Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Measures of Suicidality
2.2. Data Acquisition and Preprocessing
2.3. Dynamic Brain Network Model
2.4. Temporal Correlation Coefficient
2.5. Statistics
2.6. Post-Hoc Analyses on Clinical Variables
2.7. Validation Analyses
3. Results
3.1. Demographic Characteristics and Head Motion
3.2. MDD-Related Alterations
3.3. Correlations
3.4. Post-Hoc Analyses on Clinical Variables
3.5. Validation Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | Corresponding Brain Region | Network Affiliation |
---|---|---|
(1,2) | Precentral gyrus | Sensorimotor |
(3,4) | Superior frontal gyrus, dorsolateral | Frontoparietal |
(5,6) | Superior frontal gyrus, orbital part | Frontoparietal |
(7,8) | Middle frontal gyrus | Salience/frontoparietal/attention |
(9,10) | Middle frontal gyrus, orbital part | Frontoparietal |
(11,12) | Inferior frontal gyrus, opercular part | Cingulo-opercular |
(13,14) | Inferior frontal gyrus, triangular part | Salience/frontoparietal/attention |
(15,16) | Inferior frontal gyrus, orbital part | None |
(17,18) | Rolandic operculum | Auditory/cingulo-opercular |
(19,20) | Supplementary motor area | Sensorimotor |
(21,22) | Olfactory cortex | None |
(23,24) | Superior frontal gyrus, medial | Default-mode |
(25,26) | Superior frontal gyrus, medial orbital | Default-mode |
(27,28) | Gyrus rectus | None |
(29,30) | Insula | Salience/cingulo-opercular |
(31,32) | Anterior cingulate and paracingulate gyri | Default-mode/salience |
(33,34) | Median cingulate and paracingulate gyri | Salience/cingulo-opercular |
(35,36) | Posterior cingulate gyrus | Default-mode |
(37,38) | Hippocampus | None |
(39,40) | Parahippocampal gyrus | Default-mode |
(41,42) | Amygdala | None |
(43,44) | Calcarine fissure and surrounding cortex | Visual |
(45,46) | Cuneus | Visual |
(47,48) | Lingual gyrus | Visual |
(49,50) | Superior occipital gyrus | Visual |
(51,52) | Middle occipital gyrus | Visual |
(53,54) | Inferior occipital gyrus | Visual |
(55,56) | Fusiform gyrus | Visual |
(57,58) | Postcentral gyrus | Sensorimotor |
(59,60) | Superior parietal gyrus | Salience/attention |
(61,62) | Inferior parietal, but supramarginal and angular gyri | Frontoparietal/attention |
(63,64) | Supramarginal gyrus | Auditory/cingulo-opercular |
(65,66) | Angular gyrus | Default-mode |
(67,68) | Precuneus | Default-mode |
(69,70) | Paracentral lobule | Sensorimotor |
(71,72) | Caudate nucleus | Subcortical |
(73,74) | Lenticular nucleus, putamen | Subcortical |
(75,76) | Lenticular nucleus, pallidum | Subcortical |
(77,78) | Thalamus | Thalamus |
(79,80) | Heschl gyrus | Auditory |
(81,82) | Superior temporal gyrus | Auditory/attention |
(83,84) | Temporal pole: superior temporal gyrus | Cingulo-opercular |
(85,86) | Middle temporal gyrus | Default-mode |
(87,88) | Temporal pole: middle temporal gyrus | Default-mode |
(89,90) | Inferior temporal gyrus | None |
References
- Kassebaum, N.J.; Arora, M.; Barber, R.M.; Brown, J.; Carter, A.; Casey, D.C.; Charlson, F.J.; Coates, M.M.; Coggeshall, M.; Cornaby, L.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 315 Diseases and Injuries and Healthy Life Expectancy (HALE), 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef]
- Iancu, S.C.; Wong, Y.M.; Rhebergen, D.; van Balkom, A.J.L.M.; Batelaan, N.M. Long-Term Disability in Major Depressive Disorder: A 6-Year Follow-up Study. Psychol. Med. 2020, 50, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, M.W.; Klimes-Dougan, B.; Cullen, K.R. Neural Correlates of Suicidality in Adolescents with Major Depression: Resting-State Functional Connectivity of the Precuneus and Posterior Cingulate Cortex. Suicide Life Threat. Behav. 2019, 49, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Chang, M.; Zhang, R.; Jiang, X.; Wang, F.; Tang, Y. Amygdala Functional Connectivity in Female Patients with Major Depressive Disorder with and without Suicidal Ideation. Ann. Gen. Psychiatry 2018, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zeng, J.; Liu, H.; Tang, D.; Meng, H.; Li, Y.; Fu, Y. Fronto-Limbic Disconnection in Depressed Patients with Suicidal Ideation: A Resting-State Functional Connectivity Study. J. Affect. Disord. 2017, 215, 213–217. [Google Scholar] [CrossRef]
- Hutchison, R.M.; Womelsdorf, T.; Gati, J.S.; Everling, S.; Menon, R.S. Resting-State Networks Show Dynamic Functional Connectivity in Awake Humans and Anesthetized Macaques. Hum. Brain Mapp. 2013, 34, 2154–2177. [Google Scholar] [CrossRef]
- Hutchison, R.M.; Womelsdorf, T.; Allen, E.A.; Bandettini, P.A.; Calhoun, V.D.; Corbetta, M.; della Penna, S.; Duyn, J.H.; Glover, G.H.; Gonzalez-Castillo, J.; et al. Dynamic Functional Connectivity: Promise, Issues, and Interpretations. Neuroimage 2013, 80, 360–378. [Google Scholar] [CrossRef]
- Preti, M.G.; Bolton, T.A.; van de Ville, D. The Dynamic Functional Connectome: State-of-the-Art and Perspectives. Neuroimage 2017, 160, 41–54. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Cao, H.; Yang, J.; Wu, Z.; Long, Y. Childhood Trauma Is Linked to Decreased Temporal Stability of Functional Brain Networks in Young Adults. J. Affect. Disord. 2021, 290, 23–30. [Google Scholar] [CrossRef]
- Lin, Z.; Long, Y.; Wu, Z.; Xiang, Z.; Ju, Y.; Liu, Z. Associations between Brain Abnormalities and Common Genetic Variants for Schizophrenia: A Narrative Review of Structural and Functional Neuroimaging Findings. Ann. Palliat. Med. 2021, 10, 10031–10052. [Google Scholar] [CrossRef]
- Kaiser, R.H.; Whitfield-Gabrieli, S.; Dillon, D.G.; Goer, F.; Beltzer, M.; Minkel, J.; Smoski, M.; Dichter, G.; Pizzagalli, D.A. Dynamic Resting-State Functional Connectivity in Major Depression. Neuropsychopharmacology 2016, 41, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, H.; Yan, C.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.; Bo, Q.; Chen, G.; Chen, N.; et al. Altered Resting-State Dynamic Functional Brain Networks in Major Depressive Disorder: Findings from the REST-Meta-MDD Consortium. Neuroimage Clin. 2020, 26, 102163. [Google Scholar] [CrossRef] [PubMed]
- Wise, T.; Marwood, L.; Perkins, A.M.; Herane-Vives, A.; Joules, R.; Lythgoe, D.J.; Luh, W.M.; Williams, S.C.R.; Young, A.H.; Cleare, A.J.; et al. Instability of Default Mode Network Connectivity in Major Depression: A Two-Sample Confirmation Study. Transl. Psychiatry 2017, 7, e1105. [Google Scholar] [CrossRef]
- Hou, Z.; Kong, Y.; He, X.; Yin, Y.; Zhang, Y.; Yuan, Y. Increased Temporal Variability of Striatum Region Facilitating the Early Antidepressant Response in Patients with Major Depressive Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 85, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Li, J.; Duan, X.; Cui, Q.; Chen, H.; Chen, H. Static and Dynamic Connectomics Differentiate between Depressed Patients with and without Suicidal Ideation. Hum. Brain Mapp. 2018, 39, 4105–4118. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Z.; Tao, H.; Cheng, Y.; Fan, Z.; Sun, F.; Ouyang, X.; Yang, J. Aberrant Brain Dynamics in Major Depressive Disorder with Suicidal Ideation. J. Affect. Disord. 2022, 314, 263–270. [Google Scholar] [CrossRef]
- Li, J.; Duan, X.; Cui, Q.; Chen, H.; Liao, W. More than Just Statics: Temporal Dynamics of Intrinsic Brain Activity Predicts the Suicidal Ideation in Depressed Patients. Psychol. Med. 2019, 49, 852–860. [Google Scholar] [CrossRef]
- Qiao, D.; Zhang, A.; Sun, N.; Yang, C.; Li, J.; Zhao, T.; Wang, Y.; Xu, Y.; Wen, Y.; Zhang, K.; et al. Altered Static and Dynamic Functional Connectivity of Habenula Associated With Suicidal Ideation in First-Episode, Drug-Naïve Patients With Major Depressive Disorder. Front. Psychiatry 2020, 11, 608197. [Google Scholar] [CrossRef]
- Zuberer, A.; Kucyi, A.; Yamashita, A.; Wu, C.M.; Walter, M.; Valera, E.M.; Esterman, M. Integration and Segregation across Large-Scale Intrinsic Brain Networks as a Marker of Sustained Attention and Task-Unrelated Thought. Neuroimage 2021, 229, 117610. [Google Scholar] [CrossRef]
- Long, Y.; Liu, Z.; Chan, C.K.Y.; Wu, G.; Xue, Z.; Pan, Y.; Chen, X.; Huang, X.; Li, D.; Pu, W. Altered Temporal Variability of Local and Large-Scale Resting-State Brain Functional Connectivity Patterns in Schizophrenia and Bipolar Disorder. Front. Psychiatry 2020, 11, 422. [Google Scholar] [CrossRef]
- Sizemore, A.E.; Bassett, D.S. Dynamic Graph Metrics: Tutorial, Toolbox, and Tale. Neuroimage 2018, 180, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Yan, C.; Wu, Z.; Huang, X.; Cao, H.; Liu, Z.; Palaniyappan, L. Evaluating Test-Retest Reliability and Sex/Age-Related Effects on Temporal Clustering Coefficient of Dynamic Functional Brain Networks. bioRxiv 2021. [Google Scholar] [CrossRef]
- Yi, G.; Wang, L.; Chu, C.; Liu, C.; Zhu, X.; Shen, X.; Li, Z.; Wang, F.; Yang, M.; Wang, J. Analysis of Complexity and Dynamic Functional Connectivity Based on Resting-State EEG in Early Parkinson’s Disease Patients with Mild Cognitive Impairment. Cogn. Neurodyn. 2022, 16, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; et al. Functional Network Organization of the Human Brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef]
- Cao, H.; Chung, Y.; McEwen, S.C.; Bearden, C.E.; Addington, J.; Goodyear, B.; Cadenhead, K.S.; Mirzakhanian, H.; Cornblatt, B.A.; Carrión, R.; et al. Progressive Reconfiguration of Resting-State Brain Networks as Psychosis Develops: Preliminary Results from the North American Prodrome Longitudinal Study (NAPLS) Consortium. Schizophr. Res. 2019, 226, 30–37. [Google Scholar] [CrossRef]
- Long, Y.; Ouyang, X.; Liu, Z.; Chen, X.; Hu, X.; Lee, E.; Chen, E.Y.H.; Pu, W.; Shan, B.; Rohrbaugh, R.M. Associations among Suicidal Ideation, White Matter Integrity and Cognitive Deficit in First-Episode Schizophrenia. Front. Psychiatry 2018, 9, 391. [Google Scholar] [CrossRef]
- Pu, S.; Nakagome, K.; Yamada, T.; Yokoyama, K.; Matsumura, H.; Yamada, S.; Sugie, T.; Miura, A.; Mitani, H.; Iwata, M.; et al. Suicidal Ideation Is Associated with Reduced Prefrontal Activation during a Verbal Fluency Task in Patients with Major Depressive Disorder. J. Affect. Disord. 2015, 181, 9–17. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, B.H.; Lee, S.H. The Association between Serum Lipid Levels, Suicide Ideation, and Central Serotonergic Activity in Patients with Major Depressive Disorder. J. Affect. Disord. 2014, 159, 62–65. [Google Scholar] [CrossRef]
- Yan, C.G.; Wang, X.-D.; Zuo, X.N.; Zang, Y.F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14, 339–351. [Google Scholar] [CrossRef]
- Chao-Gan, Y.; Yu-Feng, Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State FMRI. Front. Syst. Neurosci. 2010, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chen, G.M.; Chen, N.X.; Chen, W.; et al. Reduced Default Mode Network Functional Connectivity in Patients with Recurrent Major Depressive Disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, Z.; Liu, Z.; Liu, D.; Huang, D.; Long, Y. Acute Effect of Betel Quid Chewing on Brain Network Dynamics: A Resting-State Functional Magnetic Resonance Imaging Study. Front. Psychiatry 2021, 12, 701420. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Cao, H.; Bertolino, A.; Walter, H.; Schneider, M.; Schafer, A.; Taurisano, P.; Blasi, G.; Haddad, L.; Grimm, O.; Otto, K.; et al. Altered Functional Subnetwork during Emotional Face Processing a Potential Intermediate Phenotype for Schizophrenia. JAMA Psychiatry 2016, 73, 598–605. [Google Scholar] [CrossRef]
- Cao, H.; Plichta, M.M.; Schäfer, A.; Haddad, L.; Grimm, O.; Schneider, M.; Esslinger, C.; Kirsch, P.; Meyer-Lindenberg, A.; Tost, H. Test-Retest Reliability of FMRI-Based Graph Theoretical Properties during Working Memory, Emotion Processing, and Resting State. Neuroimage 2014, 84, 888–900. [Google Scholar] [CrossRef]
- Zhang, C.; Baum, S.A.; Adduru, V.R.; Biswal, B.B.; Michael, A.M. Test-Retest Reliability of Dynamic Functional Connectivity in Resting State FMRI. Neuroimage 2018, 183, 907–918. [Google Scholar] [CrossRef]
- Sun, Y.; Collinson, S.L.; Suckling, J.; Sim, K. Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia. Schizophr. Bull. 2019, 45, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wu, Z.; Cao, H.; Chen, X.; Wu, G.; Tan, W.; Liu, D.; Yang, J.; Long, Y.; Liu, Z. Age-Related Decrease in Default-Mode Network Functional Connectivity Is Accelerated in Patients With Major Depressive Disorder. Front. Aging Neurosci. 2022, 13, 809853. [Google Scholar] [CrossRef]
- Liu, D.; Tang, S.; Wu, Z.; Yang, J.; Liu, Z.; Wu, G.; Sariah, A.; Ouyang, X.; Long, Y. Changes in Brain Network Properties in Major Depressive Disorder Following Electroconvulsive Therapy: A Combined Static and Dynamic Functional Magnetic Resonance Imaging Study. Ann. Palliat. Med. 2022, 11, 1969–1980. [Google Scholar] [CrossRef]
- Tang, J.; Scellato, S.; Musolesi, M.; Mascolo, C.; Latora, V. Small-World Behavior in Time-Varying Graphs. Phys. Rev. E Cover. Stat. Nonlinear Soft Matter Phys. 2010, 81, 055101. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Chen, C.; Deng, M.; Huang, X.; Tan, W.; Zhang, L.; Fan, Z.; Liu, Z. Psychological Resilience Negatively Correlates with Resting-State Brain Network Flexibility in Young Healthy Adults: A Dynamic Functional Magnetic Resonance Imaging Study. Ann. Transl. Med. 2019, 7, 809. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex Network Measures of Brain Connectivity: Uses and Interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y.; Purgato, M.; Magni, L.R.; Ogawa, Y.; Takeshima, N.; Cipriani, A.; Barbui, C.; Leucht, S.; Furukawa, T.A. Dose Equivalents of Antidepressants: Evidence-Based Recommendations from Randomized Controlled Trials. J. Affect. Disord. 2015, 180, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Jaspers-Fayer, F.; Lin, S.Y.; Chan, E.; Ellwyn, R.; Lim, R.; Best, J.; Belschner, L.; Lang, D.; Heran, M.K.M.; Woodward, T.S.; et al. Neural Correlates of Symptom Provocation in Pediatric Obsessive-Compulsive Disorder. Neuroimage Clin. 2019, 24, 102034. [Google Scholar] [CrossRef]
- Davey, C.G.; Pujol, J.; Harrison, B.J. Mapping the Self in the Brain’s Default Mode Network. Neuroimage 2016, 132, 390–397. [Google Scholar] [CrossRef]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default Mode Network Activity and Connectivity in Psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Xiao, J.; Liao, J.; Zhong, M.; Wang, W.; Yao, S. Evidence of a Dissociation Pattern in Resting-State Default Mode Network Connectivity in First-Episode, Treatment-Naive Major Depression Patients. Biol. Psychiatry 2012, 71, 611–617. [Google Scholar] [CrossRef]
- Fan, T.; Wu, X.; Yao, L.; Dong, J. Abnormal Baseline Brain Activity in Suicidal and Non-Suicidal Patients with Major Depressive Disorder. Neurosci. Lett. 2013, 534, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, J.; Kuang, L.; Cao, J.; Zhang, H.; Ai, M.; Wang, W.; Zhang, S.; Wang, S.; Liu, S.; et al. Association between Abnormal Default Mode Network Activity and Suicidality in Depressed Adolescents. BMC Psychiatry 2016, 16, 337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Pu, W.; Wang, J.; Liu, H.; Wu, G.; Liu, C.; Mwansisya, T.E.; Tao, H.; Chen, X.; Huang, X.; et al. Inefficient DMN Suppression in Schizophrenia Patients with Impaired Cognitive Function but Not Patients with Preserved Cognitive Function. Sci. Rep. 2016, 6, 21657. [Google Scholar] [CrossRef] [PubMed]
- Kucyi, A.; Davis, K.D. Dynamic Functional Connectivity of the Default Mode Network Tracks Daydreaming. Neuroimage 2014, 100, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Zabelina, D.L.; Andrews-Hanna, J.R. Dynamic Network Interactions Supporting Internally-Oriented Cognition. Curr. Opin. Neurobiol. 2016, 40, 86–93. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking Rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef]
- Kucyi, A.; Tambini, A.; Sadaghiani, S.; Keilholz, S.; Cohen, J.R. Spontaneous Cognitive Processes and the Behavioral Validation of Time-Varying Brain Connectivity. Netw. Neurosci. 2018, 2, 397–417. [Google Scholar] [CrossRef]
- Surrence, K.; Miranda, R.; Marroquín, B.M.; Chan, S. Brooding and Reflective Rumination among Suicide Attempters: Cognitive Vulnerability to Suicidal Ideation. Behav. Res. Ther. 2009, 47, 803–808. [Google Scholar] [CrossRef]
- Chan, S.; Miranda, R.; Surrence, K. Subtypes of Rumination in the Relationship between Negative Life Events and Suicidal Ideation. Arch. Suicide Res. 2009, 13, 123–135. [Google Scholar] [CrossRef]
- Szanto, K.; Reynolds, C.F.; Frank, E.; Stack, J.; Fasiczka, A.L.; Miller, M.; Mulsant, B.H.; Mazumdar, S.; Kupfer, D.J. Suicide in Elderly Depressed Patients: Is Active vs. Passive Suicidal Ideation a Clinically Valid Distinction? Am. J. Geriatr. Psychiatry 1996, 4, 197–207. [Google Scholar] [CrossRef]
- Piguet, C.; Karahanoğlu, F.I.; Saccaro, L.F.; van de Ville, D.; Vuilleumier, P. Mood Disorders Disrupt the Functional Dynamics, Not Spatial Organization of Brain Resting State Networks. Neuroimage Clin. 2021, 32, 102833. [Google Scholar] [CrossRef] [PubMed]
- Demirtaş, M.; Tornador, C.; Falcón, C.; López-Solà, M.; Hernández-Ribas, R.; Pujol, J.; Menchón, J.M.; Ritter, P.; Cardoner, N.; Soriano-Mas, C.; et al. Dynamic Functional Connectivity Reveals Altered Variability in Functional Connectivity among Patients with Major Depressive Disorder. Hum. Brain Mapp. 2016, 37, 2918–2930. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Deng, W.; Li, X.; Greenshaw, A.J.; Wang, Q.; Li, M.; Ma, X.; Bai, T.J.; Bo, Q.J.; Cao, J.; et al. Biotypes of Major Depressive Disorder: Neuroimaging Evidence from Resting-State Default Mode Network Patterns. Neuroimage Clin. 2020, 28, 102514. [Google Scholar] [CrossRef] [PubMed]
MDD (n = 52) (Mean ± SD) | HCs (n = 21) (Mean ± SD) | Group Comparisons | |
---|---|---|---|
Age (years) | 30.615 ± 9.306 | 27.000 ± 5.908 | t = 1.982, p = 0.052 |
Sex (male/female) | 28/24 | 10/11 | χ2 = 0.232, p = 0.796 |
Education (years) | 12.115 ± 3.191 | 14.952 ± 2.747 | t = −3.571, p = 0.001 |
17-item HAMD scores | 20.789 ± 6.366 | / | / |
HAMD item 3 scores | 1.769 ± 1.246 | / | / |
Illness duration (months) | 42.919 ± 62.291 | / | / |
Drug-naïve/medicated | 9/43 | / | / |
Fluoxetine equivalents (mg/d) | 25.360 ± 20.024 | ||
Mean FD | 0.086 ± 0.038 | 0.074 ± 0.030 | t = 1.288, p = 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, X.; Long, Y.; Wu, Z.; Liu, D.; Liu, Z.; Huang, X. Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder. Brain Sci. 2022, 12, 1263. https://doi.org/10.3390/brainsci12091263
Ouyang X, Long Y, Wu Z, Liu D, Liu Z, Huang X. Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder. Brain Sciences. 2022; 12(9):1263. https://doi.org/10.3390/brainsci12091263
Chicago/Turabian StyleOuyang, Xuan, Yicheng Long, Zhipeng Wu, Dayi Liu, Zhening Liu, and Xiaojun Huang. 2022. "Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder" Brain Sciences 12, no. 9: 1263. https://doi.org/10.3390/brainsci12091263
APA StyleOuyang, X., Long, Y., Wu, Z., Liu, D., Liu, Z., & Huang, X. (2022). Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder. Brain Sciences, 12(9), 1263. https://doi.org/10.3390/brainsci12091263