Eye Movement Control in Tibetan Reading: The Roles of Word Length and Frequency
Abstract
:1. Introduction
2. Preliminary Experiment
2.1. Materials and Methods
2.1.1. Participants
2.1.2. Materials
2.1.3. Apparatus
2.1.4. Procedure
2.1.5. Measures
2.2. Results
2.2.1. Multiple Linear Regression Analysis of Word Length and Word Frequency on Eye Movement Measures
2.2.2. Analysis of Landing Position Distribution
- Initial landing position distribution
- Initial landing position distribution in single-fixation cases
- Initial landing position distribution in multiple-fixation cases
3. Formal Experiment
3.1. Materials and Methods
3.1.1. Participants
3.1.2. Design
3.1.3. Materials
- Selection of experimental materials
- Evaluation of experimental materials (including vocabulary and sentence)
Vocabulary Evaluation
Sentence Evaluation
3.1.4. Apparatus and Procedure
3.2. Results
3.2.1. The Temporal Dimension Eye Movement Measures Results
3.2.2. The Spatial Dimension Eye Movement Measures Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, G.; Xiong, J.; Zang, C.; Yu, L.; Cui, L.; Bai, X. Review of Eye-Movement Measures in Reading Research. Adv. Psychol. Sci. 2013, 21, 589–605. [Google Scholar] [CrossRef]
- Rayner, K. Eye Movements and Attention in Reading, Scene Perception, and Visual Search. Q. J. Exp. Psychol. 2009, 62, 1457–1506. [Google Scholar] [CrossRef]
- Zang, C.; Meng, H.; Bai, X.; Yan, G. Advances in Landing Position Effect during Reading. J. Psychol. Sci. 2013, 36, 770–775. [Google Scholar] [CrossRef]
- Meng, H.; Bai, X.; Zang, C.; Yan, G. Landing Position Effects of Coordinate and Attributive Structure Compound Words. Acta Psychol. Sin. 2014, 46, 36–49. [Google Scholar] [CrossRef]
- O’Regan, J.K.; Jacobs, A.M. Optimal Viewing Position Effect in Word Recognition: A Challenge to Current Theory. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 185–197. [Google Scholar] [CrossRef]
- Vitu, F.; O’Regan, J.K.; Mittau, M. Optimal Landing Position in Reading Isolated Words and Continuous Text. Percept. Psychophys. 1990, 47, 583–600. [Google Scholar] [CrossRef]
- O’Regan, J.K. Optimal Viewing Position in Words and the Strategy-Tactics Theory of Eye Movements in Reading. In Eye Movements and Visual Cognition; Spring: New York, NY, USA, 1992; pp. 333–354. [Google Scholar]
- Rayner, K. Eye Guidance in Reading: Fixation Locations within Words. Perception 1979, 8, 21–30. [Google Scholar] [CrossRef]
- Yan, M.; Kliegl, R.; Richter, E.M.; Nuthmann, A.; Shu, H. Flexible Saccade-Target Selection in Chinese Reading. Q. J. Exp. Psychol. 2010, 63, 705–725. [Google Scholar] [CrossRef]
- Yang, H.-M.; McConkie, G.W. Reading Chinese: Some Basic Eye-Movement Characteristics. In Reading Chinese Script; Psychology Press: London, UK, 1999; p. 16. [Google Scholar]
- Tsai, J.L.; McConkie, G.W. Where Do Chinese Readers Send Their Eyes? In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research; Elsevier: Haarlem, The Netherlands, 2003; pp. 159–176. [Google Scholar]
- Zang, C.; Zhang, M.; Guo, X.; Liu, J.; Yan, G.; Bai, X. Several Effects on Chinese Lexical Processing: Evidence from Eye Movements. Adv. Psychol. Sci. 2012, 20, 1382–1392. [Google Scholar] [CrossRef]
- Clifton, C.; Ferreira, F.; Henderson, J.M.; Inhoff, A.W.; Liversedge, S.P.; Reichle, E.D.; Schotter, E.R. Eye Movements in Reading and Information Processing: Keith Rayner’s 40 Year Legacy. J. Mem. Lang. 2016, 86, 1–19. [Google Scholar] [CrossRef]
- Rau, A.K.; Moll, K.; Snowling, M.J.; Landerl, K. Effects of Orthographic Consistency on Eye Movement Behavior: German and English Children and Adults Process the Same Words Differently. J. Exp. Child Psychol. 2015, 130, 92–105. [Google Scholar] [CrossRef]
- Barton, J.J.S.; Hanif, H.M.; Eklinder Björnström, L.; Hills, C. The Word-Length Effect in Reading: A Review. Cogn. Neuropsychol. 2014, 31, 378–412. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K. Eye Movement Latencies for Parafoveally Presented Words. Bull. Psychon. Soc. 1978, 11, 13–16. [Google Scholar] [CrossRef]
- Rayner, K.; Inhoff, A.W.; Morrison, R.E.; Slowiaczek, M.L.; Bertera, J.H. Masking of Foveal and Parafoveal Vision during Eye Fixations in Reading. J. Exp. Psychol. Hum. Percept. Perform. 1981, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Tian, H.; Tong, W.; Liu, Z. Effects of Aging on Eye Movement Control in Chinese Reading: Evidence of Word Length and Word Predictability. Psychol. Explor. 2020, 40, 417–424. [Google Scholar]
- Li, S.; Li, L.; Wang, J.; McGowan, V.A.; Paterson, K.B. Effects of Word Length on Eye Guidance Differ for Young and Older Readers. Psychol. Aging 2018, 33, 685–692. [Google Scholar] [CrossRef]
- Rayner, K.; Slattery, T.J.; Drieghe, D.; Liversedge, S.P. Eye Movements and Word Skipping During Reading: Effects of Word Length and Predictability. J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Bricolo, E.; Salvi, C.; Martelli, M.; Arduino, L.S.; Daini, R. The Effects of Crowding on Eye Movement Patterns in Reading. Acta Psychol. (Amst). 2015, 160, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.O.; Mengxue, R.E.; Zhifang, L.I.; Xiao, F.E. The Effect of Word Length on Saccade Target Selection in Chinese Reading: Eye Movement Evidence. Stud. Psychol. Behav. 2020, 18, 168–175. [Google Scholar]
- Cutter, M.G.; Drieghe, D.; Liversedge, S.P. Reading Sentences of Uniform Word Length—II: Very Rapid Adaptation of the Preferred Saccade Length. Psychon. Bull. Rev. 2018, 25, 1435–1440. [Google Scholar] [CrossRef]
- Vitu, F.; McConkie, G.W.; Kerr, P.; O’Regan, J.K. Fixation Location Effects on Fixation Durations during Reading: An Inverted Optimal Viewing Position Effect. Vision Res. 2001, 41, 3513–3533. [Google Scholar] [CrossRef]
- Yan, G.; Tian, H.; Bai, X.; Rayner, K. The Effect of Word and Character Frequency on the Eye Movements of Chinese Readers. Br. J. Psychol. 2006, 97, 259–268. [Google Scholar] [CrossRef]
- Liversedge, S.P.; Zang, C.; Zhang, M.; Bai, X.; Yan, G.; Drieghe, D. The Effect of Visual Complexity and Word Frequency on Eye Movements during Chinese Reading. Vis. Cogn. 2014, 22, 441–457. [Google Scholar] [CrossRef]
- Harvey, H.; Godwin, H.J.; Fitzsimmons, G.; Liversedge, S.P.; Walker, R. Oculomotor and Linguistic Processing Effects in Reading Dynamic Horizontally Scrolling Text. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Hand, C.J.; Miellet, S.; O’Donnell, P.J.; Sereno, S.C. The Frequency-Predictability Interaction in Reading: It Depends Where You’re Coming From. J. Exp. Psychol. Hum. Percept. Perform. 2010, 36, 1294–1313. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, S.; Xu, Y.; Rayner, K. Do Chinese Readers Obtain Preview Benefit from Word n + 2? Evidence from Eye Movements. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1192. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Richter, E.M.; Hua, S.; Kliegl, R. Readers of Chinese Extract Semantic Information from Parafoveal Words. Psychon. Bull. Rev. 2009, 16, 561–566. [Google Scholar] [CrossRef]
- Angele, B.; Slattery, T.J.; Yang, J.; Kliegl, R.; Rayner, K. Parafoveal Processing in Reading: Manipulating n + 1 and n + 2 Previews Simultaneously. Vis. Cogn. 2008, 16, 697–707. [Google Scholar] [CrossRef]
- Drieghe, D.; Rayner, K.; Pollatsek, A. Mislocated Fixations Can Account for Parafoveal-on-Foveal Effects in Eye Movements during Reading. Q. J. Exp. Psychol. 2008, 61, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Inhoff, A.W.; Ye, Y.; Wu, C. Use of Parafoveally Visible Characters during the Reading of Chinese Sentences. J. Exp. Psychol. Hum. Percept. Perform. 2002, 28, 1213. [Google Scholar] [CrossRef]
- Pollatsek, A.; Tan, L.H.; Rayner, K. The Role of Phonological Codes in Integrating Information across Saccadic Eye Movements in Chinese Character Identification. J. Exp. Psychol. Hum. Percept. Perform. 2000, 26, 607. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Sun, M.; Bai, X.; Gao, L. The Word Frequency Effect of Fovea and Its Effect on the Preview Effect of Parafovea in Tibetan Reading. Acta Psychol. Sin. 2020, 52, 1143–1155. [Google Scholar] [CrossRef]
- Yan, G.; Tao, J.; Meng, Z.; Jiang, K. Parafoveal Processing of Character N+1 of Deaf Readers. J. Psychol. Sci. 2019, 42, 997–1003. [Google Scholar] [CrossRef]
- Rayner, K. Eye Movements in Reading and Information Processing: 20 Years of Research. Psychol. Bull. 1998, 124, 372–422. [Google Scholar] [CrossRef]
- Lavigne, F.; Vitu, F.; D’Ydewalle, G. The Influence of Semantic Context on Initial Eye Landing Sites in Words. Acta Psychol. 2000, 104, 191–214. [Google Scholar] [CrossRef]
- Bai, X.; Liu, J.; Zang, C.; Zhang, M.; Guo, X.; Yan, G. The Advance of Parafoveal Preview Effects in Chinese Reading. Adv. Psychol. Sci. 2011, 19, 1721–1729. [Google Scholar] [CrossRef]
- Beauvillain, C.; Doré, K. Orthographic Codes Are Used in Integrating Information from the Parafovea by the Saccadic Computation System. Vision Res. 1998, 38, 115–123. [Google Scholar] [CrossRef]
- Radach, R.; Inhoff, A.; Heller, D. Orthographic Regularity Gradually Modulates Saccade Amplitudes in Reading. Eur. J. Cogn. Psychol. 2004, 16, 27–51. [Google Scholar] [CrossRef]
- Angele, B.; Rayner, K. Processing the in the Parafovea: Are Articles Skipped Automatically? J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Z.; Liu, N. Influence of word frequency, predictability and plausibility on initial landing positions in words. Stud. Psychol. Behav. 2011, 9, 140–146. [Google Scholar]
- Li, X.; Li, H.; Liu, J.; Bai, X. Effects of Reading Level and Reading Task on English Word Frequency: Evidence from Eye Movements for Chinese-English Bilinguals During English Reading. Stud. Psychol. Behav. 2017, 15, 455–461. [Google Scholar]
- Li, X.; Liu, J.; Yu, H.; Jiang, X.; Liang, F.; Wang, Y.; Bai, X. The Decision of Saccadic Target Selection in Chinese Reading: The Interactive Way of Visual and Lexical Information. Stud. Psychol. Behav. 2019, 17, 496–503. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021; ISBN 3-900051-07-0. [Google Scholar]
- Zhang, M.; Liversedge, S.P.; Bai, X.; Yan, G.; Zang, C. The Influence of Foveal Lexical Processing Load on Parafoveal Preview and Saccadic Targeting during Chinese Reading. J. Exp. Psychol. Hum. Percept. Perform. 2019, 45, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gao, R. Modern Tibetan Frequency Dictionary; The Ethnic Publishing House: Beijing, China, 2007; ISBN 978-7-105-08440-1. [Google Scholar]
- Zang, C.; Fu, Y.; Bai, X.; Yan, G.; Liversedge, S.P. Investigating Word Length Effects in Chinese Reading. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 1831–1841. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Rayner, K. Eye Movement Guidance in Chinese Reading: Is There a Preferred Viewing Location? Vision Res. 2011, 51, 1146–1156. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Meng, H.; Wang, J.; Tian, J.; Zang, C.; Yan, G. The Landing Positions of Dyslexic, Age-Matched and Ability-Matched Children during Reading Spaced Text. Acta Psychol. Sin. 2011, 43, 851–862. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Zang, C. Is Skipping Based on Full or Partial Processing of the Parafoveal Word in Chinese Reading? Stud. Psychol. Behav. 2020, 18, 311–317. [Google Scholar]
- Clifton, C.; Staub, A.; Rayner, K. Eye Movements in Reading Words and Sentences. In Eye Movements; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Chen, Q.-R.; Tan, D.-L.; Deng, Z.; Xu, X.-D. Syntactic Prediction in Sentence Reading: Evidence from Eye Movements. Acta Psychol. Sin. 2010, 42, 672–682. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Steven, C. Walker Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Zang, C.; Fu, Y.; Bai, X.; Yan, G.; Liversedge, S.P. Foveal and Parafoveal Processing of Chinese Three-Character Idioms in Reading. J. Mem. Lang. 2021, 119, 104243. [Google Scholar] [CrossRef]
- Liang, F.; Ma, J.; Bai, X.; Liversedge, S.P. Initial Landing Position Effects on Chinese Word Learning in Children and Adults. J. Mem. Lang. 2021, 116, 104183. [Google Scholar] [CrossRef]
- Hu, X.; Bai, X.; Yan, G. The Advance of Parafoveal-on-Foveal Effects. Adv. Psychol. Sci. 2010, 18, 412–419. [Google Scholar]
- Zang, C.; Liang, F.; Bai, X.; Yan, G.; Liversedge, S.P. Interword Spacing and Landing Position Effects during Chinese Reading in Children and Adults. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K.; Yang, J.; Castelhano, M.S.; Liversedge, S.P. Eye Movements of Older and Younger Readers When Reading Unspaced Text. Exp. Psychol. 2011, 26, 214–223. [Google Scholar] [CrossRef]
- Vorstius, C.; Radach, R.; Lonigan, C.J. Eye Movements in Developing Readers: A Comparison of Silent and Oral Sentence Reading. Vis. Cogn. 2014, 22, 458–485. [Google Scholar] [CrossRef]
- Joseph, H.S.S.L.; Nation, K.; Liversedge, S.P. Using Eye Movements to Investigate Word Frequency Effects in Children’s Sentence Reading. School Psychol. Rev. 2013, 42, 207–222. [Google Scholar] [CrossRef]
- Rayner, K.; Binder, K.S.; Ashby, J.; Pollatsek, A. Eye Movement Control in Reading: Word Predictability Has Little Influence on Initial Landing Positions in Words. Vision Res. 2001, 41, 943–954. [Google Scholar] [CrossRef] [Green Version]
Measures | Word Length | Word Frequency | Multiple R-Squared | Adjusted R-Squared | ||||
---|---|---|---|---|---|---|---|---|
Estimate | t Value | Pr (>|t|) | Estimate | t Value | Pr (>|t|) | |||
SFD | −5.81 | −4.05 | <0.001 *** | −0.80 | −4.20 | <0.001 *** | 0.0032 | 0.0030 |
FFD | −6.40 | −4.80 | <0.001 *** | −0.62 | −3.39 | <0.001 *** | 0.0030 | 0.0028 |
GD | 11.35 | 6.34 | <0.001 *** | −0.64 | −2.61 | <0.001 *** | 0.0066 | 0.0064 |
TFD | 29.96 | 8.42 | <0.001 *** | −1.94 | −4.49 | <0.001 *** | 0.0140 | 0.0137 |
LP | 7.05 | 39.50 | <0.001 *** | 0.05 | 1.90 | 0.06 | 0.1526 | 0.1525 |
Target Words | Word Length (the Number of Characters) | Word Frequency (Per Ten Million) |
---|---|---|
HL | 5.29 (0.50) | 248 (202) |
HS | 3.46 (0.62) | 299 (233) |
LL | 5.37 (0.61) | 28 (26) |
LS | 3.44 (0.68) | 39 (31) |
Target Words | FFD | SFD | GD | TFD |
---|---|---|---|---|
HL | 248.24 (2.47) | 249.08 (2.50) | 254.38 (2.64) | 320.61 (4.89) |
HS | 232.57 (2.33) | 232.01 (2.30) | 239.31 (2.62) | 289.34 (4.24) |
LL | 275.61 (3.34) | 275.72 (3.39) | 287.64 (3.66) | 393.15 (6.71) |
LS | 255.44 (2.39) | 253.08 (2.50) | 262.75 (2.57) | 322.33 (4.23) |
Measures | Fixed Effects | b | SE | t |
---|---|---|---|---|
FFD | Word length | −0.004 | 0.010 | −4.29 *** |
Word frequency | 0.005 | 0.009 | 5.18 *** | |
Word length × Word frequency | 0.001 | 0.020 | 0.27 | |
SFD | Word length | −0.043 | 0.010 | −4.31 ** |
Word frequency | 0.048 | 0.010 | 4.80 *** | |
Word length × Word frequency | 0.012 | 0.020 | 0.59 | |
GD | Word length | −0.004 | 0.001 | −4.17 *** |
Word frequency | 0.005 | 0.001 | 4.95 *** | |
Word length × Word frequency | −0.0003 | 0.002 | −0.02 | |
TFD | Word length | −0.007 | 0.001 | −5.27 *** |
Word frequency | 0.005 | 0.001 | 3.90 *** | |
Word length × Word frequency | −0.0005 | 0.003 | −0.18 |
Target Words | RR | SR | AFSA | AILP | AILP in Single-Fixation Cases | AILP in Multiple-Fixation Cases |
---|---|---|---|---|---|---|
HL | 0.25 (0.084) | 0.13 (0.008) | 2.14 (0.032) | 0.78 (0.011) | 0.77 (0.011) | 0.89 (0.043) |
HS | 0.27 (0.078) | 0.15 (0.009) | 3.31 (0.044) | 0.74 (0.010) | 0.73 (0.011) | 0.68 (0.062) |
LL | 0.27 (0.095) | 0.13 (0.008) | 2.03 (0.027) | 0.79 (0.012) | 0.77 (0.012) | 0.94 (0.050) |
LS | 0.28 (0.121) | 0.16 (0.009) | 3.42 (0.044) | 0.71 (0.010) | 0.70 (0.010) | 0.74 (0.051) |
Measures | Fixed Effects | b | SE | t/z |
---|---|---|---|---|
RR | Word length | 0.05 | 0.01 | 4.58 *** |
Word frequency | 0.03 | 0.01 | 3.72 ** | |
Word length × Word frequency | −0.09 | 0.02 | −4.39 *** | |
SR | Word length | 0.20 | 0.07 | 2.65 ** |
Word frequency | 0.03 | 0.07 | 0.41 | |
Word length × Word frequency | 0.18 | 0.14 | 1.23 | |
AFSA | Word length | 0.52 | 0.04 | 13.72 *** |
Word frequency | −0.01 | 0.03 | −0.28 | |
Word length × Word frequency | 0.07 | 0.08 | 0.90 | |
AILP | Word length | −0.10 | 0.03 | −3.20 *** |
Word frequency | −0.04 | 0.08 | −0.45 | |
Word length × Word frequency | 0.01 | 0.06 | 0.11 | |
AILP in single-fixation cases | Word length | −0.08 | 0.03 | −2.62 *** |
Word frequency | −0.04 | 0.04 | −1.34 | |
Word length × Word frequency | −0.02 | 0.03 | −0.39 | |
AILP in multiple-fixation cases | Word length | −0.40 | 0.13 | −3.16 ** |
Word frequency | −0.02 | 0.12 | −0.18 | |
Word length × Word frequency | 0.13 | 0.25 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-W.; Li, S.; Gao, L.; Niu, Z.-B.; Wang, D.-H.; Zeng, M.; Li, T.-Z.; Bai, X.-J.; Gao, X.-L. Eye Movement Control in Tibetan Reading: The Roles of Word Length and Frequency. Brain Sci. 2022, 12, 1205. https://doi.org/10.3390/brainsci12091205
Li X-W, Li S, Gao L, Niu Z-B, Wang D-H, Zeng M, Li T-Z, Bai X-J, Gao X-L. Eye Movement Control in Tibetan Reading: The Roles of Word Length and Frequency. Brain Sciences. 2022; 12(9):1205. https://doi.org/10.3390/brainsci12091205
Chicago/Turabian StyleLi, Xiao-Wei, Shan Li, Lei Gao, Zi-Bei Niu, Dan-Hui Wang, Man Zeng, Tian-Zhi Li, Xue-Jun Bai, and Xiao-Lei Gao. 2022. "Eye Movement Control in Tibetan Reading: The Roles of Word Length and Frequency" Brain Sciences 12, no. 9: 1205. https://doi.org/10.3390/brainsci12091205
APA StyleLi, X. -W., Li, S., Gao, L., Niu, Z. -B., Wang, D. -H., Zeng, M., Li, T. -Z., Bai, X. -J., & Gao, X. -L. (2022). Eye Movement Control in Tibetan Reading: The Roles of Word Length and Frequency. Brain Sciences, 12(9), 1205. https://doi.org/10.3390/brainsci12091205