan, C.; Dai, Z.; Ma, H.; Sheng, L. Gray matter abnormalities associated with fibromyalgia: A meta-analysis of voxel-based morphometric studies. Semin. Arthritis Rheum. 2016, 46, 330–337. [Google Scholar] [CrossRef]
- Dai, Z.; Zhong, J.; Xiao, P.; Zhu, Y.; Chen, F.; Pan, P.; Shi, H. Gray matter correlates of migraine and gender effect: A meta-analysis of voxel-based morphometry studies. Neuroscience 2015, 299, 88–96. [Google Scholar] [CrossRef]
- Fornito, A.; Malhi, G.S.; Lagopoulos, J.; Ivanovski, B.; Wood, S.J.; Velakoulis, D.; Saling, M.M.; McGorry, P.D.; Pantelis, C.; Yücel, M.; et al. In vivo evidence for early neurodevelopmental anomaly of the anterior cingulate cortex in bipolar disorder. Acta Psychiatr. Scand. 2007, 116, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, P.; Benrud-Larson, L.M.; McClelland, R.L.; Low, P.A. Complex regional pain syndrome type I: Incidence and prevalence in Olmsted County, a population-based study. Pain 2003, 103, 199–207. [Google Scholar] [CrossRef]
Study | Year | Participants (Female) | Age, Year Means (SD) | Duration, Month Means (SD) | Pain Score (Means) | 12-Point Checklist (Score) | ||
---|---|---|---|---|---|---|---|---|
CRPS | HCs | CRPS | HCs | |||||
Barad et al. [13] | 2014 | 15 (15) | 15 (15) | 44.0 (NA) | 44.1 (NA) | 44.67 (13.96) * | VAS (7.25) | 9.5 |
Domin et al. [14] | 2021 | 24 (20) | 33 (19) | 50.75 (14) | 54.42 (13.49) | 48.12 (37) | VAS (4.8) | 11.0 |
Pleger et al. [1] | 2014 | 20 (11) | 20 (11) | 41.8 (9.8) | 41.6 (9.6) | 11.95 (3.20) * | NRS (5.3) | 9.5 |
Shokouhi et al. [12] | 2018 | 12 (10) | 16 (10) | 51.1 (12.7) | 44.4 (11.6) | 5.9 (2.9) | BPI (3.8) | 10.5 |
Geha et al. [11] | 2008 | 22 (19) | 22 (19) | 40.7 (2.3) | 40.5 (2.3) | 37.42 (7.90) * | VAS (5.76) | 10.0 |
Study | Year | Method | Space | Magnetic Field (T) | Voxel Size (mm3) | Main Findings of GMV Abnormality in CRPS | p-Value |
---|---|---|---|---|---|---|---|
Barad et al. [13] | 2014 | VBM | MNI | 3.0 | 1.5 × 1.5 × 1.5 | Lesser: L orbitofrontal cortex, L mid-cingulate cortex, R mid-cingulate cortex, L posterior mid-cingulate cortex, L dorsal insula, L anterior mid-cingulate cortex Greater: R hypothalamus, L dorsal putamen, L inferior temporal lobe | pFDR < 0.0005 |
Domin et al. [14] | 2021 | VBM | MNI | 3.0 | 1 × 1 × 1 | Lesser: bilateral thalamus | pFWE < 0.05 |
Pleger et al. [1] | 2014 | VBM | MNI | 1.5 | 1 × 1 × 1 | Greater: dorsomedial prefrontal cortex | pFWE < 0.05 |
Shokouhi et al. [12] | 2018 | VBM | MNI | 3.0 | 1 × 1 × 1 | Lesser: R supramarginal gyrus, R fusiform gyrus, R supplementary motor area | pFWE < 0.05 |
Geha et al. [11] | 2008 | VBM | MNI | 3.0 | 1 × 1 × 1 | Lesser: insula | pCORR< 0.05 |
Brain Areas | MNI Coordinate | SDM-Z | p-Value | Voxels | Local Peaks | Jackknife Analysis |
---|---|---|---|---|---|---|
CRPS > HCs | ||||||
Left superior frontal gyrus, medial | 2, 52, 20 | 1.005 | <0.001 | 324 | Left superior frontal gyrus, medial Right anterior cingulate/paracingulate gyri, BA 32 | 3/5 |
Left striatum | −22, −4, −6 | 1.029 | <0.001 | 79 | Left striatum | 4/5 |
Undefined | 2, 0, −8 | 1.034 | <0.001 | 56 | Undefined (2, 0, −8) Undefined (2, −4, −10) | 3/5 |
CRPS < HCs | ||||||
Corpus callosum | −2, −18, 26 | −1.769 | <0.001 | 1601 | Corpus callosum (−2, −18, 26) Corpus callosum (−6, −12, 28) Corpus callosum (−2, −12, 28) Right supplementary motor area, BA 4 Right median cingulate/paracingulate gyri, BA 23 Right median cingulate/paracingulate gyri | 4/5 |
Undefined | −8, −18, 20 | −1.693 | <0.001 | 312 | Undefined (−8, −18, 20) Undefined (−8, −12, 20) Corpus callosum (−4, −20, 20) Corpus callosum (0, −18, 22) Undefined (−6, −8, 18) Undefined (0, −4, 20) Right caudate nucleus Undefined (12, −8, 18) Undefined (2, −12, 12) Right thalamus Right anterior thalamic projections | 3/5 |
Study | CRPS > HCs (GMV) | CRPS < HCs (GMV) | |||
---|---|---|---|---|---|
Left Superior Frontal Gyrus, Medial | Left Striatum | Undefined (2, 0, −8) | Corpus Callosum | Undefined (−8, −18, 20) | |
Barad | Yes | No | No | Yes | No |
Domin | No | Yes | No | No | No |
Geha | Yes | Yes | Yes | Yes | Yes |
Pleger | No | Yes | Yes | Yes | Yes |
Shokouhi | Yes | Yes | Yes | Yes | Yes |
Total | 3/5 | 4/5 | 3/5 | 4/5 | 3/5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Li, Z.-Y.; Yu, Y.; Yang, Y.; Ni, M.-H.; Xie, H.; Wang, W.; Huang, Y.-X.; Li, J.-L.; Cui, G.-B.; et al. Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sci. 2022, 12, 1115. https://doi.org/10.3390/brainsci12081115
Ma T, Li Z-Y, Yu Y, Yang Y, Ni M-H, Xie H, Wang W, Huang Y-X, Li J-L, Cui G-B, et al. Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sciences. 2022; 12(8):1115. https://doi.org/10.3390/brainsci12081115
Chicago/Turabian StyleMa, Teng, Ze-Yang Li, Ying Yu, Yang Yang, Min-Hua Ni, Hao Xie, Wen Wang, Yu-Xiang Huang, Jin-Lian Li, Guang-Bin Cui, and et al. 2022. "Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies" Brain Sciences 12, no. 8: 1115. https://doi.org/10.3390/brainsci12081115
APA StyleMa, T., Li, Z. -Y., Yu, Y., Yang, Y., Ni, M. -H., Xie, H., Wang, W., Huang, Y. -X., Li, J. -L., Cui, G. -B., & Yan, L. -F. (2022). Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sciences, 12(8), 1115. https://doi.org/10.3390/brainsci12081115