Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The Clinical and Neuropsychological Rating Scale
2.3. MRI Data Acquisition
2.4. Rs-fMRI Preprocessing and Functional Connectivity Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Neuropsychological Results
3.2. Whole Brain Voxel-Wise Regression Analysis
3.3. Regression Models for Risk Factors Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 2016, 12, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, E.B., Jr.; Lyons, K.; Koller, W.C. Early detection of probable idiopathic Parkinson’s disease: II. A prospective application of a diagnostic test battery. Mov. Disord. 2000, 15, 474–478. [Google Scholar] [CrossRef]
- Marini, K.; Mahlknecht, P.; Tutzer, F.; Stockner, H.; Gasperi, A.; Djamshidian, A.; Willeit, P.; Kiechl, S.; Willeit, J.; Rungger, G.; et al. Application of a Simple Parkinson’s Disease Risk Score in a Longitudinal Population-Based Cohort. Mov. Disord. 2020, 35, 1658–1662. [Google Scholar] [CrossRef]
- Ponsen, M.M.; Stoffers, D.; Twisk, J.W.; Wolters, E.; Berendse, H.W. Hyposmia and executive dysfunction as predictors of future Parkinson’s disease: A prospective study. Mov. Disord. 2009, 24, 1060–1065. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Iranzo, A.; Högl, B.; Frauscher, B.; Müller, C.; Santamaría, J.; Tolosa, E.; Serradell, M.; Mitterling, T.; Gschliesser, V.; et al. Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology 2015, 84, 654–658. [Google Scholar] [CrossRef]
- Welge-Lüssen, A.; Wattendorf, E.; Schwerdtfeger, U.; Fuhr, P.; Bilecen, D.; Hummel, T.; Westermann, B. Olfactory-induced brain activity in Parkinson’s disease relates to the expression of event-related potentials: A functional magnetic resonance imaging study. Neuroscience 2009, 162, 537–543. [Google Scholar] [CrossRef]
- Hummel, T.; Fliessbach, K.; Abele, M.; Okulla, T.; Reden, J.; Reichmann, H.; Wüllner, U.; Haehner, A. Olfactory FMRI in patients with Parkinson’s disease. Front. Integr. Neurosci. 2010, 4, 125. [Google Scholar] [CrossRef] [Green Version]
- Westermann, B.; Wattendorf, E.; Schwerdtfeger, U.; Husner, A.; Fuhr, P.; Gratzl, O.; Hummel, T.; Bilecen, D.; Welge-Lüssen, A. Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 19–24. [Google Scholar] [CrossRef]
- Moessnang, C.; Frank, G.; Bogdahn, U.; Winkler, J.; Greenlee, M.W.; Klucken, J. Altered activation patterns within the olfactory network in Parkinson’s disease. Cereb. Cortex 2011, 21, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Georgiopoulos, C.; Witt, S.T.; Haller, S.; Dizdar, N.; Zachrisson, H.; Engström, M.; Larsson, E.M. A study of neural activity and functional connectivity within the olfactory brain network in Parkinson’s disease. Neuroimage Clin. 2019, 23, 101946. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Jiang, T.; Lu, Y.; He, Y.; Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004, 22, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, J.A.; Zald, D.H. On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates. Brain Res. Brain Res. Rev. 2005, 50, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, J.; Liu, Y.; Zhu, J.; Liu, N.; Zeng, W.; Huang, N.; Rasch, M.J.; Jiang, H.; Gu, X.; et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 2017, 20, 559–570. [Google Scholar] [CrossRef]
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- Doty, R.L.; Shaman, P.; Dann, M. Development of the University of Pennsylvania Smell Identification Test: A standardized microencapsulated test of olfactory function. Physiol. Behav. 1984, 32, 489–502. [Google Scholar] [CrossRef]
- Jennings, D.; Siderowf, A.; Stern, M.; Seibyl, J.; Eberly, S.; Oakes, D.; Marek, K.; PARS Investigators. Imaging prodromal Parkinson disease: The Parkinson Associated Risk Syndrome Study. Neurology 2014, 83, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Fullard, M.E.; Tran, B.; Xie, S.X.; Toledo, J.B.; Scordia, C.; Linder, C.; Purri, R.; Weintraub, D.; Duda, J.E.; Chahine, L.M.; et al. Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Parkinsonism Relat. Disord. 2016, 25, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eickhoff, S.B.; Stephan, K.E.; Mohlberg, H.; Grefkes, C.; Fink, G.R.; Amunts, K.; Zilles, K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005, 25, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.J.; Mock, B.J.; Sorenson, J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998, 7, 119–132. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Braak, H.; Bohl, J.R.; Müller, C.M.; Rüb, U.; de Vos, R.A.; Del Tredici, K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov. Disord. 2006, 21, 2042–2051. [Google Scholar] [CrossRef]
- Silveira-Moriyama, L.; Holton, J.L.; Kingsbury, A.; Ayling, H.; Petrie, A.; Sterlacci, W.; Poewe, W.; Maier, H.; Lees, A.J.; Revesz, T. Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci. Lett. 2009, 453, 77–80. [Google Scholar] [CrossRef]
- Vogt, B.A. Cingulate cortex in Parkinson’s disease. Handb. Clin. Neurol. 2019, 166, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Augustine, J.R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Brain Res. Rev. 1996, 22, 229–244. [Google Scholar] [CrossRef]
- Poellinger, A.; Thomas, R.; Lio, P.; Lee, A.; Makris, N.; Rosen, B.R.; Kwong, K.K. Activation and habituation in olfaction—An fMRI study. Neuroimage 2001, 13, 547–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhani, S.; Rahmani, F.; Aarabi, M.H.; Sadr, A.V. Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: Diffusion MRI reveals new insight. Brain Imaging Behav. 2019, 13, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Wang, S.; Fang, W.; Zhu, Y.; Li, R.; Sheng, K.; Zou, D.; Han, Y.; Wang, X.; Cheng, O. Alterations in the limbic/paralimbic cortices of Parkinson’s disease patients with hyposmia under resting-state functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat. Disord. 2015, 21, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Hummel, T. The clinical significance of electrophysiological measures of olfactory function. Behav. Brain Res. 2006, 170, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Kikuchi, A.; Hirayama, K.; Nishio, Y.; Hosokai, Y.; Kanno, S.; Hasegawa, T.; Sugeno, N.; Konno, M.; Suzuki, K.; et al. Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: A 3 year longitudinal study. Brain 2012, 135, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, R.; Houghton, D.; Sundarararjan, S.; Doty, R.L.; Stern, M.; Xie, S.X.; Siderowf, A. Odor identification deficits are associated with increased risk of neuropsychiatric complications in patients with Parkinson’s disease. Mov. Disord. 2010, 25, 2099–2104. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.F.; Weintraub, D.; Mamikonyan, E.; Moberg, P.J.; Siderowf, A.D.; Duda, J.E. Olfactory dysfunction is associated with neuropsychiatric manifestations in Parkinson’s disease. Mov. Disord. 2011, 26, 2051–2057. [Google Scholar] [CrossRef]
- Ross, G.W.; Petrovitch, H.; Abbott, R.D.; Tanner, C.M.; Popper, J.; Masaki, K.; Launer, L.; White, L.R. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann. Neurol. 2008, 63, 167–173. [Google Scholar] [CrossRef]
- Masala, C.; Solla, P.; Liscia, A.; Defazio, G.; Saba, L.; Cannas, A.; Cavazzana, A.; Hummel, T.; Haehner, A. Correlation among olfactory function, motors’ symptoms, cognitive impairment, apathy, and fatigue in patients with Parkinson’s disease. J. Neurol. 2018, 265, 1764–1771. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson disease subtypes—Key to understanding heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef]
PD-Normal Olfaction (n = 26) | PD-Mild to Moderate Microsmia (n = 17) | PD-Severe Microsmia (n = 18) | PD-Anosmia (n = 21) | p | |
---|---|---|---|---|---|
Age (years) a | 62.57 (10.45) | 59.12 (10.18) | 62.61 (10.06) | 57.14 (10.18) | 0.230 |
Gender (male/female) | 18/8 | 11/6 | 12/6 | 14/7 | 0.992 |
Education (years) | 15.19 (3.34) | 15.00 (2.45) | 15.78 (2.94) | 15.24 (2.84) | 0.754 |
Disease duration (months) | 8.31 (9.35) | 5.12 (5.59) | 5.44 (5.12) | 8.00 (9.48) | 0.921 |
GDS | 1.46 (1.82) * | 2.41 (2.69) | 2.44 (1.85) | 3.62 (3.20) * | 0.047 |
STAI | 60.62 (15. 26) | 66.35 (19.23) | 70.72 (12.97) | 68.71 (23.43) | 0.269 |
MoCA | 27.88 (1.48) | 27.59 (2.09) | 26.78 (1.96) | 28.00 (1.41) | 0.203 |
Modified Schwab & England ADL | 91.15 (6.53) | 92.65 (5.89) | 89.17 (5.75) | 90.95 (7.52) | 0.453 |
MDS-UPDRS part III | 20.69 (10.30) | 17.59 (11.02) | 22.06 (11.63) | 21.52 (9.40) | 0.597 |
JLO | 12.60 (2.93) | 11.81 (2.98) | 11.69 (1.95) | 12.39 (1.79) | 0.299 |
HVLT-R total recall a | 49.54 (12.53) | 48.12 (14.49) | 45.61 (13.73) | 44.47 (12.90) | 0.584 |
HVLT-R recognition | 49.08 (12.88) | 46.18 (14.15) | 43.50 (10.11) | 44.76 (13.72) | 0.138 |
LNS | 12.31 (1.54) | 12.18 (2.51) | 10.94 (2.29) | 10.71 (2.26) | 0.066 |
Semantic fluency a | 55.77 (10.23) | 49.12 (11.30) | 54.72 (11.74) | 52.48 (14.47) | 0.324 |
SDMT | 46.32 (9.64) | 44.39 (10.21) | 45.27 (8.75) | 43.81 (11.33) | 0.844 |
UPSIT (baseline) | 36.38 (1.60) * | 30.18 (1.78) * | 22.06 (1.96) * | 14.67 (2.60) * | <0.001 |
SCOPA-AUT | 9.23 (5.85) | 11.71 (7.58) | 10.33 (5.85) | 10.33 (4.18) | 0.529 |
Olfactory Values | Statistics Values | FC Values | UPSIT Scores | |
---|---|---|---|---|
Clinical Characteristics | ||||
Age | r | −0.005 | 0.146 | |
p | 0.964 | 0.189 | ||
GDS | r | 0.110 | −0.305 | |
p | 0.325 | 0.005 * | ||
STAI | r | 0.068 | −0.223 | |
p | 0.544 | 0.044 * | ||
MoCA | r | 0.155 | 0.059 | |
p | 0.164 | 0.594 | ||
Modified Schwab & England ADL | r | −0.015 | 0.031 | |
p | 0.895 | 0.784 | ||
MDS-UPDRS part III | r | −0.045 | −0.089 | |
p | 0.687 | 0.426 | ||
JLO | r | −0.152 | 0.049 | |
p | 0.173 | 0.66 | ||
HVLT-R total recall | r | 0.030 | 0.175 | |
p | 0.789 | 0.117 | ||
HVLT-R recognition | r | −0.061 | 0.181 | |
p | 0.589 | 0.104 | ||
LNS | r | −0.170 | 0.288 | |
p | 0.126 | 0.009 * | ||
Semantic fluency | r | −0.124 | 0.044 | |
p | 0.268 | 0.696 | ||
SDMT | r | 0.046 | 0.103 | |
p | 0.684 | 0.356 | ||
SCOPA-AUT | r | 0.099 | −0.08 | |
p | 0.375 | 0.476 |
Standardized Coefficient (B) | p Value | 95% CI of B | ||
---|---|---|---|---|
Lower | Upper | |||
Independent variables | ||||
Age | 0.128 | 0.193 | −0.057 | 0.276 |
Male: 0, female: 1 | −0.046 | 0.654 | −4.61 | 2.950 |
GDS | −0.238 | 0.168 | −2.031 | 0.360 |
STAI | 0.032 | 0.850 | −0.144 | 0.174 |
LNS | 0.166 | 0.100 | −0.132 | 1.469 |
FC of the Lt.EC-Rt.dCC * | −0.418 | <0.001 | −51.296 | −18.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Li, H.; Li, H.; Li, Y.; Wang, J.; Jia, X.; Yang, Q. Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease. Brain Sci. 2022, 12, 963. https://doi.org/10.3390/brainsci12080963
Fan W, Li H, Li H, Li Y, Wang J, Jia X, Yang Q. Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease. Brain Sciences. 2022; 12(8):963. https://doi.org/10.3390/brainsci12080963
Chicago/Turabian StyleFan, Wentao, Hui Li, Haoyuan Li, Ying Li, Jing Wang, Xiuqin Jia, and Qi Yang. 2022. "Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease" Brain Sciences 12, no. 8: 963. https://doi.org/10.3390/brainsci12080963
APA StyleFan, W., Li, H., Li, H., Li, Y., Wang, J., Jia, X., & Yang, Q. (2022). Association between Functional Connectivity of Entorhinal Cortex and Olfactory Performance in Parkinson’s Disease. Brain Sciences, 12(8), 963. https://doi.org/10.3390/brainsci12080963